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Abstract: A mitochondria-targeted NIR probe based on the FRET mechanism was developed. It
shows ultra-large Stokes shifts (460 nm) and emission shifts (285 nm). Furthermore, we also realized
the imaging of SO2 in living SKOV-3 cells, zebrafish and living mice which may be useful for
understanding the biological roles of SO2 in mitochondria and in vivo.
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1. Introduction

Sulfur dioxide, a well-known atmospheric pollutant, has been regarded as a new
possible gas transmitter following NO, CO and H2S [1–4]. It plays important roles in many
physiological processes. SO2 can dissolve easily in water to form its derivatives bisulfite
(HSO3

−) and sulfite (SO3
2−), so the physiological functions of SO2 can be attributed to

its derivatives (HSO3
−/SO3

2−). However, a high level of endogenous SO2, generated by
the oxidation of H2S and thiol-containing amino acids in mitochondria, may bring about
neurological disorders, cancers and other diseases [5–8]. Hence, it is greatly important
to establish sensitive and rapid methods for SO2 detection to further gain insight into its
functions in biological systems, especially in mitochondria.

Recently, fluorescent probes have become a powerful tool in biological imaging owing
to their simplicity, high selectivity and small cell damage [9–12]. Different from traditional
intensity-based probes, ratiometric probes are independent of the probe concentration,
environment and excitation intensity [13–15]. Besides the ICT (Intramiolecular Charge
Transfer)-based ratiometric probes, fluorescence resonance energy transfer (FRET)-based
ratiometric probes are the most widely designed and used (Table S1). Until now, numerous
FRET-based SO2 probes have been designed and synthesized due to their large pseudo-
Stokes shifts, avoiding interference of a biological background [16–25].

As classic fluorophores, hemicyanines have drawn increasing attention because of
their simple synthesis and excellent response to SO2 [26]. Their derivatives were selected
as acceptors to construct FRET probes [27,28]. However, the emission of the hemicyanines
is around 600 nm, which seriously limits their application in vivo. Therefore, it is of
significance to search for new fluorophores, especially with NIR emission, as acceptors.

On the other hand, to build an effective FRET platform, the development of new
fluorophores as donors whose emission overlaps well with the absorption of acceptors is
essential. Owing to the good optical properties [29], imidazole[1,5-a]pyridines were selected
as the donor to construct the FRET platform [30]. In addition, we chose benzopyran salt as
the acceptor because of its NIR emission. Meanwhile, the benzopyran moiety could not only
be used as a reactive site for the Michael addition reaction with SO2 to achieve detection
purposes, but it could also target mitochondria due to positive electricity. Therefore, the
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designed probe IPB-RL-1 could successfully achieve its imaging of SO2 in mitochondria in
SKOV-3 cells.

2. Results and Discussion
2.1. Synthesis of IPB-RL-1

The probe IPB-RL-1 was easily prepared using a classic organic reaction, as shown in
Scheme 1. The structure was confirmed by NMR and HRMS.
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2.2. Optical Properties of IPB-RL-1

To examine the optical properties of IPB-RL-1, we first examined its selectivity. As
shown in Figure 1a,b, there were no obvious changes in absorption and emission after
the probe reacted with various ions (Br−, CH3COO−, Cl−, ClO4

−, ClO−, F−, H2PO4
−,

HCO3
−, HPO4

2−, HS−, I−, NO2
−, NO3

−, S2O8
2−, SO4

2−, GSH, and Cys). However,
when SO3

2− was added, it was clearly observed by the naked eye that the probe solution
changed from blue to colorless, and the fluorescence intensity was quenched at 760 nm,
indicating that IPB-RL-1 showed good selectivity for the detection of SO3

2−. The anti-
interference experiment (Figure S1) demonstrated that IPB-RL-1 had good anti-interference
performance and could specifically detect SO3

2− even in the presence of other ions.
For a better application in living systems, UV–vis and fluorescence titration exper-

iments were also carried out. As shown in Figure 2a, IPB-RL-1 has a strong UV–vis
absorption peak at 620 nm in the solution of DMSO/PBS (V/V = 3/7). Yet, with the con-
tinuous addition of SO3

2−, the absorption peak at 620 nm decreased and the absorption
peak at 310 nm increased. Meanwhile, the naked eye captured a rapid color change of
the probe solution from blue to colorless. The near-infrared fluorescence emission peak at
760 nm decreased with the increase of SO3

2− while the emission peak at 470 nm increased
(Figure 2b), which further confirmed that the FRET was turned off. In addition, an excellent
linear correlation between the ratio F470/F760 and SO3

2− concentration was observed. The
detection limit was calculated to be 0.98 µM using the linear regression curve (Figure S2)
and LOD formula (LOD = 3 σ/k, σ is the standard deviation of the blank measurement,
and k is the slope of the fluorescence emission ratio (I475/I760) and SO3

2− concentration). In
the process of monitoring the reaction time between IPB-RL-1 and SO3

2−, the fluorescence
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intensity reached equilibrium (Figure S3) in a very short time (less than 10 s). These results
indicated that IPB-RL-1 was suitable for further application in imaging in cells and in vivo.
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The results of the MTT (Methyl Thiazolyl Tetrazolium) experiment (Figure S4) showed
that IPB-RL-1 had a lower cytotoxicity to SKOV-3 cells and could be used for further
cell imaging experiments. In Figure 3, fluorescence in the red and blue channels were
observed after SKOV-3 cells were incubated with the probe for 1 h. However, when the
cells were incubated with the probe for 1 h and then incubated with SO3

2− for 20 min, the
fluorescence in the blue channel was enhanced and the fluorescence in the red channel
was significantly weakened, which suggested that probe IPB-RL-1 could be used to detect
SO3

2− in SKOV-3 cells.
Next, since the benzopyran part of IPB-RL-1 is positively charged, the mitochondria-

targeted experiment was tested. As shown in Figure 4, the red fluorescence of MitoTracker
Red and the blue fluorescence of probe IPB-RL-1 overlap well (coefficient = 0.91).
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Owning to the excellent properties of IPB-RL-1 in cell imaging, its capability for the
visualization of SO3

2− in zebrafish was examined. As depicted in Figure 5, weak blue
and red fluorescent signals were observed in the control group. When the zebrafish were
incubated with IPB-RL-1 for 1 h, the fluorescent signals became obviously strong both in
the blue channel and the red channel. Yet, when the zebrafish were incubated with IPB-RL-
1 for 1 h and then Na2SO3 for 30 min, the fluorescent signals in the red channel became
obviously weak while there was no significant change in the blue channel. Therefore, we
believe that IPB-RL-1 can effectively image in vivo. Hence, imaging in mice was conducted
to further explore its application advantages. As NIR fluorescence emission is required for
the experiments in vivo, only fluorescence changes in the 698–766 nm range were used. As
shown in Figure 6b, obvious signals were observed after the probe was injected into mice
for 5 min. However, with the increase in Na2SO3 concentration, the fluorescence signals
gradually weakened (Figure 6c,d). As the response time is less than 5 min, it is very suitable
for the real-time monitoring of SO3

2− in mice.
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Figure 6. Fluorescence images of IPB-RL-1 in living mice. (a) Images of the mice only; (b) images
after 100 µL of 50 µM IPB-RL-1 was injected into the mice for 5 min; (c) images after 100 µL of 25 µM
SO3

2− was injected into the mice for 5 min; (d) images after re-injection of 100 µL 50 µM SO3
2− at the

same location for 5 min (λex = 635 nm, λem = 698–766 nm).

Based on the above results, we envisioned the mechanism of detection as follows
(Scheme 2). At the excitation wavelength of 380 nm, the donor (imidazo[1,5-a]pyridine)
transfers energy to the acceptor (benzopyran) and NIR fluorescence emission at 760 nm
was observed. However, after the addition of SO3

2−, the reaction between SO3
2− and

benzopyran breaks the π conjugate of benzopyran, resulting in the destruction of FRET,
and thus, the energy of imidazo[1,5-a] pyridine cannot be transferred to the benzopyran.
Therefore, the fluorescence emission at 760 nm disappeared and the emission at 475 nm
increased. This is also confirmed by 1H NMR (Figure S5).
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3. Experimental
Synthesis of the Probe IPB-RL-1

As demonstrated in Scheme 1, compounds 1–4 were synthesized according to the
reported procedure [9,27].

Compound 3 (0.10 g, 0.24 mmol), compound 4 (0.10 g, 0.28 mmol) and CH3COOH
(8 mL) were added to a 25 mL round-bottom flask. The mixture was heated to reflux for 3 h
and then poured into water (100 mL). After being extracted with DCM (20 mL) three times,
the combined organic solvent was removed under reduced pressure. The pure product
was obtained by column chromatography (CH2Cl2:MeOH = 200:1). Black solid, 1H NMR
(400 MHz, DMSO-d6) δ: 8.36 (s, 1H), 8.22 (d, J = 7.2 Hz, 1H), 8.00 (s, 1H), 7.78 (s, 1H), 7.59
(d, J = 8.8 Hz, 2H), 7.49 (s, 1H), 7.33 (dd, J = 9.2, 2.4 Hz, 1H), 7.19 (d, J = 2.4 Hz, 1H), 7.02 (d,
J = 8.8 Hz, 2H), 6.70 (dd, J = 7.2, 1.6 Hz, 1H), 2.99–2.85 (m, 5H), 2.79 (s, 2H), 1.80 (m, 3H),
1.64 (m, 4H), 1.30 (m, 4H), 1.18 (m, 9H), 1.03–0.97 (m, 2H), 0.85 (m, 4H) ppm; 13C NMR
(101 MHz, DMSO-d6) δ: 167.73, 164.09, 158.68, 155.65, 151.84, 138.94, 134.09, 132.07, 130.42,
128.61, 126.33, 125.51, 124.32, 123.74, 123.48, 122.83, 118.70, 118.15, 116.07, 114.57, 114.02,
112.81, 112.41, 45.83, 29.49, 29.12, 27.35, 25.65, 22.56, 22.20, 21.47, 14.42, 14.16, 13.02 ppm;
HRMS: ([M]+) Calcd for C40H45ClN5O2: 622.3256; found: 622.3266.

4. Conclusions

In summary, a NIR ratiometric fluorescent probe IPB-RL-1 with an ultra-large Stokes
shift (460 nm) that is superior to most reported probes has been developed. IPB-RL-1 shows
high sensitivity and selectivity. Detection of SO2 in mitochondria in living SKOV-3 cells was
also realized. Moreover, the probe was successfully used to detect SO2 in zebrafish which
may be useful for the understanding of biological roles of SO2 in mitochondria and in vivo.
However, due to the small overlap between donor emission and acceptor absorption of
the probe IPB-RL-1, the fluorescence transfer efficiency is only 51%, which implies that in
order to obtain a high fluorescence transfer efficiency, the overlap effect between donor
emission and acceptor absorption, in addition to the distance between donor and acceptor,
should be carefully considered for the FRET-based probe design in the future.

Supplementary Materials: Supplementary data associated with this article can be found in the online
version. The following supporting information can be downloaded at: https://www.mdpi.com/
article/10.3390/molecules28020515/s1, Figure S1: Ratiometric fluorescence responses F475/F760 of
IPB-RL-1 upon the addition of 10 equiv. SO3

2− in the presence of 100 eq. background ions (1, probe;
2, SO4

2−; 3, Br−; 4, ACO−; 5, Cl−; 6, ClO−; 7, Cys; 8, ClO4
−; 9, GSH; 10, F−; 11, H2PO4

−; 12, HCO3
−;

13, HPO4
2−; 14, HS−; 15, I−; 16, NO2

−; 17, NO3
−; 18, S2O8

2−; 19, SO3
2−); Figure S2: Relationship

between fluorescence intensity ratio (F475/F760) and SO3
2− concentration; Figure S3: Time dependent

increase of IPB-RL-1 fluorescence intensities after addition of SO3
2−; Figure S4: Cytotoxicity of IPB-

RL-1; Figure S5: Normalized emission spectra of donor (compound 3) and normalized absorption
spectra of IPB-RL-1; Figure S6: The emission spectrum of probe IPB-RL-1 and donor; Figures S7–S13:
1H NMR, 13C NMR, HRMS of related compounds; Table S1: Comparison with other probes [31–57].
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