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Abstract: The development of selective histone deacetylase 6 inhibitors (sHDAC6is) is being recog-
nized as a therapeutic approach for cancers. In this paper, we designed a series of novel tetrahy-
dropyridopyrimidine derivatives as sHDAC6 inhibitors. The most potent compound, 8-(2, 4-bis(3-
methoxyphenyl)-5, 8-dihydropyrido [3, 4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8f),
inhibited HDAC6 with IC50 of 6.4 nM, and showed > 48-fold selectivity over other subtypes. In West-
ern blot assay, 8f elevated the levels of acetylated α-tubulin in a dose-dependent manner. In vitro, 8f
inhibited RPMI-8226, HL60, and HCT116 tumor cells with IC50 of 2.8, 3.20, and 3.25 µM, respectively.
Moreover, 8f showed good antiproliferative activity against a panel of tumor cells.

Keywords: HDAC6 inhibitor; tetrahydropyridopyrimidine; antitumor; synthesis; selectivity

1. Introduction

Histone deacetylases (HDACs) are involved in a wide range of biological responses
by histone deacetylation and nonhistone lysine post-translational modification and have
been identified as targets in the treatment of various diseases, especially for cancer [1–5].
The HDACs family include class I (HDAC1, HDAC2, HDAC3, HDAC8), class II (HDAC4,
HDAC5, HDAC6, HDAC7, HDAC9, HDAC10), class III (Sirt1−7), and class IV (HDAC11) [6].
To date, five HDACis have been approved to treat cutaneous T-cell lymphoma, peripheral
T-cell lymphoma, or multiple myeloma [7–11]. However, all of them are nonselective
or partially selective, which might have potentially toxic side effects [12,13]. In contrast
with the lethal effect of HDAC1-3 genetic ablation, mice with HDAC6 knocked out are
viable and develop normally [14,15]. HDAC6, mainly located in the cytoplasm, exhibits
unique characteristics [16,17]. It contains two tandem catalytic domains and directly acts
on a host of cytosolic proteins and substrates such as α- and β-tubulin, heat shock protein,
assembled micro-tubules, and cortactin [18–20], which are closely related to tumorigenesis.
Moreover, the binding to ubiquitin by the distinctive zinc finger domain makes HDAC6
regulate protein clearance and degradation [21]. The advantage of lower toxicity and
improved safety profile has made the development of HDAC6i a hot research topic in
cancer treatment [16,22–24].

To date, a lot of synthetic sHDAC6is have been reported [25–31]. The structure of
HDAC6i typically contains three parts: (a) a zinc-binding group (ZBG) coordinating with
Zn2+ ion at the bottom of the active site, (b) a linker region embedding in the hydrophobic
tunnel between the catalytic site and the outer surface, and (c) a capping group overlaying
on the surface (Figure 1). The clinical ACY-1215 (1) inhibited HDAC1 and HDAC6 with
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IC50s of 5 nM and 58 nM and was evaluated for the treatment of multiple myeloma (MM)
and lymphoid malignancies [32]. ACY-1215 showed synergistic anti-MM activity together
with bortezomib, resulting in protracted endoplasmic reticulum stress and apoptosis.
ACY-241 (2), similar to the structure of ACY-1215, achieved higher serum concentrations
than ACY-1215. The IC50 value of ACY-241 against HDAC6 was 2.6 nM, 13~18-fold
better than HDAC1-3 [33]. KA2507 (3) potently inhibited HDAC6 with IC50 of 2.5 nM. It
demonstrated antitumor efficacy and immune modulatory effects in preclinical models.
In a phase I study, KA2507 showed selective target engagement, no significant toxicities,
and prolonged disease stabilization in a subset of patients [34]. Despite great success in
sHDAC6is discovery, available clinical agents are still rare, and the lack of therapeutic
effect on solid tumors is another problem for HDAC inhibitors.
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Figure 1. Representative selective HDAC6 inhibitors in clinic.

Because the cap region of the HDAC6 pocket is wider and larger than that of HDAC1 [35],
a more rigid and bigger capping group might improve the selectivity toward HDAC6.
For HDAC6is 1–3, the common feature is apparent: a “Y” shaped and predominantly
aromatic capping group with hydroxamic acid as ZBG. The 5, 6, 7, 8-tetrahydropyrido[3,
4-d]pyrimidine (4) was frequently used in the development of kinase inhibitors for can-
cer treatment [36,37]. Hence, the introduction of such a scaffold in one molecule might
be beneficial for the anticancer efficacy of HDAC6is. In this paper, we replaced the N,
N-diphenylpyrimidine capping group of ACY1215 with 5, 6, 7, 8-tetrahydropyrido[3, 4-
d]pyrimidine and retained the six-carbon linker as well as hydroxamic acid ZBG (Figure 2).
Here, we reported the design, structure, and activity relationship (SAR) study and antipro-
liferative evaluation of these tetrahydropyridopyrimidines.
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Figure 2. The design of tetrahydropyridopyrimidines as sHDAC6is.

2. Results and Discussion
2.1. Chemistry

The synthetic route to target compounds 8a–h was initiated by the preparation of key
intermediate 6a–h from commercially available material 5 and two equivalent arylboronic
acids by Suzuki reaction with Pd(dppf)Cl2 as a catalyst and K2CO3 as a base (Scheme 1).
For preliminary exploration, the same aryls were introduced on the C2 and C4 positions of
the tetrahydropyridopyrimidine scaffold. Compounds 6a–h underwent Boc deprotection
under TFA/CH2Cl2 condition and subsequent condensation reaction with 8-methoxy-
8-oxooctanoic acid through HATU, yielding the ester precursors 7a–h. Then, 7a–h was
converted to the final hydroxamate product 8a–h using aqueous hydroxylamine under
basic conditions. Different electron-withdrawing or electron-donating substituents were
introduced on two phenyls present in the capping part to explore the SAR. Moreover, the
phenyl group was also replaced with an aromatic heterocycle such as thienyl or furyl.
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Scheme 1. Reagents and conditions: (a) Pd(dppf)Cl2, K2CO3, arylboronic acid, 1, 4-dioxane,
120 ◦C, 8 h; (b) TFA, dichloromethane (CH2Cl2), reflux, 2 h; (c) HATU, DIPEA, DMF, 0 ◦C, 6 h;
(d) NH2OH·HCl, KOH, 0 ◦C to r.t., 4 h.

2.2. HDAC1, 6 Activities and SAR Study of the Target Compounds

The target compounds 8a–h were screened against HDAC6 with sHDAC6i ACY1215
and nonselective SAHA as the positive controls. Considering specific and redundant
functions of class I HDACs in the control of proliferation as well as potential toxicity [38],
HDAC1 was chosen for selectivity evaluation. As displayed in Table 1, all eight compounds
demonstrated low nanomolar HDAC6 activity and two-digital selectivity against HDAC1.
The most potent 8f, with meta-OMe phenyls as the capping group, inhibited HDAC6 with
an IC50 value of 6.4 nM and showed 48-fold selectivity against HDAC1, better than that of
ACY1215. In addition, unsubstituted 8a also had an IC50 of 16.2 nM and 35-fold selectivity.
The introduction of para-OMe phenyl (8c) maintained the potency. Although -CF3, -Me, or
furyl were adopted, a slight decrease in HDAC6 inhibition was observed (8b, 8d, and 8h).
For thienyl derivatives 8e and 8g, the position of the sulfur atom obviously affected the
HDAC6 activity (25.7 nM vs. 54 nM, respectively). It seemed that the substituent on the
phenyl cap was critical for enzymatic activity.

Table 1. Intro inhibitory activities of target compounds 8a–h against HDAC1 and HDAC6 (IC50, nM).
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8f, with the highest potency, was chosen for a detailed screening against other HDACs,
including class I HDACs (HDAC2, 3, 8), HDAC 4, 5 (class IIa), and HDAC6 (class IIb)
with ACY1215, SAHA, and TMP269 (a selective class IIa inhibitor) [39] as references. As
demonstrated in Table 2, 8f shows highly selective inhibition (more than 48-fold over other
subtypes) toward HDAC6, and its selectivity values were higher than those of reference
compound ACY1215. The IC50 values of 8f against HDAC1-3 were 308 nM, 390 nM, and
411 nM, respectively. 8f showed poor activity for HDAC4, 5 and 8. The results further
validate the importance of tetrahydropyridopyrimidine with bulky capping groups to yield
pronounced HDAC6 selective inhibition.

Table 2. The screen of 8f against HDAC isozymes (IC50, nM).

Compound
IC50

HDAC1 HDAC2 HDAC3 HDAC4 HDAC5 HDAC6 HDAC8

8f 308 390 411 >10,000 >10,000 6.4 510
SAHA 4.2 11.5 3.5 >10,000 8870 7.1 1033

1 62.5 47.5 50.0 7250 5100 5.1 150
TMP269 >10,000 >10,000 >10,000 0.133 0.090 ND ND

IC50 values for enzymatic inhibition of HDAC enzymes. We ran experiments in duplicate, SD < 15%. Assays were
performed by Reaction Biology Corporation (Malvern, PA, USA). ND = not determined.

2.3. Western Blot Assay

To further determine the intracellular target specificity of 8f, human MM cell line
RPMI-8226 was treated at concentrations of 1, 5, and 10 µM, along with the reference
HDAC6i ACY1215 and pan-inhibitor SAHA at 10 µM (Figure 3). 8f was able to increase
the levels of acetylated α-tubulin in a dose-dependent manner while inducing only modest
changes in the levels of acetylated histone 3 (H3), similar to those found for the reference
HDAC6i ACY-1215 at 10 µM. As expected, the pan-active HDACi SAHA increased levels of
both acetylated α-tubulin and acetylated histone H3 significantly compared to the vehicle.
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Figure 3. 8f increases the levels of acetylated α-tubulin in a dose-dependent manner in RPMI-8226
cells—densitometric analyses of Ac-H3 and Ac-α-tubulin. Cells were treated for 24 h with compounds,
and then Western blotting analysis was performed. ** p < 0.01, the *** p < 0.001 indicates comparison
with the control group.

2.4. Molecular Simulation

The representative 8a was docked into the human HDAC6 protein complex to elucidate
the interaction model between these tetrahydropyridopyrimidines and the target protein.
As outlined in Figure 4A, hydroxamate-Zn2+ coordination was modeled with bidentate
geometry, and the Zn2+−O distances are 2.4 and 1.8 Å for the OH and C=O groups,
respectively. The side chain of His610 additionally accepted a hydrogen bond from the
hydroxamate OH group. The aliphatic chain linker embeds into the channel between
Phe620 and Phe680. Moreover, two phenyl substituents of 8a in the cap region were oriented
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into the crevice formed by Met682, Asp567, and Ser564. Tetrahydropyridopyrimidine
scaffold as a proper connecting unit made the capping group of 8a match well with amino
acids on the rim of the binding tunnel (Figure 4B). For compound 8f, its polar meta-OMe
group improved the HDAC6 activity. For comparison, ACY-1215 was also docked into
the HDAC6 crystallographic structure, and the superimposition of ACY-1215 and 8a was
disclosed in Figure 4C. Both compounds occupied the same pocket and showed similar
binding modes.
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2.5. Antiproliferative Activities of Representative Compounds

Hematological tumors such as lymphoma, multiple myeloma, and chronic myeloid
leukemia are more sensitive to HDAC inhibitors. Therefore, HL60 and RPMI-8226 tumor
cells were used for antiproliferative biological tests of our compounds. Moreover, colon
cancer cell HCT116 was also added to evaluate the antiproliferative effect for solid tumors
of these tetrahydropyridopyrimidines. IC50 values of three representative compounds 8a,
8c, and 8f toward HL60 and RPMI-8226 cells range from 2.80 to 16.3 µM, which indicated
that these tetrahydropyridopyrimidines tested kept the cell-based activity (Table 3). For
solid tumor cells HCT116, all three analogs exhibited promising efficacy, especially for 8c
and 8f, with IC50s of 4.72 and 3.25 µM. This result rendered these new inhibitors valuable
hits for applications beyond multiple myeloma.

Table 3. Antiproliferative effect of 8a, 8c and 8f against HL60, HCT116 and RPMI-8226 cell lines
(IC50, µM).

Compound HL60 HCT116 RPMI-8226

8a 12.5 23.4 16.3
8c 3.78 4.72 4.63
8f 3.20 3.25 2.80
1 4.10 6.50 1.70

SAHA 0.87 4.50 0.66
IC50 values are averages of three independent experiments, SD < 10%.

Then, 8f was submitted to NCI for antiproliferative evaluation against 59 different
tumor cell lines. The cancer types of the NCI-60 program include leukemia, non-small cell
lung cancer (NSCLC), colon cancer, CNS cancer, melanoma, ovary cancer, renal cancer,
prostate cancer, and breast cancer. As shown in Table 4, 8f had an overall antiproliferative
profile with percent inhibitions of 56 cell lines > 80% at 10 µM concentration.
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Table 4. Antiproliferative screening against 59 cell lines of 8f (Inhibition% values at 10µM concentration).

Cancer Type Cell Line 8f Cancer Type Cell Line 8f

Leukemia

CCRF-CEM 85.0 M14 90.5
HL60 100 MDA-MB-435 95.8
K-562 90.2 SK-MEL-2 100

MOLT-4 87.7 SK-MEL-28 100
RPMI-8226 88.7 SK-MEL-5 100

SR 84.3 UACC-257 98.7

Non-Small
Cell Lung

Cancer

A549/ATCC 87.7 UACC-62 100
EKVX 84.4

Ovarian
Cancer

IGROV1 100
HOP-62 99.1 OVCAR-3 100
HOP-92 100 OVCAR-4 67.1

NCI-H226 93.3 OVCAR-5 100
NCI-H23 100 OVCAR-8 93.6

NCI-H322M 89.0 NCI/ADR-RES 100
NCI-H460 95.5 SK-OV-3 100
NCI-H522 69.1

Renal Cancer

786-0 89.1

Colon Cancer

COLO 205 100 A498 100
HCC-2998 100 ACHN 100
HCT-116 96 CAKI-1 100
HCT-15 100 SN12C 100
HT29 95.3 TK-10 100
KM12 88.4 UO-31 100

SW-620 100 Prostate
Cancer

PC-3 83.3

CNS Cancer

SF-268 92.2 DU-145 89.8
SF-295 100

Breast Cancer

MCF7 92.1

SF-539 99.0 MDA-MB-
231/ATCC 100

SNB-19 100 HS 578T 97.8
SNB-75 71.0 BT-549 81.9

U251 100 T-47D 100

Melanoma
LOX IMVI 100 MDA-MB-468 100

MALME-3M 100

3. Experimental Section
3.1. Chemistry

All the starting reagents were purchased and were used with no additional purification.
All the mentioned yields were for isolated products. Melting points were determined in
open capillaries on a WRS-1A digital melting point apparatus (Shenguang). 1H-NMR
spectra were detected on a Bruker DRX–400 (400 MHz) using TMS as the internal standard.
High-resolution mass spectra were obtained from Thermo Scientific Q Exactive. The
chemical shifts were reported in ppm (δ), and coupling constants (J) values were given in
Hertz (Hz). The purities of all target compounds were tested by HPLC to be >95.0%. HPLC
analysis was performed at room temperature using an Agilent Eclipse XDB-C18 (250 mm
× 4.6 mm) and plotted at 254 nm by 30% MeOH/H2O as a mobile phase.

3.1.1. Tert-Butyl 2, 4-Diphenyl-5, 8-dihydropyrido[3, 4-d]pyrimidine-7(6H)-carboxylate (6a)

To a stirred mixture of tert-butyl 2, 4-dichloro-5, 8-dihydropyrido[3, 4-d]pyrimidine-
7(6H)-carboxylate (304.2 mg, 1 mmol), potassium carbonate (345.5 mg, 2.5 mmol) and
Pd(dppf)Cl2 (36.3 mg, 0.05 mmol) in 50 mL of 1, 4-dioxane was added phenylboronic acid
(243.9 mg, 2 mmol). After stirring at reflux for 8 h under an argon atmosphere, the reaction
mixture was concentrated under reduced pressure. Then, the reaction mixture was diluted
with saturated sodium chloride (100 mL) and extracted with EtOAc (100 mL × 3). The
combined organic extracts were dried over anhydrous Na2SO4 and concentrated under
reduced pressure. The white product was obtained by chromatography on a silica gel
column with a yield of 96%. 1H-NMR (400 MHz, DMSO-d6) δ: 8.44–8.38 (m, 2H), 7.81–7.75
(m, 2H), 7.57–7.50 (m, 6H), 4.67 (s, 2H), 3.57 (s, 2H), 2.88 (t, J = 5.4 Hz, 2H), 1.47 (s, 9H).
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3.1.2. Tert-Butyl 2, 4-di-p-tolyl-5, 8-dihydropyrido[3, 4-d]pyrimidine-7(6H)-carboxylate (6b)

6b was synthesized from (4-methylphenyl)boronic acid using a procedure similar
to that described for the synthesis of 6a and was obtained as a white solid (yield: 88%).
1H-NMR (400 MHz, DMSO-d6) δ: 8.32 (d, J = 8.9 Hz, 2H), 7.75 (d, J = 8.8 Hz, 2H), 7.07 (dd,
J = 12.9, 8.9 Hz, 4H), 4.61 (s, 2H), 2.42 (s, 3H), 2.35 (s, 3H), 3.54 (s, 2H), 2.86 (t, J = 5.4 Hz,
2H), 1.47 (s, 9H).

3.1.3. Tert-Butyl 2, 4-Bis(4-methoxyphenyl)-5, 8-dihydropyrido[3,
4-d]pyrimidine-7(6H)-carboxylate (6c)

6c was synthesized from (4-methoxyphenyl)boronic acid using a procedure similar to
that described for the synthesis of 6a and was obtained as a white solid (yield: 90%).1H-
NMR (400 MHz, DMSO-d6) δ: 8.35 (d, J = 8.9 Hz, 2H), 7.77 (d, J = 8.8 Hz, 2H), 7.07 (dd,
J = 12.9, 8.9 Hz, 4H), 4.62 (s, 2H), 3.84 (d, J = 6.1 Hz, 6H), 3.56 (s, 2H), 2.88 (t, J = 5.4 Hz, 2H),
1.47 (s, 9H).

3.1.4. Tert-Butyl 2, 4-Di(furan-3-yl)-5, 8-dihydropyrido[3, 4-d]pyrimidine-7(6H)-carboxylate (6d)

Similar to the synthesis of 6a, 6d was obtained from furan-3-ylboronic acid as a white
solid (yield: 88%). 1H-NMR (400 MHz, DMSO-d6) δ: 8.43 (d, J = 12.1 Hz, 2H), 7.86 (s, 1H),
7.79 (s, 1H), 7.23 (s, 1H), 7.08 (s, 1H), 4.56 (s, 2H), 3.65 (s, 2H), 2.88 (t, J = 5.4 Hz, 2H), 1.45
(s, 9H).

3.1.5. Tert-Butyl 2, 4-Di(thiophen-3-yl)-5,8-dihydropyrido [3,
4-d]pyrimidine-7(6H)-carboxylate (6e)

Similar to the synthesis of 6a, 6e was obtained from thiophen-3-ylboronic acid as a
white solid (yield: 87%). 1H-NMR (400 MHz, DMSO-d6) δ: 8.37 (d, J = 3.9 Hz, 1H), 8.24–8.20
(m, 1H), 7.83 (d, J = 6.0 Hz, 1H), 7.75 (d, J = 5.0 Hz, 1H), 7.71 (dd, J = 5.0, 2.8 Hz, 1H), 7.64
(dd, J = 5.0, 3.1 Hz, 1H), 4.60 (s, 2H), 3.61 (s, 2H), 2.97 (t, J = 5.4 Hz, 2H), 1.46 (s, 9H).

3.1.6. Tert-Butyl 2, 4-Bis(3-methoxyphenyl)-5, 8-dihydropyrido [3,
4-d]pyrimidine-7(6H)-carboxylate (6f)

Similar to the synthesis of 6a, 6f was obtained from (3-methoxyphenyl)boronic acid as
a white solid (yield: 89%). 1H-NMR (400 MHz, DMSO-d6) δ: 8.00 (d, J = 7.8 Hz, 1H), 7.92 (s,
1H), 7.46-7.44 (m, 2H), 7.33–7.26 (m, 2H), 7.12-7.10 (m, 2H), 4.67 (s, 2H), 3.83 (s, 6H), 3.57 (s,
2H), 2.87 (t, J = 5.4 Hz, 2H), 1.47 (s, 9H).

3.1.7. Tert-Butyl 2, 4-Di(thiophen-2-yl)-5, 8-dihydropyrido [3,
4-d]pyrimidine-7(6H)-carboxylate (6g)

Similar to the synthesis of 6a, 6g was obtained from thiophen-2-ylboronic acid as a
white solid (yield: 85%). 1H-NMR (400 MHz, DMSO-d6) δ: 7.94 (dd, J = 3.6, 1.1 Hz, 1H),
7.89 (d, J = 5.1 Hz, 1H), 7.85 (d, J = 3.7 Hz, 1H), 7.76 (dd, J = 5.0, 1.0 Hz, 1H), 7.30–7.27 (m,
1H), 7.23–7.20 (m, 1H), 4.59 (s, 2H), 3.67 (s, 2H), 3.04 (t, J = 5.5 Hz, 2H), 1.46 (s, 9H).

3.1.8. Tert-Butyl 2, 4-Bis(4-(trifluoromethyl)phenyl)-5, 8-dihydropyrido [3,
4-d]pyrimidine-7(6H)-carboxylate (6h)

Similar to the synthesis of 6a, 6h was obtained from (4-(trifluoromethyl)phenyl)boronic
acid as a white solid (yield: 92%). 1H-NMR (400 MHz, DMSO-d6) δ: 8.60 (d, J = 8.2 Hz, 2H),
8.01 (d, J = 8.2 Hz, 2H), 7.95–7.84 (m, 4H), 4.72 (s, 2H), 3.59 (s, 2H), 2.90 (t, J = 5.4 Hz, 2H),
1.47 (s, 9H).

3.1.9. Methyl 8-(2, 4-Diphenyl-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-8-oxooctanoate (7a)

(i) To a stirred mixture of 6a (387.5 mg, 1 mmol) in CH2Cl2 (40 mL) was added TFA
(5 mL) in portions. The reaction mixture was stirred at reflux for 2 h and then concentrated
under reduced pressure. The reaction mixture was diluted with saturated sodium chloride
(50 mL) and adjusted to PH = 7 with Na2CO3 saturated solution. Then, the mixture
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was extracted with EtOAc (50 mL × 3). The combined organic extracts were dried over
anhydrous Na2SO4 and concentrated under reduced pressure. The product was obtained
as an oil. (ii) To a solution of the product acquired in step (i) in DMF (30 mL) was added
HATU (1 mmol) DIPEA (4 mmol) at 0 ◦C. Then, the reaction mixture was stirred at room
temperature overnight. After the completion of the reaction detected by TLC, the reaction
was poured into water (30 mL) and extracted with EtOAc (60 mL × 3). The combined
organic extracts were dried over anhydrous Na2SO4 and concentrated under reduced
pressure. Then, the resulting mixture was purified by column chromatography to give the
product 7a with 54% isolated yield: white solid. 1H-NMR (400 MHz, DMSO-d6) δ: 8.41 (s,
2H), 7.77 (d, J = 3.5 Hz, 2H), 7.59–7.46 (m, 6H), 4.79 (d, J = 21.8 Hz, 2H), 3.67 (t, J = 5.1 Hz,
2H), 3.57 (s, 3H), 2.93 (t, J = 5.2 Hz, 1H), 2.82 (t, J = 5.2 Hz, 1H), 2.49–2.37 (m, 2H), 2.32–2.22
(m, 2H), 1.53 (m, 4H), 1.30 (d, J = 3.6 Hz, 4H).

3.1.10. Methyl 8-(2, 4-di-p-tolyl-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-8-oxooctanoate (7b)

Similar to the synthesis of 7a, 7b was obtained as a white solid with a yield of 49%.
1H-NMR (400 MHz, DMSO-d6) δ: 8.31 (dd, J = 8.2, 2.0 Hz, 2H), 7.68 (dd, J = 8.1, 2.4 Hz, 2H),
7.34 (dd, J = 14.1, 8.1 Hz, 4H), 4.78 (d, J = 28.1 Hz, 2H), 3.68 (t, J = 5.4 Hz, 2H), 3.57 (s, 3H),
2.94 (t, J = 5.2 Hz, 1H), 2.83 (t, J = 5.2 Hz, 1H), 2.48–2.42 (m, 2H), 2.40 (s, 3H), 2.38 (s, 3H),
2.31-2.28 (m, 2H), 1.58–1.47 (m, 4H), 1.35–1.22 (m, 4H).

3.1.11. Methyl 8-(2, 4-Bis(4-methoxyphenyl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-8-oxooctanoate (7c)

Similar to the synthesis of 7a, 7c was obtained as a yellow solid with a yield of 38%.
1H-NMR (400 MHz, DMSO-d6) δ: 8.35 (d, J = 8.5 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.07 (dd,
J = 12.9, 8.5 Hz, 4H), 4.74 (d, J = 26.0 Hz, 2H), 3.83 (m, 6H), 3.67 (s, 2H), 3.57 (s, 3H), 2.94 (s,
1H), 2.83 (s, 1H), 2.43 (dd, J = 12.2, 6.4 Hz, 2H), 2.29 (t, J = 5.7 Hz, 2H), 1.53–1.51 (m, 4H),
1.34–1.25 (m, 4H).

3.1.12. Methyl 8-(2, 4-Di(furan-3-yl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-8-oxooctanoate (7d)

Similar to the synthesis of 7a, 7d was obtained as a yellow solid with a yield of 43%.
1H-NMR (400 MHz, DMSO-d6) δ: 8.44 (s, 1H), 8.23–8.10 (m, 2H), 7.85 (s, 1H), 7.67 (d,
J = 4.2 Hz, 1H), 7.20 (d, J = 3.0 Hz, 1H), 7.05 (s, 1H), 4.66 (d, J = 16.7 Hz, 2H), 3.77 (s, 2H),
3.56 (s, 3H), 2.94 (s, 1H), 2.83 (s, 1H), 2.42 (m, 2H), 1.91 (q, J = 6.9 Hz, 2H), 1.45 (dd, J = 16.1,
9.0 Hz, 4H), 1.38–1.15 (m, 4H).

3.1.13. Methyl 8-(2, 4-Di(thiophen-3-yl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-8-oxooctanoate (7e)

Similar to the synthesis of 7a, 7e was obtained as a white solid with a yield of 41%.
1H-NMR (400 MHz, DMSO-d6) δ: 8.38 (dd, J = 3.0, 1.1 Hz, 1H), 8.23–8.18 (m, 1H), 7.84
(d, J = 5.0 Hz, 1H), 7.78–7.69 (m, 2H), 7.66–7.62 (m, 1H), 4.73 (d, J = 21.2 Hz, 2H), 3.73 (t,
J = 4.3 Hz, 2H), 3.57 (d, J = 2.7 Hz, 3H), 3.04 (t, J = 5.3 Hz, 1H), 2.94 (t, J = 5.2 Hz, 1H), 2.44
(t, J = 7.4 Hz, 2H), 2.28 (q, J = 7.1 Hz, 2H), 1.52–1.50 (m, 4H), 1.34–1.24 (m, 4H).

3.1.14. Methyl 8-(2, 4-Bis(3-methoxyphenyl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-8-oxooctanoate (7f)

Similar to the synthesis of 7a, 7f was obtained as a yellow solid with a yield of 48%.
1H-NMR (400 MHz, DMSO-d6) δ: 8.46 (s, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.90 (s, 1H), 7.47–7.40
(m, 2H), 7.32–7.21 (m, 2H), 7.04 (m, 2H), 4.80 (d, J = 26.2 Hz, 2H), 3.82 (s, 6H), 3.65 (t,
J = 5.5 Hz, 2H), 3.57 (s, 3H), 2.92 (t, J = 5.1 Hz, 1H), 2.82 (t, J = 5.1 Hz, 1H), 2.45–2.35 (m,
2H), 1.92 (t, J = 7.3 Hz, 2H), 1.50–1.48 (m, 4H), 1.26 (q, J = 16.1, 12.5 Hz, 4H).
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3.1.15. Methyl 8-(2, 4-Di(thiophen-2-yl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-8-oxooctanoate (7g)

Similar to the synthesis of 7a, 7g was obtained as a yellow solid with a yield of 49%.
1H-NMR (400 MHz, DMSO-d6) δ: 8.36 (s, 1H), 7.90 (d, J = 4.5 Hz, 1H), 7.65 (d, J = 5.0 Hz,
1H), 7.77 (t, J = 4.3 Hz, 1H), 7.70 (d, J = 4.8 Hz, 1H), 7.26 (q, J = 5.0 Hz, 1H), 7.23–7.17 (m,
1H), 4.71 (d, J = 23.0 Hz, 2H), 3.83–3.70 (m, 2H), 3.57 (s, 3H), 3.11 (t, J = 5.1 Hz, 1H), 2.96 (t,
J = 5.2 Hz, 1H), 2.47–2.42 (m, 2H), 1.93–1.91 (m, 2H), 1.56–1.41 (m, 4H), 1.33–1.16 (m, 4H).

3.1.16. Methyl 8-(2, 4-Bis(4-(trifluoromethyl)phenyl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-8-oxooctanoate (7h)

Similar to the synthesis of 7a, 7g was obtained as a yellow solid with a yield of 46%.
1H-NMR (400 MHz, DMSO-d6) δ: 8.34 (s, 1H), 8.19 (d, J = 8.2 Hz, 2H), 8.00 (d, J = 8.1 Hz,
2H), 7.90 (dd, J = 12.7, 8.3 Hz, 4H), 4.82 (d, J = 27.8 Hz, 2H), 3.71–3.60 (m, 2H), 2.92 (t,
J = 4.8 Hz, 1H), 2.81 (t, J = 4.7 Hz, 1H), 2.42–2.33 (m, 2H), 1.93 (t, J = 7.3 Hz, 2H), 1.51–1.49
(m, 4H), 1.36–1.15 (m, 4H).

3.1.17. 8-(2, 4-Diphenyl-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8a)

A solution of NH2OH·HCl (1.70 g, 24.46 mmol) in MeOH (9 mL) was combined with
KOH (1.70 g, 30.29 mmol) at 0 ◦C in an ice bath. Then, the mixture was stirred for 30 min
and filtered. 7a (457.6 mg, 1 mmol) was added to the filtrate, and the reaction was stirred
for an additional 4 h at 0 ◦C in an ice bath. The resulting mixture was poured into water
(30 mL), and the pH value was adjusted to 7. The mixture was diluted with saturated NaCl
aqueous solution (40 mL) and extracted with EtOAc (50 mL × 3). After drying over Na2SO4,
the organic phase was concentrated and purified by column chromatography to give the
product 8a. 84% yield; white solid; m.p.: 115~117 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ:
10.35 (s, 1H), 8.67 (s, 1H), 8.45-8.39 (m, 2H), 7.80-7.74 (m, 2H), 7.56-7.52 (m, 6H), 4.80 (d,
J = 24.4 Hz, 2H), 3.69 (t, J = 5.5 Hz, 2H), 2.95 (t, J = 5.1 Hz, 1H), 2.84 (t, J = 5.1 Hz, 1H),
2.48–2.40 (m, 2H), 1.95 (t, J = 7.3 Hz, 2H), 1.53–1.51 (m, 4H), 1.34–1.22 (m, 4H). 13C-NMR
(101 MHz, DMSO-d6) δ: 171.24, 169.14, 164.54, 163.38, 160.67, 137.33, 137.03, 130.63, 129.61,
129.07, 128.64, 128.36, 127.62, 123.75, 46.44, 42.13, 32.66, 32.26, 28.49, 26.70, 25.88, 25.06,
24.54. HR-MS (ESI, m/z): Calcd for 459.23907 (C27H31N4O3

+ [M + H]+). Found 459.23901.

3.1.18. 8-(2, 4-di-p-tolyl-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8b)

Similar to the synthesis of 8a, 8b was obtained from 7b as a white solid (yield: 64%).
M.p.: 110~112 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ: 10.35 (s, 1H), 8.68 (s, 1H), 8.31 (dd,
J = 8.2, 2.2 Hz, 2H), 7.69 (dd, J = 8.1, 2.7 Hz, 2H), 7.37 (s, 1H), 7.36–7.33 (m, 2H), 7.32 (d,
J = 1.9 Hz, 1H), 4.78 (d, J = 28.7 Hz, 2H), 3.68 (t, J = 4.9 Hz, 2H), 2.95 (t, J = 5.2 Hz, 1H), 2.84
(t, J = 5.3 Hz, 1H), 2.45 (d, J = 7.1 Hz, 2H), 2.41 (s, 3H), 2.38 (s, 3H), 1.94 (t, J = 7.3 Hz, 2H),
1.51 (m, 4H), 1.33–1.24 (m, 4H). 13C-NMR (101 MHz, DMSO-d6) δ: 171.21, 169.16, 164.34,
163.14, 160.68, 140.35, 139.36, 139.32, 134.57, 134.44, 129.23, 129.07, 128.90, 127.59, 123.35,
123.22, 46.45, 42.19, 32.27, 28.50, 26.78, 25.08, 24.55, 24.44, 20.96. HR-MS (ESI, m/z): Calcd
for 487.27037 (C29H35N4O3

+ [M + H]+). Found 487.27020.

3.1.19. 8-(2, 4-Bis(4-methoxyphenyl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8c)

Similar to the synthesis of 8a, 8c was obtained from 7c as a white solid (yield: 57%).
M.p.: 117~118 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ: 10.35 (s, 1H), 8.68 (s, 1H), 8.38 (d,
J = 2.0 Hz, 1H), 8.35 (d, J = 2.0 Hz, 1H), 7.77 (d, J = 8.6 Hz, 2H), 7.12–7.10 (m, 1H), 7.09–7.06
(m, 2H), 7.05 (d, J = 2.6 Hz, 1H), 4.76 (d, J = 28.2 Hz, 2H), 3.85 (s, 3H), 3.83 (s, 3H), 3.68 (t,
J = 5.3 Hz, 2H), 2.96 (t, J = 4.9 Hz, 1H), 2.85 (t, J = 5.1 Hz, 1H), 2.45 (dd, J = 13.6, 6.6 Hz, 2H),
1.94 (t, J = 7.3 Hz, 2H), 1.51 (m, 4H), 1.34–1.21 (m, 4H). 13C-NMR (101 MHz, DMSO-d6) δ:
169.12, 161.96, 161.34, 160.43, 144.74, 138.38, 137.87, 130.83, 130.78, 129.69, 129.65, 129.23,
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120.97, 120.82, 113.96, 113.73, 46.46, 46.07, 32.25, 28.49, 28.46, 26.87, 25.05, 24.54, 24.42.
HR-MS (ESI, m/z): Calcd for 519.26020 (C29H35N4O5

+ [M + H]+). Found 519.26001.

3.1.20. 8-(2, 4-Di(furan-3-yl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8d)

Similar to the synthesis of 8a, 8d was obtained from 7d as a white solid (yield: 65%).
M.p.: 104~106 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ: 10.35 (s, 1H), 8.70 (s, 1H), 8.46–8.35
(m, 2H), 7.87 (s, 1H), 7.80 (d, J = 4.2 Hz, 1H), 7.23 (d, J = 3.0 Hz, 1H), 7.08 (s, 1H), 4.69 (d,
J = 16.7 Hz, 2H), 3.77 (s, 2H), 2.96 (s, 1H), 2.85 (s, 1H), 2.43 (q, J = 7.0 Hz, 2H), 1.95–1.93 (m,
2H), 1.50 (dd, J = 16.1, 9.0 Hz, 4H), 1.39–1.17 (m, 4H). 13C-NMR (101 MHz, DMSO-d6) δ:
171.16, 171.09, 169.20, 166.19, 162.91, 145.19, 144.70, 144.46, 143.81, 126.54, 124.08, 122.12,
121.94, 46.25, 41.98, 32.58, 32.28, 32.05, 28.48, 26.38, 25.07, 24.57. HR-MS (ESI, m/z): Calcd
for 439.19760 (C29H35N4O5

+ [M + H]+). Found 439.19751.

3.1.21. 8-(2, 4-Di(thiophen-3-yl)-5,8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8e)

Similar to the synthesis of 8a, 8e was obtained from 7e as a white solid (yield: 68%).
M.p.: 123~124 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ: 10.35 (s, 1H), 8.68 (s, 1H), 8.40–8.36 (m,
1H), 8.22 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 5.0 Hz, 1H), 7.78–7.69 (m, 2H), 7.65 (m, 1H), 4.74
(d, J = 21.9 Hz, 2H), 3.73 (t, J = 5.4 Hz, 2H), 3.05 (t, J = 5.0 Hz, 1H), 2.94 (t, J = 5.0 Hz, 1H),
2.45 (t, J = 7.2 Hz, 2H), 2.00–1.87 (m, 2H), 1.61–1.40 (m, 4H), 1.36–1.21 (m, 4H). 13C-NMR
(101 MHz, DMSO-d6) δ: 171.18, 171.09, 169.16, 163.39, 163.09, 141.12, 138.75, 129.23, 129.00,
128.77, 127.87, 127.17, 127.01, 126.35, 46.42, 42.14, 38.03, 32.27, 32.11, 26.79, 26.02, 25.06, 24.55.
HR-MS (ESI, m/z): Calcd for 471.15191 (C23H27N4O3S2

+ [M + H]+). Found 471.15195.

3.1.22. 8-(2, 4-Bis(3-methoxyphenyl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8f)

Similar to the synthesis of 8a, 8f was obtained from 7f as a white solid (yield: 64%).
M.p.: 117~118 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ: 10.34 (s, 1H), 8.67 (s, 1H), 8.00 (d,
J = 7.8 Hz, 1H), 7.93 (s, 1H), 7.50–7.40 (m, 2H), 7.33–7.25 (m, 2H), 7.10 (td, J = 8.1, 2.2 Hz,
2H), 4.80 (d, J = 26.2 Hz, 2H), 3.83 (s, 6H), 3.69 (t, J = 5.5 Hz, 2H), 2.94 (t, J = 5.1 Hz, 1H), 2.83
(t, J = 5.1 Hz, 1H), 2.48–2.39 (m, 2H), 1.94 (t, J = 7.3 Hz, 2H), 1.52–1.50 (m, 4H), 1.27–1.25 (m,
4H). 13C-NMR (101 MHz, DMSO-d6) δ: 171.25, 169.14, 164.41, 163.35, 160.40, 159.57, 159.15,
138.68, 138.50, 129.78, 129.55, 123.96, 121.26, 120.09, 116.35, 115.34, 115.13, 114.54, 114.39,
112.67, 46.44, 42.10, 32.26, 32.14, 28.49, 26.68, 25.88, 25.07, 24.54. HR-MS (ESI, m/z): Calcd
for 519.26020 (C29H35N4O5

+ [M + H]+). Found 519.26019.

3.1.23. 8-(2, 4-Di(thiophen-2-yl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8g)

Similar to the synthesis of 8a, 8g was obtained from 7g as a white solid (yield: 71%).
M.p.: 128~129 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ: 10.34 (s, 1H), 8.66 (s, 1H), 7.94 (d,
J = 4.5 Hz, 1H), 7.90 (d, J = 5.0 Hz, 1H), 7.83 (t, J = 4.3 Hz, 1H), 7.76 (d, J = 4.8 Hz, 1H), 7.29
(q, J = 5.0 Hz, 1H), 7.24–7.19 (m, 1H), 4.73 (d, J = 23.0 Hz, 2H), 3.86–3.72 (m, 2H), 3.12 (t,
J = 5.1 Hz, 1H), 2.99 (t, J = 5.2 Hz, 1H), 2.48–2.43 (m, 2H), 1.95–1.93 (m, 2H), 1.57–1.43 (m,
4H), 1.34–1.20 (m, 4H). 13C-NMR (101 MHz, DMSO-d6) δ: 171.15, 169.12, 163.90, 163.60,
157.29, 142.32, 141.57, 131.36, 131.12, 130.96, 130.56, 128.86, 128.59, 128.50, 49.31, 46.34,
32.25, 32.02, 28.45, 26.84, 26.03, 25.05, 24.54. HR-MS (ESI, m/z): Calcd for 471.15191
(C23H27N4O3S2

+[M + H]+). Found 471.15192.

3.1.24. 8-(2, 4-Bis(4-(trifluoromethyl)phenyl)-5, 8-dihydropyrido [3,
4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8h)

Similar to the synthesis of 8a, 8h was obtained from 7h as a white solid (yield: 64%).
M.p.: 145~146 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ: 10.33 (s, 1H), 8.65 (s, 1H), 8.61 (d,
J = 8.2 Hz, 2H), 8.02 (d, J = 8.1 Hz, 2H), 7.92 (dd, J = 12.7, 8.3 Hz, 4H), 4.87 (d, J = 27.8 Hz,
2H), 3.77–3.66 (m, 2H), 2.97 (t, J = 4.8 Hz, 1H), 2.87 (t, J = 4.7 Hz, 1H), 2.48–2.38 (m, 2H),
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1.94 (t, J = 7.3 Hz, 2H), 1.52 (m, 4H), 1.37–1.17 (m, 4H). 13C-NMR (101 MHz, DMSO-d6) δ:
169.12, 164.17, 163.60, 163.52, 159.39, 142.42, 130.07, 130.05, 130.02, 129.98, 128.36, 125.73,
125.69, 125.37, 125.34, 46.39, 41.93, 32.24, 32.22, 32.09, 28.48, 28.44, 25.04, 24.50. HR-MS (ESI,
m/z): Calcd for 595.21384 (C29H29F6N4O3

+[M + H]+). Found 595.21344.

3.2. In Vitro HDAC Enzyme Assay

IC50 testing of compounds was performed by the Reaction Biology Corporation. The
procedure was conducted as described previously [40].

3.3. Cell Culture and Antiproliferative Assay

The cells were cultured in IMDM (Gibco) medium with 20% FBS (Lonsera), 100 U/mL
penicillin, and 100 µg/mL streptomycin (Solarbio). All cells were maintained at 37 ◦C in
a humidified atmosphere of 5% CO2 in air. Briefly, 100 µL cell suspension or completed
medium was plated into a 96-well plate. Compounds were added and incubated for 72 h.
Then, 22 µL Alamar blue solution (1 mM) was pipetted into each well of a 96-well plate,
and the plate was incubated for an additional 5~6 h. The absorbance (OD) was read at
530/590 nm. Data were normalized to vehicle groups (DMSO) and represented as the
means of three independent measurements with standard errors of <20%. The IC50 values
were calculated using Prism 5.0.

3.4. Western Blotting Assay

RPMI-8226 cells (1 × 106) were seeded overnight and incubated with compound 8f for
24 h on indicated concentrations. Cell extract was prepared by lysing cultured cells with a
mammalian protein extraction reagent supplemented with EDTA-free protease inhibitor for
15 min. SDS-PAGE and immunoblot analysis were conducted as described [40]. Antibodies
for Ac-H3 (abcom, AB32129) and Ac-α-tubulin (Cell Signaling, 2144) were used.

3.5. Computational Methods

Molecular simulation was performed in Discovery Studio 3.0 software (BIOVIA, 5005
Wateridge Vista Drive, San Diego, CA, USA). Docking was conducted using cdocker based
on the cocrystal of HDAC6 (PDB: 5EDU). The cavity occupied by trichostatin A was selected
as the ligand binding site. The parameter setting was performed as previously reported [2].

4. Conclusions

In this work, a series of novel hybrid HDAC6 inhibitors were designed by chemically
merging the structure of tetrahydropyridopyrimidine into the pharmacophore of HDAC6is.
All newly synthesized compounds were first evaluated for inhibition of HDAC1 and
HDAC6. All these diarylpyrimidine derivatives demonstrated potent HDAC6 activity at
a nanomolar level and 16~49-fold selectivity over HDAC1. Western blot study further
confirmed HDAC6 selectivity of these tetrahydropyridopyrimidines. In the cytotoxic assay,
compounds 8a, 8c, and 8f showed potent antiproliferative activity against representative
hematological and solid tumors. Taken together, this work highlights the application of
tetrahydropyridopyrimidine scaffold in the development of novel sHDAC6 inhibitors.
These tetrahydropyridopyrimidine derivatives might be developed as new antitumor
agents besides multiple myeloma. Further structural modification was performed in
our lab.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28217323/s1. 1H-NMR, 13C-NMR and HR-MS
spectras of synthesized compounds (1–8); Growth percents of 8f against 59 tumor cells in NCI-60
program (9).
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