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Figure S1. Relative area of the G band in the Raman spectra of acid-treated petcoke in 
percentage of total area in the 1000-1800 cm-1 region.  

 

 
Figure S2. TGA profiles of petcoke and acid-treated petcoke (20 °C/min to 750 °C in a 50 

mL/min flow of air). 

10

11

12

13

14

15

16

17

18

0 5 10 15 20 25

Pe
ak

 A
re

a 
(%

)

Treatment time (h)



 
 

3

 

Figure S3. Pore size distributions of petcoke and petcoke-derived samples, as determined by CO2 

adsorption using a 2D-NLDFT-HS model. 

 

 

 

 

 

Figure S4. Reaction profile of DBT reacted with nitric acid (HNO3). 
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Figure S5. High-resolution XPS spectra of N 1s for petcoke derived solid acid catalysts. 

 
N1s: before acid functionalization, there is little nitrogen on petcoke surface. The nitric acid resulted in 
the increase of nitrogen content and from the N1s spectra that -NO2 groups are the dominated nitrogen-
containing groups, which the binding energy is at 405.6 eV. The peaks centered at ~400 eV were reported 
as N-O, pyrrolic or pyridinic structures.1 However, it could be a result of conversion of the -NO2 into -
NH2 by exposing to X-ray irradiation during the XPS measurement.2  
 

 

Figure S6. Reaction profile of DBT reacted with nitronium ion (NO2+). 

 

 

Figure S7. A spontaneous desulfurization reaction. 
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Table S1. Esterification of octanoic acid with methanol over different acid catalysts. 

No. Reactants 
Catalyst  

(concentration of 
catalytic acid sites) 

Reaction 
Conditions 

Estimated 
TOF (h–1) 

Productivity3 
(g·g–1·h–1) Ref. 

1 OA1+ 
MeOH2 H2SO4 60 °C, OA/MeOH = 

1/40 (molar ratio)   87 52.5 3 

2 OA+ MeOH 
Silica Ball milled 
sulfonated petcoke 
(3.73 mmol/g) 

60 °C, OA/MeOH = 
1/40 (molar ratio)   85 10.3 3 

3 OA+ MeOH Ball milled sulfonated 
petcoke (1.58 mmol/g) 

60 °C, OA/MeOH = 
1/40 (molar ratio) 52 7.1 3 

4 OA+ MeOH Sulfonated petcoke 
(1.25 mmol/g) 

60 °C, OA/MeOH = 
1/40 (molar ratio) 48 5.6 3 

5 OA+ MeOH 

Sulfonated activated 
carbon from coffee 
residue (0.45-0.72 
mmol/g) 

60 °C, OA/MeOH = 
1/3 (molar ratio) 25-47 4.0-6.0 4 

6 OA+ MeOH Amberlyst-15 (4.7 
mmol/g) 

60 °C, OA/MeOH = 
1/3 (molar ratio) 4 3.9 4 

7 OA + 
MeOH 

Hollow sulfonated 
mesoporous carbon 
spheres (1.43 mmol/g) 

75 °C, OA/MeOH 
=1/30 (molar ratio) 21.7 3.7 5 

8 OA+ MeOH Amberlyst-15 (4.7 
mmol/g) 

60 °C, OA/MeOH = 
1/20 (molar ratio) 6 2.8 This 

work 

9 OA+ MeOH 

Ball milled nitric acid 
oxidized high sulfur 
petroleum coke (0.12 
mmol/g) 

60 °C, OA/MeOH = 
1/20 (molar ratio) 143 1.9 This 

work 

10 OA+ MeOH Sulfonated chitosan 
(3.17 mmol/g) 

60 °C, OA/MeOH = 
1/95 (molar ratio) 114 1.3 6 

11 Oleic acid 
+MeOH 

Carbonized and 
sulfonated spent coffee 
grounds (3.36 mmol/g) 

80 °C, oleic 
acid/MeOH = 1/10 
(molar ratio) 

- 1.3 7 

12 OA+ MeOH 
Nitric acid oxidized 
high sulfur petroleum 
coke (0.08 mmol/g) 

60 °C, OA/MeOH = 
1/20 (molar ratio) 114 1.1 This 

work 

13 OA+ MeOH 
Acid-activated clay 
(smectite) (0.57 
mmol/g) 

100 °C, OA/MeOH = 
1/3 (molar ratio) 12 0.7 8 

1. OA, octanoic acid; 2. MeOH, methanol; 3. gram of product per gram of catalyst and per hour. 
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