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Abstract: Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to
produce highly stable transition metal complexes. Cross-bridging such molecules with two-carbon
chains has been shown to enhance the stability of these complexes even further. This provides
enough stability to use the resulting compounds in applications as diverse and demanding as
aqueous, green oxidation catalysis all the way to drug molecules injected into humans. Although
the stability of these compounds is believed to result from the increased rigidity and topological
complexity imparted by the cross-bridge, there is insufficient experimental data to exclude other
causes. In this study, standard organic and inorganic synthetic methods were used to produce
unbridged dibenzyl tetraazamacrocycle complexes of Co, Ni, Cu, and Zn that are analogues of
known cross-bridged tetraazamacrocycles and their transition metal complexes to allow direct
comparison of molecules that are identical except for the cross-bridge. The syntheses of the known
tetraazamacrocycles and the new transition metal complexes were successful with high yields and
purity. Initial chemical characterization of the complexes was conducted by UV-Visible spectroscopy,
while cyclic voltammetry showed more marked differences in electronic properties from bridged
versions. Direct comparison studies of the unbridged and bridged compounds’ kinetic stabilities, as
demonstrated by decomposition using high acid concentration and elevated temperature, showed
that the cyclen-based complex stability did not benefit from cross-bridging. This is likely due to poor
complementarity with the Cu2+ ion while cyclam-based complexes benefited greatly. We conclude
that ligand–metal complementarity must be maintained in order for the topological and rigidity
constraints imparted by the cross-bridge to contribute significantly to complex robustness.

Keywords: tetraazamacrocycle; transition metal complex; cross-bridged tetraazamacrocycle; X-ray
crystal structure; kinetic stability

1. Introduction

Tetraazamacrocycles are ubiquitous ligands for transition metal ions that contain four
nitrogen atoms tied together in a ring by carbon chains. The stability of transition metal
complexes can be characterized by their kinetic stability (how long it takes to decompose
the complex under harsh conditions) and/or their thermodynamic stability (binding con-
stants which can often be determined by potentiometric titrations for metal complexes).
Unfortunately, potentiometric titrations for some of the most stable transition metal com-
plexes, those with cross-bridged tetraazamacrocycles, are often not possible because the
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proton sponge nature [1] of these ligands means the last proton(s) are never removed from
the ligand to allow metal ion binding in aqueous solutions. Instead, kinetic stabilities
under harsh aqueous conditions of these cross-bridged tetraazamacrocycle transition metal
complexes may be the main technique available to compare complex stabilization by new
cross-bridged ligands [2]. Inorganic chemists have learned that the kinetic stability of metal
complexes can be increased by many orders of magnitude by increasing the topological
complexity (number of links between the nitrogen atoms) and rigidity of the ligand as long
as ligand–metal complementarity (size, geometry, and electronics match between metal
ion and ligand) is maintained [3]. In general, complex kinetic stability decreases in the
following series: bridged azamacrocycle ligand > azamacrocyclic ligand > linear ligand
with more than one nitrogen > single nitrogen ligand (see Figure 1) [3].
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Figure 1. Unbridged vs. cross-bridged tetraazamacrocycles and complexes.

Cross-bridged tetraazamacrocycles that have an additional two-carbon bridge be-
tween non-adjacent nitrogen atoms of a tetraazamacrocycle, which are particularly rigid
and lead to very kinetically stable metal complexes, have been extensively studied by
Weisman [1,2,4–12], Springborg [13–15], Hubin [16–23], Archibald [24–30], Tripier [31–36],
and others [37–39]. This stability conferred on these transition metal complexes shows
great promise in such applications as homogeneous catalysis [40–43], inorganic drug can-
didates [20,24,26,27,44–46], and biomedical imaging agents [2,7,9,11,30] where complex
stability is required for success. However, specific studies where “control” metal complexes,
identical in all ways except lacking the ligand cross-bridge, have not been prepared and
characterized with respect to complex kinetic stability or other properties.

Electronic properties (specifically of the metal d-electrons) of tetraazamacrocycle
transition metal complexes are influenced by their geometric structure and the pattern
of the nitrogen atom substituents [47,48]. If these properties are very similar between
bridged and unbridged complexes of the same metal ion, that indicates that the bridge has
little effect on the d-electron configuration. The d-electron configuration would be most
closely associated with thermodynamic stability, which would therefore be assumed to be
approximately the same for the bridge/unbridged pair. However, if the kinetic stability
of the bridged complex is much greater than its unbridged analogue, then these results
would be consistent with the hypothesis that the topological complexity and additional
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rigidity of the cross-bridge is responsible for the additional kinetic stability rather than
thermodynamic stabilization.

We report here known dibenzyl cyclen (12-membered ring) and cyclam (14-membered
ring) tetraazamacrocycle ligands 1,7-dibenzylcyclen (1) and 1,8-dibenzylcyclam (2) (see
Figure 2) and their Co, Ni, Cu, and Zn transition metal complexes. The cyclam ligand 2 has
been complexed to a number of metal ions previously [49–55], but the characterization of
its complexes has been limited. The cyclen analogue 1 has a long history [56] but only a
few published complexes, most of which are large second- and third-row transition metal
ions [54,57–60]. Therefore, we aimed to synthesize and characterize the complexes of these
two analogous tetraazamacrocycle ligands for comparison. In particular, we aimed to contrast
the properties of these unbridged complexes with the known cross-bridged complexes.
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Figure 2. 1,7-dibenzylcyclen (1) and 1,8-dibenzylcyclam (2).

2. Results and Discussion
2.1. Complex Synthesis

Both ligands are known in the literature, and our syntheses yielded pure compounds
(as assessed by comparison of NMR spectra) in high yield (57% yield for three steps for
1; 75% yield for three steps for 2). Complexation occurred as expected in methanol for
both ligands with all four divalent metal ions (Co, Ni, Cu, and Zn) from their acetate salts.
Macrocyclic complexes with acetate counter anions are typically hygroscopic oils, so we did
not try to isolate them. Instead, we performed an anion metathesis reaction with ammonium
hexafluorophosphate to give the [M(ligand)(acetate)]PF6 complexes, which precipitate out
of methanol and are non-hygroscopic powders. Formulas, yields, electrospray mass spec
peaks, and elemental analysis data for all eight complexes are given in Tables 1 and 2.

All the complexes were formed, as evidenced by the expected color changes and
dissolution of the ligand and metal salt during the reactions. Additional evidence of
complexation was shown by the multiple peaks in the electrospray mass spectrum for
each complex containing both the metal and the ligand and sometimes other species as
well (acetate, hexafluorophosphate, and water; see Table 1). Yields were typically 50–75%,
which are acceptable. These yields were likely lowered for several of the complexes
by considerable solubility in the methanol solution they were precipitated from. Indeed,
[Ni(2)(OAc)]PF6 never did precipitate from methanol. Instead, it was obtained by removing
the methanol and stirring the residue in water to produce the pale blue powder product.

Comparison to Cross-Bridged Complexes: The motivation of this work was to make
complexes that differed from the known cross-bridged analogues by only the lack of the
cross-bridge itself. Ligands Bn2Bcyclen and Bn2Bcyclam in Figure 3 have yielded Co, Ni,
Cu, and Zn complexes in previous work in the Hubin labs [28]. First, the X-ray crystal
structures of the unbridged ligand 1 and 2 complexes are presented and compared to
the cross-bridged analogues. Next, UV-Vis, magnetic moment, and cyclic voltammetry
experiments serve as points of comparison between the cross-bridged and unbridged
complexes’ electronic properties, which probe their d-electron configurations. Differences in
d-electron configurations should result in differences in thermodynamic stabilities between
the bridged and unbridged analogues. Kinetic stability experiments are then presented that
examine the effect of the topological and rigidity constraints associated with the cross-bridge.
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Table 1. Yields and selected peaks in the electrospray mass spectra of ligand 1 and 2 complexes.

Expected
Complex Color Yield (g) Yield (%) m/z m/z

[Co(1)(OAc)]PF6 pink-purple 0.506 71% 499
Co(1)(OAc)+

439
Co(1)+

[Ni(1)(OAc)]PF6 pale sky blue 0.324 46% 498
Ni(1)(OAc)+

219
Ni(1)2+

[Cu(1)](PF6)2 bright blue 0.291 37% 524
Cu(1)(OAc)(H2O)+

222
Cu(1)2+

[Zn(1)(OAc)]PF6 light tan 0.400 56% 505
Zn(1)(OAc)+

464
Zn(1)(H2O)+

[Co(2)(OAc)]PF6 pale pink 0.680 54% 470
Co(2)(OAc)+

410
Co(2)+

[Ni(2)(OAc)]PF6 pale sky blue 0.927 75% 469
Ni(2)(OAc)+

205
Ni(2)2+

[Cu(2)](PF6)2 brick red 1.055 72% 560
Cu(2)(PF6)+

208
Cu(2)2+

[Zn(2)(OAc)]PF6 off-white 0.945 76% 475
Zn(2)(OAc)+

436
Zn(2)(H2O)+
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2.2. X-ray Crystal Structures

The crystal structures of each metal complex are now described. There is further
information and additional figures contained within the Supplementary Materials. In
a small number of the structures, there is disorder. Where this is the case, the orienta-
tion and bond lengths described are for the major disorder component. One structure,
[Cu(2)(OCHNMe2)2](PF6)2 · 2(OCHNMe2), has been previously published [54], but the
complex was not completely characterized. It is included in the structural discussion for
completeness, and its complete characterization (UV-Vis, cyclic voltammetry, and kinetic
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stability) appears for the first time here. [Ni(1)(OAc)]PF6 was reported in a similar acetone
solvated crystal structure previously [54], again without complete characterization. The
structure presented below for this complex is novel and free of solvate, so it has been
included and used for other characterization studies.

2.2.1. Complexes of 1, Dibenzylcyclen

Three different nickel complexes with 1 were obtained, but the coordination about
the Ni2+ ion in each of these was rather similar. The nickel was six coordinate and resided
with distorted octahedral geometry and featured 1 forming a V-shape to coordinate in four
positions on one side of the metal with two further cis coordination sites at the metal were
occupied by other ligands.

The compound [Ni(1)(OH2)2]Cl2 (see experimental for why this complex is included)
crystallized in the tetragonal space group P42/ncm (origin choice 2) with the nickel ion sited
on the mirror plane (Wyckoff position 8i). There was pronounced disorder in the orientation
of the ligand that was related to the high symmetry. The distorted octahedral coordination
geometry about the nickel center is shown in Figure 4. The four ligand atoms N1, N3, O1,
and O2 lie strictly in the same plane. Ni-O bond lengths were 2.103(5) and 2.109(5) Å, and
the Ni-N1 and Ni-N3 bond lengths were 2.070(11) and 2.050(6) Å, respectively. However,
the N2-Ni-N2i bond angle was significantly distorted from linear (158.3(2)◦), and the Ni-
N2/N2i bond lengths were noticeably longer than the others (2.157(5) Å). Presumably this
distortion from an octahedral set of ligand atoms was a consequence of the rigidity of the
ligand and ethylene bridges of the cyclen. The two unbound chloride ions were disordered
over three positions. These ions formed N-H···Cl and O-H···Cl hydrogen bonds in the
solid. It is notable that Ni2+ prefers to bind H2O rather than Cl−, but this phenomenon
has been observed for some cross-bridged tetraazamacrocycle Ni2+ chloride complexes as
well [17].
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Figure 4. Molecular structure of [Ni(1)(OH2)2]Cl2. The major disorder component is shown with
atoms drawn as 30% probability ellipsoids. For clarity, unbound chloride is not represented. Symme-
try operation used for generating equivalent atoms: $1 = y, x, z.

Very similar coordination was observed in [Ni(1)(µ-OOCCH3)]PF6 [54], where ligand
1 bound to the metal adopting a V-shape, and the two remaining coordination sites were
filled by chelating acetate (Figure 5). The C-O and Ni-O bond lengths suggest that this
is very close to a symmetric chelate. The acetate O-Ni-O bite angle was 62.95(17)◦, but
even with this small bidentate ligand, the Ni ion still resided above the plane of the four
nitrogen atoms of 1, with the N1-Ni1-N3 bond angle being 160.0(5)◦. The bond lengths
were comparable to [Ni(1)(OH2)2]Cl2; Ni-N1 and Ni-N3 were much longer than the other
bonds at Ni1 and had lengths of 2.162(12) and 2.154(13) Å, respectively. Additionally, there
were unbound PF6

− anions in the structure. These resided between the metal complexes
and formed N-H···F and C-H···F interactions.
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Figure 5. Molecular structure of [Ni(1)(µ-OOCCH3)]PF6. Atoms are drawn as 50% probability ellip-
soids. For clarity, disorder is not represented.

[Ni(1)(OOCCH3)(OH2)](OOCCH3)·H2O crystallized in the centric space group P21/n
with a single complex in the asymmetric unit (Figure 6). The coordination of the Ni2+

ion in [Ni(1)(OOCCH3)(OH2)](OOCCH3)·H2O was very similar to the other Ni examples.
Ligand 1 was in the same V-shape coordination mode; the two remaining coordination sites
were occupied by monodentate acetate and water. As in the other examples, Ni-N1 and
Ni-N3 bonds were 0.1 Å longer than each of the other coordination bonds to nickel. The
N1-Ni1-N3 angle was 160.26(7)◦. The bound water formed an intramolecular hydrogen
bond to the acetate ligand, and a second hydrogen bound to the unbound acetate. N-H···O
and HO-H···O hydrogen bonds were also formed to acetate. There was further hydrogen
bonding between the N-H groups of 1 and acetate. The classical hydrogen bonds formed
tapes of complexes parallel to the crystallographic b axis. Between these tapes were C-H···π
and C-H···O interactions.
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Figure 6. Asymmetric unit of [Ni(1)(OOCCH3)(OH2)](OOCCH3)·H2O with atoms drawn as 50%
probability ellipsoids. Dashed lines show classical hydrogen bonds.

The coordination geometry in the copper complex [Cu(1)(NH3)](PF6)2 was under-
standably different from the nickel examples. This complex crystallized in the centric space
group P21/m with the molecule residing on the mirror plane. There was disorder over this
mirror plane in the cyclen part of the molecule only; the two benzyl groups lie such that
the action of the mirror plane completed these groups rather than replicating them. The
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two disorder components were related by rotation of 13.3◦. There are further figures to
illustrate this in the SI. The asymmetric unit of [Cu(1)(NH3)]PF6 is shown in Figure 7.
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Figure 7. (A) Asymmetric unit of [Cu(1)(NH3)](PF6)2 with atoms drawn as 50% probability ellipsoids.
Other parts of the molecule are generated by the mirror plane. (B) Coordination about Cu(1) within
the whole molecule. For clarity, hydrogen atoms and disorder are not shown.

In this copper complex, ligand 1 adopted a flatter geometry than for the nickel exam-
ples, and the spatial orientation of the ligand donor atoms was different. The four nitrogen
atoms lied in a square plane, and the copper ion was displaced above this plane; the fifth
coordination site was occupied by ammonia to form a distorted square pyramidal coor-
dination geometry about the metal. In the nickel complexes above, one Nax-M-Nax bond
angle was clearly much larger than the others, defining the axial positions of a distorted
octahedron. It was always the benzylated nitrogens in these axial positions. Uniquely, in
[Cu(1)(NH3)](PF6)2, the benzylated N2-Cu-N4 angle, as dictated by the much more square
pyramidal geometry, and N1-Cu-N3 angles were nearly the same; they were 145.81(8)◦ and
154.74(7)◦, respectively. This structural difference will be noted below in the kinetic stability
section. The Cu-N bond lengths to the ligand did not show the same deviation as for nickel,
but Cu-N1 and Cu-N3 were still longer (2.0799(18) and 2.0724(18) Å, respectively) than
Cu-N2 and Cu-N4 (2.037(5) and 2.029(5) Å, respectively). The ammonia molecule formed
N-H···F interactions, and this is perhaps a contributing factor in the binding of ammonia
rather than water. It is worth stating that it is clear from the diffraction data that ammonia
was present and not water; the fit with water is appreciably worse.

The zinc complex of 1, [Zn(1)(OOCCH3)]PF6, also featured a five-coordinate metal in
square pyramidal geometry crystallized in space group P21 with one unique complex in the
asymmetric unit. There was no evidence for a centre of symmetry. There was small-scale dis-
order in ligand 1, but a satisfactory final refinement was possible (wR2 (all data) = 0.1112).
The disorder was treated conservatively using standard techniques. The complex is shown
in Figure 8.

The zinc ion is five coordinate in a coordination geometry most easily described
as square pyramidal, as was the copper ligand 1 complex just described. The disorder
present in the ligand set makes detailed calculations involving tau-5 of little value. The
Zn lied around 0.825 Å above the plane of the four nitrogen atoms and bound a strictly
monodentate acetate ion. The benzyl arms were angled downwards away from the bound
acetate. There were N–H···O(acetate) hydrogen bonds between adjacent complexes, and
these formed infinite chains that ran parallel to the c-axis. There were further N–H···F
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interactions between the complexes and PF6
− anions, and these were reinforced by C–H···F

interactions made with the aromatic ring.
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Figure 8. Molecular structure of [Zn(1)(OOCCH3)]PF6. Atoms are drawn as 50% probability ellip-
soids. For clarity, disorder is not represented.

2.2.2. Complexes of 2, Dibenzylcyclam

[Co(2)(µ-OOCCH3)]PF6 crystallized in the centrosymmetric space group C2/c with
a single complex in the asymmetric unit (Figure 9). There was small-scale disorder in
the position of one of the phenyl rings, and this was treated using standard techniques.
The cobalt ion was in a six-coordinate octahedral geometry; the ligand 2 adopted a cis-V
configuration, and the final two coordination sites at the Co2+ ion were occupied by the
chelating acetate. The Co-O (2.141(2) and 2.127(2) Å) and C-O (1.256(4) and 1.273(4)Å) bond
lengths suggest the acetate acted as a symmetric bidentate ligand, and it had a bite angle
at the metal of 61.53(9)◦. The two Co-N bonds in the same plane as the acetate (Co1–N2
and Co1–N4 were 2.099(3) and 2.115(3) Å, respectively) were shorter than the two other
Co-N bonds, which were 2.252(3) Å (Co1–N1) and 2.256(3) Å (Co1–N3). As expected, the
N-Co-N angles for the ethylene bridges (~82◦) were smaller than those of the propylene
bridges (~92◦). The two phenyl groups were arranged so that the two CH2–C5H6 bonds
were almost co-linear, but the phenyl groups were tilted so that their mean planes were
inclined at 66.6◦.
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Between the cobalt complexes and the PF6
− anions, there were N–H···F hydrogen

bonds and further subsidiary C–H···F interactions, which may be crucial in determining
the crystal packing. However, there were also fairly close C–H approaches between CH2
groups in adjacent complexes, and these may be destabilising. In the crystal structure, the
complexes were arranged in sheets parallel to the xy-plane, and the anions lied between
these planes.

[Cu(2)](PF6)2 crystallized in the space group P-1 with the copper on the inversion
center. Here, the copper coordination is best described as a regular square plane; Cu–N
bond lengths were 2.0129(12) and 2.0129(12) Å, and the N–Cu–N bond angles were 86.58(5)◦

and 93.42(5)◦. The structure featured two additional unbound PF6
− anions for each copper,

located above and below the square plane, but each was oriented within the structure so
that the Cu1···F3 distance was 3.18721(14) Å. This suggests that there was some sort of
very weak interaction between the d9 Cu2+ ion and the two axial fluorine atoms, which
is consistent with a rather extreme Jahn–Teller distortion (Figure 10). Each N–H formed a
hydrogen bond to PF6

−, and there were many additional C–H···F interactions between the
ligand and fluorine atoms.
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Figure 10. Coordination about the metal ion in [Cu(2)](PF6)2. Atoms are drawn as 50% probability
ellipsoids. Symmetry operation for generating equivalent atoms: $1 = 1 − x, 1 − y, 1 − z.

Alternative conditions yielded [Cu(2)(OCHNMe2)2](PF6)2 · 2(OCHNMe2) which crys-
tallized in the centrosymmetric space group P21/n with one half a complex in the asym-
metric unit and the six-coordinate copper ion located on the inversion center such that the
copper and four nitrogen atoms of 2 were strictly coplanar [54]. The Cu–N bond lengths
were 2.004(2) Å and 2.0883(18) Å, but in line with the Jahn-Teller distortion expected for the
d9 Cu2+ ion, the Cu–O bond lengths were much longer at 2.5783(16) Å. The coordination
about the metal is shown in Figure 11. For each complex, there were two PF6

− anions that
did not interact with the metal but instead formed C–H···F hydrogen bonds to surrounding
complexes. The unbound dimethylformamide acted as a hydrogen bond acceptor to the
N–H of the ligand and also formed one C–H(sp2)···F hydrogen bond to PF6

− to form
a dense 3-D network of interactions extending in the solid. Adjacent complexes were
arranged in tapes that ran parallel to the [011] direction; between adjacent molecules there
were pi-pi interactions characterised by strictly planar phenyl rings at a separation of
around 3.25 Å with slightly displaced centroids.
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Figure 11. Coordination about the metal ion in [Cu(2)(OCHNMe2)2](PF6)2 · 2(OCHNMe2) [57].
Atoms are drawn as 50% probability ellipsoids. For clarity, unbound solvent and anions are not
shown. Symmetry operation for generating equivalent atoms: $1 = 1 − x, −y, −z.

The final structure is based on 2, but this ligand underwent a reaction to generate 2′

as the ligand bound to Ni2+. The crystals were grown from [Ni(2)(OAc)](PF6), where no
protection from air was provided. Two separate crystallization conditions, both containing
diethyl ether, resulted in 2′ being formed. No other evidence of this modification of 2 was
seen in other characterization techniques, and this appears to be a known phenomenon that
can result from copper tetraazamacrocycle complexes usually modifying their own ligands
to form the N(macrocycle)-CH2OCH3 pendant arm [55,61–63]. According to reference
(Jeong et al.) [61] and reference (Alves et al.) [55], when aminal (N-CH2-N) derivatives
of tetraazamacrocycles are reacted with MeOH in the presence of M2+ cations, the N-
CH2OCH3 pendant arm can be formed. However, they were unsuccessful at intentionally
isolating the ligand, as it appears to be easily hydrolyzed back to the amine. We saw no evi-
dence of aminal formation, which generally requires formaldehyde and an uncoordinated
macrocycle to take place. Perhaps in our case, two MeOH molecules were able to condense
at the coordinated secondary amine and form the N-CH2OCH3 pendant arm while the
secondary amine was coordinated to the activating Ni2+ cation. We did not investigate this
reactivity any further. The hydrogen atom positions of the dimethyl ether appendage were
clear from the difference Fourier maps and bond lengths were consistent with the atom
type assignments.

[Ni(2′)(OAc)](PF6) · MeCN crystallized in the centrosymmetric space group P21/n
with a single Ni2+ ion in the asymmetric unit (Figures 12 and 13). The nickel adopted a
rather distorted octahedral coordination geometry, with the four nitrogen atoms of the
ligand and the oxygen of monodentate acetate forming the vertices of an undistorted square
pyramid. However, the -CH2OCH3 pendant was not sufficiently long for the oxygen to
occupy the sixth coordination site. Instead, it was pushed toward the plane of the four
nitrogen atoms. The bite angle subtended at the metal by the pendant ether and the
attached nitrogen was 62.30(9)◦, and the Ni1-O1 bond length was unusually long (2.306(2)
Å), indicating that this was a rather unusual coordination mode. Five similar structures
(REFCODES CAHNUW, CAHPAE, CIYBAP, QEYMOX, and SUSTEI) featuring a pendant
ether arm with a methylene link are found in the Cambridge Structural Database (CSD).
Each features a copper cation and a macrocyclic ligand on which the pendant arm(s) are
sited. The Cu–N bond lengths were similar to those for [Ni(2′)(OAc)](PF6).MeCN, but each
of the Cu–O bonds was markedly longer, with a median length of 2.49 Å. Aside from the
unusual pendant, the ligand coordination was similar to that in the [Cu(2)(OCHNMe2)2]2+
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ion. Disordered solvent was modelled using a solvent mask within Olex2, and the electron
density count was consistent with one acetonitrile molecule per metal ion.
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Figure 12. Structure of 2′, the -CH2OCH3 modified version of 2, which occurred spontaneously
during the recrystallization of [Ni(2)(OAc)]PF6 from MeCN. Coordination about the metal in
[Ni(2′)(OAc)]+ cation. For clarity, the benzyl groups attached to N1 and N3 are not shown.

Molecules 2023, 28, x FOR PEER REVIEW 12 of 30 
 

 

 

Figure 12. Structure of 2′, the -CH2OCH3 modified version of 2, which occurred spontaneously dur-

ing the recrystallization of [Ni(2)(OAc)]PF6 from MeCN. Coordination about the metal in 

[Ni(2′)(OAc)]+ cation. For clarity, the benzyl groups attached to N1 and N3 are not shown. 

 

Figure 13. Asymmetric unit of [Ni(2′)(OAc)](PF6) · MeCN with atoms drawn as 50% probability 

ellipsoids. 

Table 2 combines relevant structural parameters for the X-ray crystal structures of 

the transition metal complexes of 1 and 2 described above with previously published 

matching parameters for ethylene-cross-bridged cyclam and cyclen ligands for compari-

son. Where possible, comparisons were made with Bn2Bcyclen and Bn2Bcyclam as the 

closest structural analogues of 1 and 2, but in some cases additional Me2Bcyclen and 

Me2Bcyclam complexes were included for comparison. 

Table 2. Nax-M-Nax and Neq-M-Neq bond angles (°) for bridged and unbridged cyclen and cyclam 

complexes for comparison. 

Complex Nₐₓ-M-Nₐₓ Angle Nₑq-M-Nₑq Angle  X-M-X Angle  X Ligands Ref 

Figure 13. Asymmetric unit of [Ni(2′)(OAc)](PF6) · MeCN with atoms drawn as 50% probability
ellipsoids.

There was a single classical hydrogen bond: between N4-H4 and O3. Between adjacent
species, there were C–H···O and C–H···F hydrogen bonds. In the solid state, the complexes
were arranged in double columns parallel to the crystallographic a direction. These pairs
of columns adopted a checkerboard arrangement in the yz plane. Between them lied the
PF6
− anions and small channels (parallel to a) in which the disordered solvent was located.

Table 2 combines relevant structural parameters for the X-ray crystal structures of
the transition metal complexes of 1 and 2 described above with previously published
matching parameters for ethylene-cross-bridged cyclam and cyclen ligands for comparison.
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Where possible, comparisons were made with Bn2Bcyclen and Bn2Bcyclam as the closest
structural analogues of 1 and 2, but in some cases additional Me2Bcyclen and Me2Bcyclam
complexes were included for comparison.

Table 2. Nax-M-Nax and Neq-M-Neq bond angles (◦) for bridged and unbridged cyclen and cyclam
complexes for comparison.

Complex Nax-M-Nax Angle Neq-M-Neq Angle X-M-X Angle X Ligands Ref

[Ni(1)(OH2)2]2+ 158.3(2) 92.7(4)
110.4(6) 83.6(2) H2O, H2O This work

[Ni(1)(OAc)]+ 160.0(5) 102.6(4) 62.95(17) O—C—O
(acetate)

[54]
This work

[Ni(1)(OAc)(H2O)]+ 160.26(7) 97.04(7) 88.03(6) H2O, O (acetate) This work

[Ni(Bn2Bcyclen)(OAc)(H2O)]+ 163.52(6) 85.59(7) 87.61(6) H2O, O (acetate) [29]

[Ni(Bn2Bcyclen)Cl2] 158.40(7) 83.37(9) 90.18(3) Cl, Cl [29]

[Cu(1)(NH3)]2+ 150.74(7) 145.81(8) n/a (5-coord) NH3 This work

[(Cu(Bn2Bcyclen))2(µ-CO3)] 155.65 86.50 66.37 O—C—O [64]

[Cu(Me2Bcyclen)(CO3)] 154.88(7) 85.17(7) 66.94(6) O—C—O
(carbonate) [28]

[Cu(Me2Bcyclen)(OAc)]+ 164.04(8) 85.00(8) n/a (5-coord) O (acetate) [28]

[Zn(1)(OAc)]+ 138.4(3) 132.4(4)
126.2(12) n/a (5-coord) O (acetate)

This work
Note: only one of the

two similar
independent

molecules in the unit
cell is presented here

[Zn(2)(Cl)]+ 159.6(1) 120.9(1) n/a (5-coord) Cl [55]

[Zn(Bn2Bcyclen)Cl2] 152.61 77.62 95.50 Cl, Cl [65]

[Zn(Me2Bcyclen)(OAc)(H2O)]+ 157.59(10) 81.80(10) 90.83(8) H2O, O (acetate) [28]

[Co(Me2Cyclen)(CO3)]+ 167.4(6) 101.7(3) 68.6(2) O—C—O
(carbonate) [66]

[Co(2)(OOCCH3)]+ 171.54(10) 97.15(11) 61.53(9) O—C—O
(acetate) This work

[Co(Bn2Bcyclam)Cl2] 167.7(4) 82.5(4) 93.27(13) Cl, Cl [29]

[Co(Me2Bcyclam)Cl2] 172.4(2) 81.11(13) 97.37(4) Cl, Cl [67]

[Cu(2)]2+ 180.00(10) 180 n/a (4-coord) None This work

[Cu(2)(DMF)2]2+ 180.00 180 180.00(9) trans DMF, DMF [54]

[Cu(Bn2Bcyclam)(OAc)][OAc] 176.11(8) 86.05(9) n/a (5-coord) O (acetate) [28]

[Cu(Bn2Bcyclam)(OAc)][PF6] 176.74(8) 85.93(8) n/a (5-coord O (acetate) [28]

[Ni(2′)(OAc)]+ 174.83(9) 170.21(10) 153.90(8) trans O (acetate)
-CH2OCH3

This work

[Ni(Bn2Bcyclam)Cl2] 170.75(15) 84.56(16) 92.00(5) Cl, Cl [29]

[Ni(Bn2Bcyclam)(OAc)(H2O)]+ 163.52(6) 85.59(7) 87.61(6) H2O, O (acetate) [29]
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Examination of the cyclen-based structures made evident that a major difference in
structures between the bridged and unbridged ligands can be identified by examining
the Neq-M-Neq bond angles. This is the N-M-N bond angle containing two non-adjacent
nitrogen atoms that would be considered on the equator of an octahedral structure. These
are unsubstituted nitrogen atoms in the unbridged ligands and are the two nitrogens
bridged by the ethylene cross-bridge in the bridged ligands. In ethylene-cross-bridged
cases, this angle was restricted to 77.62–86.50◦. This less than 90◦ restriction requires the
bridged ligands to be tightly folded and bound cis on one side of the metal atom and is in
great contrast to the unbridged ligand 1, which displayed angles from 92.7(4) to 145.81(8)◦.
In the Cu(1) and Zn(1) structures, the complexes are most accurately described as square
pyramidal, with the four ligand nitrogen atoms being nearly coplanar with the metal ion
slightly displaced above the plane. However, cyclen-based 1 was too small to achieve a
square-planar coordination geometry. The small size was most evident in the Nax-M-Nax
bond angles, which ranged only from 138.4(3) to 164.04(8)◦ for all cyclen ligands and no
particular contrast is seen between bridged and unbridged ligands. We predicted that the
flexibility and small size of 1 would lead to less kinetic stability than the cross-bridged
ligand (see kinetic stability results below).

A similar trend was evident for the cyclam-based ligands, with the cross-bridged
Neq-M-Neq bond angles being restricted to 81.11(13)–86.05(9)◦. However, the unbridged
ligand 2 exhibited much larger Neq-M-Neq bond angles, from 97.15(11) to 180◦, and could
support true square-planar coordination geometries. In square-planar as well as trans-
octahedral cases, this larger ligand must also have 180◦ Nax-M-Nax bonds, something the
cross-bridged ligands cannot quite achieve, as they are restricted to 163.52(6)–176.74(8)◦.
The larger size of the cyclam-based cross-bridged ligands allows cis octahedral geometries
that are not nearly as distorted as the smaller cyclen cross-bridged ligands, a fact that has
been used to explain their much greater kinetic stability under harsh conditions [68,69].

Below, we use these geometric comparisons to explain the kinetic stability of ligand 1
and 2 in comparison with their cross-bridged analogues.

We considered the effect of functionalising these macrocycles on the M-N bond lengths.
Given the diversity of metals here and the range of different coordination preferences, it
is difficult to draw widely applicable conclusions. Given the preference for octahedral
coordination and consistent oxidation state, we focused on cyclen complexes of Ni2+. It
is clear that in complexes of 1 with Ni2+, M-NH coordination bonds were consistently
around 5% shorter than M-N-benzyl bonds, as described earlier. We compared various
similar complexes of nickel in the CCDC to examine the effect on the M-N bond length of
an ethylene bridge and other substituents on the nitrogen. The raw data are presented in
Table 3.

From 31 six-coordinate complexes, the mean M-N bond length for cyclen was 2.066 Å
(σ = 0.025). There were eight further pertinent complexes in the CCDC that are identified
by their CCDC number in the Table 3.

From examination of the eight examples in Table 3, it is clear that M-N bonds for the
nitrogen atoms of an ethylene bridge are always the shortest M-N bonds present in the
given structure. Presumably, this is a consequence of the strained five-membered chelate.
In only one example was this not the case. The “bridge” M-N bonds were shorter than
those of benzyl-substituted nitrogen, shorter than those of nitrogen atoms with methyl or
other similar substituents, and they appeared in general to be shorter than M-NH bonds.
Further analysis with a much broader range of metals is possible, but it is beyond the scope
of the present work.
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Table 3. N-M bond lengths (Å) for unbridged cyclen Ni2+ complexes for comparison. Identification
of the complexes is given either by formula for complexes from this work or CCDC identifier.

M-N Bond Length/Å

Compound Identifier or
CCDC Number N-benzyl N-CH2CH2-N Bridge N-R NH

[Ni(1)(OH2)2]Cl2 2.157(5) 2.070(11)
2.050(6)

[Ni(1)(µ-OOCCH3)]PF6
2.162(12)
2.154(13)

2.003(8)
2.060(8)

[Ni(1)(OOCCH3)(OH2)]
(OOCCH3)·H2O

2.1443(17)
2.1786(17)

2.0832(18)
2.0489(17)

1566343 2.227(3) 2.122(3)

891843 2.206(3)
2.184(3)

2.100(3)
2.089(3)

1975750 2.096(5) 2.088(5)

1101686 2.107
2.111

2.187
2.160

1101688 2.0921
2.1035

2.1509
2.1581

891844 2.135(3)
2.128(3)

2.177(3)
2.188(3) R = Me

1891730 2.068(2), 2.083(2)
2.067(2), 2.079(2)

2.096(2), 2.082(2)
2.086(2), 2.094(2)

R = CH2COO

1891731 2.0696(17)
2.0709(17)

2.0841(17)
2.0970(16)

R = CH2C(O)NH-Ar

2.3. Kinetic Stability

Kinetic stability studies of copper complexes demonstrated their stability in harsh
acidic media. Weisman et al. have standardized the conditions for acid decomplexation
studies of metal complexes, which is usually performed for copper complexes. Such
complexes have a single, moderately high extinction coefficient d-d band near 600 nm,
meaning their decomplexation is readily observed by UV-Vis spectroscopy. Holding the
metal ion (Cu2+) constant allows a comparison of the effects of various ligand architectural
changes and amendments, such as macrocycle size and pendant arm identity, on kinetic
stability. In this work, we determined the half-lives of copper complexes in highly acidic
environments following pseudo-first-order kinetics. Table 4 lists the half-life values of the
copper complexes at different temperatures and acid environments.

Table 4. Pseudo-first-order half-life for acid decomplexation of Cu2+ complexes under harsh conditions.

Ligand 30 ◦C, 1 M HCl 50 ◦C, 5 M HCl 70 ◦C, 5 M HCl 90 ◦C, 5 M HCl References

Molecules 2023, 28, x FOR PEER REVIEW 15 of 31 
 

 

Table 3. N-M bond lengths (Å ) for unbridged cyclen Ni2+ complexes for comparison. Identification 

of the complexes is given either by formula for complexes from this work or CCDC identifier. 

 M-N Bond Length/Å 

Compound Identifier or 

CCDC Number. 
N-benzyl N-CH2CH2-N Bridge N-R NH 

[Ni(1)(OH2)2]Cl2 2.157(5)   
2.070(11)  

2.050(6) 

[Ni(1)(μ-OOCCH3)]PF6 
2.162(12)  

2.154(13) 
  

2.003(8)  

2.060(8) 

[Ni(1)(OOCCH3)(OH2)]  

(OOCCH3)∙H2O 

2.1443(17)  

2.1786(17) 
  

2.0832(18)  

2.0489(17) 

1566343 2.227(3) 2.122(3)   

891843 
2.206(3)  

2.184(3) 

2.100(3)  

2.089(3) 
  

1975750  2.096(5)  2.088(5) 

1101686  
2.107 

2.111 
 

2.187  

2.160 

1101688  
2.0921 

2.1035 
 

2.1509  

2.1581 

891844 
2.135(3)  

2.128(3) 
 

2.177(3)  

2.188(3) R = Me 
 

1891730  
2.068(2), 2.083(2)  

2.067(2), 2.079(2) 

2.096(2), 2.082(2)  

2.086(2), 2.094(2)  

R = CH2COO 

 

1891731  
2.0696(17)  

2.0709(17) 

2.0841(17)  

2.0970(16)  

R = CH2C(O)NH-Ar 

 

2.3. Kinetic Stability 

Kinetic stability studies of copper complexes demonstrated their stability in harsh 

acidic media. Weisman et al. have standardized the conditions for acid decomplexation 

studies of metal complexes, which is usually performed for copper complexes. Such com-

plexes have a single, moderately high extinction coefficient d-d band near 600 nm, mean-

ing their decomplexation is readily observed by UV-Vis spectroscopy. Holding the metal 

ion (Cu2+) constant allows a comparison of the effects of various ligand architectural 

changes and amendments, such as macrocycle size and pendant arm identity, on kinetic 

stability. In this work, we determined the half-lives of copper complexes in highly acidic 

environments following pseudo-first-order kinetics. Table 4 lists the half-life values of the 

copper complexes at different temperatures and acid environments. 

Table 4. Pseudo-first-order half-life for acid decomplexation of Cu2+ complexes under harsh condi-

tions. 

Ligand 
30 °C, 1 M 

HCl 

50 °C, 5 M 

HCl 

70 °C, 5 M 

HCl 

90 °C, 5 M 

HCl 
References 

 

<1 min    [69] 

H2Bcyclen

<1 min [69]



Molecules 2023, 28, 895 15 of 28

Table 4. Cont.

Ligand 30 ◦C, 1 M HCl 50 ◦C, 5 M HCl 70 ◦C, 5 M HCl 90 ◦C, 5 M HCl References
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The unsubstituted bridged cyclen H2Bcyclen complex is not stable in acid; it has a
half-life of <1 min at 30 ◦C and 1 M HCl. Substituting by two methyl groups enhanced its
stability significantly, as the Me2Bcyclen complex had a half-life of 36 min under similar
conditions. However, the Me2Bcyclen complex decomposed within a minute at stronger
acidic conditions of 5 M HCl at 50 ◦C. Substitution of the Me2Bcyclen complex with
two benzyl groups augmented its stability to about eight times as long a half-life; the
Bn2Bcyclen complex had a half-life of 4.2 h. In general, cross-bridged ligands provide extra
stability to the metal complex compared to their unbridged analogue due to enhanced topo-
logical and rigidity constraints [2,11,68–70]. Surprisingly, the unbridged cyclen complex
with two benzyl substituents was even more stable than its cross-bridged analogue. The
complex of 1 had a half-life almost double (8.47 h) that of the Bn2Bcyclen complex at 30 ◦C
and 1 M HCl. To explain this surprising result, we invoke likely enhanced complemen-
tarity [3] of 1 for Cu2+ compared with Bn2Bcyclen. Complementarity is defined as a size,
geometry, and electronics match between metal and ligand [3]. As previously noted, Cu(1)
has a near-square pyramidal geometry which must make it more difficult for protons to
react with the nitrogen donor atoms in order to remove the ligand entirely. In contrast,
Cu(Bn2Bcyclen) is folded into a cis geometry to one side of the Cu2+ ion, which, regardless
of the enhanced rigidity and topological complexity provided by the ethylene cross-bridge,
clearly does not prevent protons from decomplexing the ligand as efficiently as 1. In fact,
the accepted mechanism of acid-caused ligand dissociation of tetraazamacrocycles requires
folding to a cis geometry in order for the initial nitrogen donor to dissociate and become
protonated [3]. In the case of Cu(1), the folding has not yet occurred, which slows down
the dissociation, while Cu(Bn2Bcyclen) is already folded. This is a good lesson to learn,
particularly in the case of smaller cyclens; the ethylene cross-bridge may actually be a
detriment to kinetic stability by making the ligand a poor fit for Cu2+, especially if a more
complementary unbridged analogue such as 1 is used.

The H2Bcyclam complex had better stability than the H2Bcyclen complex, as the
larger ligand could now more easily and complementarily accommodate the Cu2+ ion in a
less-strained square-pyramidal coordination geometry. The H2Bcyclam complex had a half-
life of 11.8 min at 90 ◦C in 5 M HCl. Substitution with methyl groups improved its stability
exceptionally, as Me2Bcyclam had a half-life of 7.3 days and 79 min at 5 M HCl at 50 ◦C
and 90 ◦C, respectively. The Me substituents took the place of N-H’s which are known to
be exchangeable with protons, thus improving the complex stability. However, substitution
with two benzyl groups did not contribute to enhanced kinetic stability. The Bn2Bcyclam
complex had a half-life of only 2.38 h and 24 min at 5 M HCl at 50 ◦C and 70 ◦C, respectively,
which was considerably less than the Me2Bcyclam ligand complex. Perhaps the steric bulk
of the two benzyl arms contributed to the ease of ligand decomplexation in this case, even
as the Bn groups slightly enhanced the stability of Bn2Bcyclen compared to Me2Bcyclen.
Clearly, the prediction of Cu2+ complex stability is not simply based on pendant arm and
cross-bridge presence. We plan to study additional examples of steric bulk as a parameter in
future work. The unbridged analogue 2 complex exhibited a half-life of only 33 min at 50 ◦C
with 5 M HCl. Thus, as expected, the unbridged Bn2cyclam was considerably less stable
than its cross-bridged analogue. We believe that in this case, where ligand size was much
more complementary to Cu2+ in both the bridged and unbridged cases, the topological
and rigidity constraints present in Bn2Bcyclam provided the expected additional kinetic
stability, which did not occur in the case of the smaller, less complementary cyclen.

2.4. UV-Visible Spectroscopy

UV-Visible spectroscopic values for the 12 UV-Visible active complexes of ligands 1,
2, Bn2Bcyclen, and Bn2Bcyclam are given in Table 5. Zinc complexes are not UV-Visible
active due to their d10 electron configurations, and they were therefore not included. “λmax”
indicates peak locations (wavelength) and “ε” (extinction coefficient) indicates intensity of
light absorption. All spectra were recorded in acetonitrile at similar concentrations.
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Table 5. Electronic spectra comparison.

Complex Metal Ion λmax in nm (ε in M−1 cm−1)
[sh Indicates a Shoulder on Another Peak] Ref

[Co(Bn2Bcyclen)(OAc)](PF6)2 Co3+ 380 (235) 523 (356) —– —– [29]

[Co(1)(OAc)]PF6 Co2+ 372sh (50) 549 (58) —– —– This work

[Co(Bn2Bcyclam)(OAc)]PF6 Co2+ 464sh (17) 510 (20) 547sh (15) —– [29]

[Co(2)(OAc)]PF6 Co2+ —- 513 (32) 552sh (23) 685 (6) This work

[Ni(Bn2Bcyclen)(OAc)]PF6 Ni2+ 334 (37) 559 (10) 845sh (28) 951 (36) [29]

[Ni(1)(OAc)]PF6 Ni2+ 364 (42) 587 (19) 820sh (21) 985 (48) This work

[Ni(Bn2Bcyclam)(OAc)]PF6 Ni2+ 354 (15) 570 (7) 829sh (5) 979 (12) [25,29]

[Ni(2)(OAc)]PF6 Ni2+ 364 (22) 579 (20) 814sh (20) 980 (18) This work

Cu(Bn2Bcyclen)(OAc)]PF6 Cu2+ 306 (6490) 728 (140) —– —– [28]

[Cu(1)(OAc)](PF6) Cu2+ 301 (7020) 607 (465) —– —– This work

[Cu(Bn2Bcyclam)(OAc)]PF6 Cu2+ 306 (6930) 708 (150) —– —– [28]

Cu(2)](PF6)2 Cu2+ 282 (8374) 528 (194) —– —– This work

It is striking how similar the absorbance wavelengths and intensities are when com-
paring complexes that differ only in the presence or absence of the cross-bridge. In
most cases, wavelengths were within 10–30 nm, and extinction coefficients were within
10–50 M−1 cm−1 of each other. Figure 14 illustrates what a typical UV-Visible spectrum
looks like and shows, as an example, how similar spectra for Ni(Bn2Bcyclen) and Ni(1)
were. There were four absorbances at nearly the same wavelength and with nearly the
same intensity for both complexes. This observation argues that the cross-bridge does not
make a large difference in the electronic properties of the Ni2+ ion bound to the two ligands.

Two significantly different pairs were found in the copper complexes. In these
cases, the cross-bridge was not the only difference in the structure. In cross-bridged
Cu(Bn2Bcyclen) and Cu(Bn2Bcyclam), there was an additional acetate ligand (according
to elemental analysis), and the ligand was necessarily folded (cis) as required by the cross-
bridge, giving square-pyramidal coordination geometries. In the unbridged Cu(1), the
acetate was present, but the crystal structure showed a much different ligand arrangement
of nearly coplanar nitrogen atoms. Additionally, in Cu(2), as demonstrated in its crystal
structures (Figures 13 and 14) the ligand was square planar, with or without axial fifth
and sixth donors, depending on the exact crystal. In the case of cyclen ligands, the d-d
band was shifted from 728 nm for Cu(Bn2Bcyclen) to 607 nm for Cu(1). This large shift
matched the large difference in structure. In the case of cyclam ligands, the d-d band was
shifted from 728 nm for Cu(Bn2Bcyclam) to 528 nm for Cu(2), which again matched the
large difference in structure.

Another difference was observed in the Co(Bn2Bcyclen) vs. Co(1) pair. While the
wavelengths were similar, the extinction coefficients were quite different. The Co(Bn2Bcyclen)
complex was determined to have oxidized upon workup in air to the Co3+ cation, likely to
generate a better complementarity (size) match of the smaller Co3+ with the small cavity
available within the Bn2Bcyclen ligand. The same aerobic workup of Co(1) did not oxidize
its Co2+ ion, as the unbridged ligand (as suggested by the copper kinetics experiments)
would likely be more complementary to the larger Co2+ ion. In comparison with other
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cobalt complexes [47,67] of similar azamacrocycle ligands, the wavelengths and extinction
coefficients were consistent with these observations. Again, this made direct comparison of
the effect of just the bridge impossible since other factors changed. The difference in ease
of oxidation was likely present due to the distortion of the preferred octahedral geometry
by the short cross-bridge. It forced the macrocyclic ligand to be folded tightly and likely
reduced the size of the cavity for metal binding. Oxidation to Co3+ results in a smaller
metal ion than Co2+, and it was therefore apparently favored by the bridged ligand in Co(1)
over the more flexible unbridged ligand in the Co(Bn2Bcyclen) analogue. Interestingly,
the Co(Bn2Bcyclam) and Co(2) pair both remained in the Co2+ oxidation state. These
ligands are both 14-membered rings, which is two carbons larger than the 12-membered
Bn2Bcyclen and 1 ligands. Both larger rings, bridged or not, appeared to accommodate
larger Co2+ under the aerobic workup conditions in a complementary way, as suggested by
the copper kinetic stability experiments above.
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2.5. Cyclic Voltammetry

Exploring the oxidation/reduction chemistry of these complexes can be done directly
through cyclic voltammetry experiments. In these experiments, the complexes in acetoni-
trile solution are subjected to a sweeping change in electrochemical potential, which can
result in oxidation and reduction of the original metal ion. E1/2 values (electrochemical
potentials where oxidation/reduction occurs) and Ea-Ec values (reflecting how reversible
the oxidation/reduction pair is) for these complexes are given in Table 6. E1/2 values
indicate coupled oxidation/reduction pairs that are assigned to the complex which appears
to undergo little change (such as gain/loss of ligands) other than the gain/loss of electrons.
In these cases, a small Ea-Ec value indicates essentially no structural rearrangement upon
oxidation/reduction, with 59 mV being the theoretical smallest value. Larger Ea-Ec values
indicate some structural changes that shift the partner event further away than the theoreti-
cal value. Ered or Eox are used when single oxidation or reduction processes are observed
but with no identifiable return process.
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Table 6. Redox potentials (vs. SHE) with peak separations.

Complex E1/2 (V)
Co3+/Co2+ (Ea-Ec) mV E1/2 (V)

Co2+/Co+ (Ea-Ec) mV Ref

Co(Bn2Bcyclen)(C2H3O2)2+ +0.014 109 −0.640 178 [29]

Co(1)(C2H3O2)+ +0.705 (ox
only) —– +0.043 (red

only) —– This work

Eox (V)
unassigned Co3+/Co2+ (Ea-Ec) mV E1/2 (V) #2 (Ea-Ec) mV

Co(Bn2Bcyclam)(C2H3O2)+ +1.226 +0.638
+0.392

75
167 —– —– [29]

Co(2)(C2H3O2)+ +0.754 +0.322 156 −0.301 266 This work

Eox (V)
Ni2+/Ni3+

E1/2 (V)
Ni2+/Ni3+ (Ea-Ec) mV Ered (V)

Ni2+/Ni+

Ni(Bn2Bcyclen)(C2H3O2)+ +1.170 +1.117 106 —– [29]

Ni(1)(C2H3O2)+ +1.230 −1.220 This work

Ni(Bn2Bcyclam)(C2H3O2)+ +1.255 —– —– —– [29]

Ni(2)(C2H3O2)+ +1.290 —– 90 −1.320 This work

Eox (Cu2+/3+)
[V]

Ered (Cu2+/+)
[V]

Eox (Cu+/2+)
[V]

Cu(Bn2Bcyclen)(C2H3O2)+ +1.465 −0.637 —– [28]

Cu(1)(CH3CN)2+ +1.280 −0.470 −0.240 This work

Cu(Bn2Bcyclam)(OAc)+ +1.516 −0.641 −0.156 [28]

Cu(2)(CH3CN)2+ —– −0.484 −0.208 This work

Although certain patterns of the quantity and types of redox processes for each
metal were observed, many differences were seen between bridged and unbridged ana-
logues. No bridged/unbridged pair gave nearly as similar a behavior as in the UV-Visible
spectra discussed above. Figure 15 illustrates a typical cyclic voltammogram and also
shows, as an example, differences in the voltammograms for Co(Bn2Bcyclam) and Co(2).
Co(Bn2Bcyclam) had only oxidations, with two reversible processes around +0.500 V, both
assigned as Co2+/3+ couples of possible coordination isomers (perhaps monodentate vs
bidentate acetate), and an additional unassigned irreversible process near +1.200 V. Co(2).
Moreover, it gave the same number of peaks, had one quasi-reversible reduction to Co+ in
the negative region (near −0.300 V), and had only one reversible oxidation. Although the
curves look similar in shape, the potential shifts were large, and the types of processes each
complex undergoes were significantly different.

While it is possible to discuss each bridged/unbridged pair in turn, we did not derive
any recognizable pattern since there were rather large changes in many cases that did not
necessarily correlate between different bridged/unbridged pairs. Instead, we will speculate
on why the electrochemical behavior was so different when the bridge was removed, while
the UV-Visible spectra changed so little. A primary reason is likely the static nature of
the UV-Visible spectrum versus the dynamic reactivity inherent to cyclic voltammetry.
The UV-Visible spectrum is obtained on a complex without causing it to change in any
way; thus, there is only information on the unreacted complex as it exists in a single
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structure in solution. According to the highly congruent UV-Visible data, the initial bridged
and unbridged complexes had electronic structures that are very similar to one another.
The presence or absence of the bridge made little difference except in the preference for
Co2+/Co3+ in the case of Co(Bn2Bcyclen)/Co(1) and for the Cu complexes, where X-ray
crystal structures showed very different cis-folded ligands for the cross-bridged ligands
vs. square-planar ligand geometries for the unbridged ligands 1 and 2. All of the cyclen
complexes had very similar cis-folded ligand coordination, whether cross-bridged or not,
and were thus similar in their UV-Vis spectra.
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However, the cyclic voltammetry experiment is a dynamic one, where complexes
gain and lose d-electrons in response to the electrical potential they are subjected to. Once
oxidation or reduction takes place, complexes may structurally rearrange in response to
the new d-electron configuration or even gain or lose ligands due to the preference of the
new metal ion oxidation state. It should not be surprising that the presence/absence of
the two-carbon cross-bridge led to quite different structural rearrangements and/or ligand
gains/losses, as demonstrated by the significant differences in electrochemical behavior
between complexes differing only by the bridge. For example, the crystal structure of
Co(2)(OAc)+ was determined (Figure 9) and consisted of a bidentate acetate and a cis-folded
ligand giving an octahedral coordination geometry. The Co(Bn2Bcyclam)(OAc)+ structure
was not determined. However, the Co(Me2Bcyclam)(OAc)+ structure was determined [29],
and it is very similar in coordination geometry to Co(2)(OAc)+, suggesting that the dibenzyl
complex would be similar. The differences in redox processes are not easily rationalized
based on these highly similar static crystal structures. However, if dynamic changes occur
following a redox process, particularly if that change involves the Neq-M-Neq bond angle,
which is highly constrained in the ligand Bn2Bcyclam but very flexible in the case of ligand
2, then large differences in the dynamic electrochemical experiments can be (if not explained
precisely) at least understood in terms of why they may be quite different from one another.

Behavior of the unbridged ligand complexes of 1 and 2 with the same metal ion
was generally similar, as might be expected given that the ligands differ by only ring
size. The Co(2)(C2H3O2)+ complex had one quasi-reversible oxidation at +0.322 V, likely
a Co2+/3+ couple, and one quasi-reversible reduction at −0.301 V, likely a Co2+/+ couple.
Interestingly, the cyclen analogue Co(1)(C2H3O2)+ had only an irreversible oxidation at
+0.705 V, likely Co2+/3+, and an irreversible reduction at +0.043 V, likely Co2+/+. The
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difference in reversibility may be due to the ability of the larger cyclam ligand 2 to adjust
to larger and smaller metal ions without large structural changes. The smaller, more rigid
cyclen ligand 1 appears to require irreversible structural changes as the size of the metal
ion changes.

A similar phenomenon was observed for the Ni complexes. The Ni(2)(C2H3O2)+

complex exhibited a reversible oxidation couple, likely Ni2+/3+ at +1.290 V. Its reduction at
−1.320 V, likely to Ni+, was irreversible, however. The cyclen analogue Ni(1)(C2H3O2)+

had only an irreversible oxidation at +1.230 V, likely Ni2+/3+, and an irreversible reduction
at −1.220 V, likely Ni2+/+. Again, the large cyclam ligand 2 provided a more reversible
result than the smaller, more rigid cyclen ligand 1.

Finally, the Cu complexes seem to reverse this trend. The only feature observed for
the larger cyclam complex Cu(2)(CH3CN)2+ was a nearly irreversible reduction to Cu+ at
−0.484 V. However the cyclen complex Cu(1)(CH3CN)2+ was more reversibly reduced at
−0.470 V and even displayed an irreversible oxidation to Cu3+ at +1.280 V. Perhaps the
small size of the cyclen ligand 1 favored the smaller Cu3+ ion enough for this oxidation to
happen within the observable redox window of acetonitrile, while the large cyclam ligand
2 favored the larger Cu2+ ion and thus prevented the oxidation to Cu3+ in acetonitrile.

3. Materials and Methods
3.1. General

N,N′-bis(aminopropyl)ethylenediamine (98%) was purchased from Acros Organics.
Glyoxal (40% wt in water), benzyl bromide (99%), and sodium borohydride (98%) were
purchased from Aldrich Chemical Co. (St. Louis, MO, USA). Cyclen was purchased from
Strem Chemical Co. (Newburyport, MA, USA). All solvents were of reagent grade and
were dried, when necessary, by accepted procedures. Cyclam was prepared according to a
modified literature method from N,N’-bis(aminopropyl)ethylenediamine [72]. Elemental
analyses were performed by Quantitative Technologies Inc. Electrospray (Whitehouse,
NJ, USA). Mass spectra were collected on a Shimadzu LCMS-2020 instrument (Shimadzu,
Kyoto, Japan). NMR spectra were obtained on a Varian Bruker AVANCE II 300 MHz
NMR spectrometer instrument (Varian Bruker, Billerica, MA, USA). Electronic spectra
were recorded using a Beckman Coulter DU800 UV-Vis Spectrometer (Beckman Coulter,
Brea, CA, USA). Electrochemical experiments were performed on a BAS Epsilon EC-USB
Electrochemical Analyzer (BASi, West Lafayette, IN, USA). A button Pt electrode was used
as the working electrode with a Pt-wire counter electrode and a Ag-wire pseudo-reference
electrode. Scans were taken at 200 mV/s. Acetonitrile solutions of the complexes (1 mM)
with tetrabutylammonium hexafluorophosphate (0.1 M) as a supporting electrolyte were
used. The measured potentials were referenced to SHE using ferrocene (+0.400 V versus SHE)
as an internal standard. All electrochemical measurements were carried out under N2.

3.2. Acid Decomplexation Studies

This experiment has become a standard method for determining kinetic stability to
compare new cross-bridged ligands. In order to determine their kinetic stability, the d-
d absorption band (generally near 600 nm) of the copper complexes (1 mM) in highly
concentrated acidic solutions (generally 5 M HCl) [8] was followed on a Shimadzu UV-3600
UV–vis–near-IR spectrophotometer (Shimadzu, Kyoto, Japan) at increasing temperatures
until conditions were found that decomposed the complex in a matter of hours/days. The
reaction rate patterns followed pseudo-first-order kinetics as expected. Half-lives of the
metal complexes were calculated from the slope of ln absorbance vs. time plots.

3.3. X-ray Crystallography Studies

X-ray scattering data from crystals of the samples were collected using synchrotron
radiation (λ = 0.7288 Å) coupled with a Bruker APEX-II diffractometer (Bruker AXS Inc.,
Madison, WI, USA) with a PHOTON-II detector. For three samples, the structures were
determined using Mo Kα radiation. For a single twinned sample, data were collected using
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Cu Kα radiation. Data were scaled and merged, and a multi-scan absorption correction
was applied. Structures were solved using dual-space methods in SHELXT. Structures were
refined using SHELXL-2018 [73,74] implemented within Olex2 [75]. All non-hydrogen
atoms were refined using anisotropic displacement parameters. Hydrogen atoms were
placed at calculated positions using a riding model. CCDC 1555223, 2223999-2224003, and
2224005-2224007 contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.

3.4. Synthesis

Tetracyclen (4) [76] (Figure 16): 26.3 g (0.153 mol) of cyclen (3) and 105 mL of acetoni-
trile were added to a 500 mL roundbottom flask, which was then flushed for 15 min with
N2 gas. Next, 22 mL (8.88 g or 0.153 mol) of 40% by mass glyoxal solution was added, and
the reaction was stirred under N2 at 50–65 ◦C for 2 h. The solvent was removed, and the
brown residue was extracted with 5 × 50 mL portions of chloroform. Following filtration,
the chloroform solution was evaporated to give the product as an oil. The product was
purified by column chromatography using neutral Brockman I alumina with 1% MeOH
in CH2Cl2 as the eluent. The yield was 22.327 g (75%). Electrospray mass spec: m/z at
195 = LH+.
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Figure 16. Synthetic scheme for 1,7-dibenzylcyclen (1).

Dibenzyltetracyclen (5): 10.53 g (0.0543 mol) of 4 was dissolved in 300 mL of dry
acetonitrile and added to a 500 mL roundbottom flask. Next, 97 mL (0.8145 mol, 15 eq) of
benzyl bromide was added, the flask stoppered, and it was then stirred at room temperature
for four days. [CAUTION: benzyl bromide is an extreme lachrymator; use only in a
chemical fume hood.] The white solid product was filtered on a fine glass frit and then
washed with acetonitrile and then ethyl acetate to remove excess benzyl bromide. The
solid was vacuum dried to give 25.7 g of pure product (88% yield). Electrospray mass spec:
m/z = 455 (L − Br)+. Elemental analysis calcd for C24H32N4Br2: C 53.73, H 5.97, N 10.45;
found C 53.52, H 6.00, N 10.30.

1,7-Dibenzylcyclen (1): 36.115 g (0.0673 mol) of 5 and 360 mL of 3 M aqueous NaOH
were added to a 500 mL roundbottom flask. The flask was stirred and heated in an oil bath
at 80 ◦C for three days under nitrogen. A yellow solution with an orange oil floating on top
resulted, and this was cooled and extracted with five portions of 80 mL of CH2Cl2. The
organic layers were combined, dried over MgSO4, filtered, and evaporated to give an orange
foamy solid product (20.656 g, 87% yield). Electrospray mass spectrum: m/z = 353 (LH+).
Elemental analysis calcd for C22H32N4 · 0.5H2O · 0.65CH2Cl2: C 65.28, H 8.30, N 13.44;
found C 65.61, H 8.61, N 13.45.

Bis-methylene-bridged cyclam (BMBcyclam) (7) [77] (Figure 17): 12.0 g (0.060 mol)
of cyclam (6) was added to a 2 L roundbottom flask and stirred with 600 mL of CH2Cl2
and 600 mL of 30% NaOH. This solution was then refluxed under a N2 atmosphere for
36 h. The biphasic solution was extracted four times with 100 mL CH2Cl2. The combined
organic layer was dried over MgSO4 for one hour and was then filtered, evaporated, and
dried under vacuum to obtain 7. The yield was 12.25 g (91%). Electrospray mass spectrum:
m/z = 225 (LH+). NMR (1H and 13C) gave peak regions of 2.17–3.10 ppm for macrocycle
hydrogens and peaks at 19.4, 48.4, and 68.0 ppm for unique carbons, matching the literature
reference [66].
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Figure 17. Synthetic scheme for 1,8-dibenzylcyclam (2).

DibenzylBMBcyclam (8): 12.0 g of 7 was dissolved in 250 mL of acetonitrile in a 500 mL
roundbottom flask. Three equivalents of benzyl bromide were added and stoppered. This
solution was stirred for one week at room temperature. The white solid produced was
collected on a glass frit, washed with 50 mL of ethyl acetate to ensure all benzyl bromide
was removed, and then dried under vacuum. The yield was 27.3 g (90%) Electrospray mass
spectrum: m/z = 203 m/z (L − 2Br)2+, m/z = 407 (L − 2Br)+, and m/z = 487 (L − Br)+.
NMR gave peak regions for macrocycle hydrogens at 1.76–3.60 ppm and benzyl hydrogens
at 4.31–4.65 ppm. Unique carbons were seen at 19.4, 47.6, 51.3, 59.6, 62.9, and 76.8 ppm,
matching the literature reference [66].

1,8-Dibenzylcyclam (2): 22.0 g of 8 was dissolved in 500 mL of 3 M NaOH in a 1 L
Erlenmeyer flask. This solution was stirred for 3 h at room temperature. The solution was
then extracted with five times 150 mL of CHCl3. All organic layers were collected and
dried over MgSO4, after which they were filtered. The solution was evaporated and dried
under vacuum to obtain 2. The yield was 13.6 g (92%). Electrospray mass spec: m/z = 381
(LH). NMR (1H and 13C) analysis gave peak regions of 1.85, 2.51–2.74, and 3.71 ppm for
macrocycle hydrogens and 4.72 ppm for benzyl hydrogens. Six unique carbon peaks were
found at 26.0, 47.7, 50.2, 52.0, 54.2, and 58.2 ppm, matching the literature reference [66].

Metal Complexation (Figure 18, Tables 1 and 7): All complexation reactions were
performed in an inert atmosphere glovebox. All complexations used one equivalent of
anhydrous metal acetate (M(C2H3O2)2) salts in anhydrous methanol (20 mL) reacted with
one equivalent of macrocyclic ligand. Complexations of 1 used 0.705 g (0.0020 mol) of
ligand 1; complexations of 2 used 0.425 g (0.0011 mol) of ligand 2. The following specific
example is typical of all eight complexation reactions.
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dried over MgSO4, after which they were filtered. The solution was evaporated and dried 

under vacuum to obtain 2. The yield was 13.6 g (92%). Electrospray mass spec: m/z = 381 

(LH). NMR (1H and 13C) analysis gave peak regions of 1.85, 2.51–2.74, and 3.71 ppm for 

macrocycle hydrogens and 4.72 ppm for benzyl hydrogens. Six unique carbon peaks were 

found at 26.0, 47.7, 50.2, 52.0, 54.2, and 58.2 ppm, matching the literature reference [66]. 

Metal Complexation (Figure 18, Tables 1 and 7): All complexation reactions were per-

formed in an inert atmosphere glovebox. All complexations used one equivalent of anhy-

drous metal acetate (M(C2H3O2)2) salts in anhydrous methanol (20 mL) reacted with one 

equivalent of macrocyclic ligand. Complexations of 1 used 0.705 g (0.0020 mol) of ligand 

1; complexations of 2 used 0.425 g (0.0011 mol) of ligand 2. The following specific example 

is typical of all eight complexation reactions. 

 

Figure 18. Metal complexation reactions.

A total of 0.425 g (0.0011 mol) of 1,8-dibenzylcyclam and 0.195 g (0.0011 mol) of
anhydrous cobalt(II) acetate were added to a 20 mL reaction vial, and 15 mL of anhydrous
methanol was added. The reaction was stirred at room temperature for seven days. The
reaction vial was removed from the glovebox, and the workup was done in air. The reaction
solution was filtered through Celite in a Pasteur pipette into a 100 mL roundbottom flask
to remove any trace solids. Separately, five equivalents (0.0055 mol, 0.897 g) of NH4PF6
were dissolved in a minimal amount of methanol (~5 mL). This solution was filtered
through a Kimwipe in a pipette and into the stirring metal complex solution. Precipitate
of the pink complex as a PF6

− salt formed immediately. The reaction flask was placed
in a freezer (−10 ◦C) for 1 h to complete the precipitation of the product. The solid pink
powder product was collected on a fine glass frit and washed with a minimal amount of
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cold methanol followed by ether. The product was transferred to a 4-dram vial and dried
overnight under vacuum. The yield was 0.506 g (70%).

Table 7. Formulas and elemental analyses of ligand 1 and 2 complexes.

(M/L) Complex Formulation for Elemental Analysis Calc C Calc H Calc N Found C Found H Found N

(Co/1) [Co(C22H32N4)(C2H3O2)]PF6 45.50 5.89 8.84 45.12 5.52 8.65

(Ni/1) [Ni(C22H32N4)(C2H3O2)]PF6 · 1.0 H2O 45.52 5.89 8.85 45.52 5.89 8.85

(Cu/1) [Cu(C22H32N4)(C2H3O2)]PF6 · 0.8 NH4PF6 38.41 5.13 8.96 38.60 5.01 9.18

(Zn/1) [Zn(C22H32N4)(C2H3O2)]PF6 · 0.5 H2O 45.69 5.75 8.88 45.71 5.39 8.97

(Co/2) [Co(C24H36N4)(C2H3O2)]PF6 · 1.0 H2O 47.21 6.25 8.47 47.45 6.07 8.53

(Ni/2) [Ni(C24H36N4)(C2H3O2)]PF6 · 1.0 H2O 47.22 6.25 8.45 47.54 6.25 8.29

(Cu/2) [Cu(C24H36N4)](PF6)2 · 1.0 H2O 38.33 5.09 7.45 38.69 4.74 7.38

(Zn/2) [Zn(C24H36N4)(C2H3O2)]PF6 · 0.1 H2O 47.91 6.06 8.60 47.62 5.82 8.44

[Note: one exception to the procedure above was required for the [Ni(Bn2Cyclen)
(OAc)]PF6 complex. It did not precipitate from methanol. Therefore, it was evaporated to
dryness and ~50 mL of water was added. The pale blue product was not water soluble and
was filtered from the water solution.]

One chloride complex, [Ni(1)(OH2)2]Cl2 was initially synthesized, but poor solubility
of the NiCl2 salt required refluxing DMF for complexation, which led us to abandon it in
favor of the acetate salt for characterization studies where solubility was required. This
complex did not give an entirely satisfactory elemental analysis, so its full characterization
was not pursued. However, it did crystallize, so its X-ray crystal structure is included below
for completeness. Calculated for [Ni(C22H32N4)(H2O)2]Cl2 · H2O: C 49.28, H 7.14, N 10.45;
found: C 49.29, H 7.79, N 10.60.

4. Conclusions

Major findings from this study include that the crystal structures of the ligand 1 and
2 complexes exhibited much larger Neq-M-Neq bond angles (up to 145.81◦) as compared
with the rigidly small Neq-M-Neq bond angles enforced by the ethylene cross-bridge
(77.62–86.05◦). The Nax-M-Nax bond angle differences between bridged and unbridged
ligands were much smaller (only a ~26◦ range for cyclen complexes and ~13◦ range for
cyclam complexes). The Neq-M-Neq bond angle flexibility of the cyclen ligand 1 allowed
vastly different coordination geometries than for Bn2Bcyclen, resulting in an enhanced
complementarity for Cu2+ and a surprisingly more robust kinetic stability for the unbridged
complex compared with the bridged version. When complementarity can be maintained
in the bridged complex, such as in the larger Bn2Bcyclam, the topological and rigidity
constraints brought to bear by the ethylene cross-bridge resulted in the expected increase
in complex kinetic stability. Electronic characterization demonstrated that only when there
are large differences in coordination geometry, as in cis vs trans ligand coordination of
the macrocycle for Bn2Bcyclam vs. 2, that a large difference in UV-Visible absorbance
was observed. However, likely due to the dynamic process present in cyclic voltammetry
experiments, larger differences in behavior were observed when comparing bridged versus
unbridged ligand complexes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020895/s1, Tables S1–S63 and Figures S1–S8: X-
ray crystallography data. Figure S9–S14: Cyclic Voltammograms for Co, Ni and Cu complexes of
Ligands 1 and 2. Figures S15–S20: UV-Vis Spectra of Co, Ni, and Cu complexes of Ligands 1 and 2.
Figures S21 and S22: Example Kinetic Study for Dissociation of [Cu(1)]PF6 in H2O 5M HCl 30 ◦C at
640 nm.
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