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Abstract: The development and application of new organoboron reagents as Lewis acids in synthesis
and metal-free catalysis have dramatically expanded over the past 20 years. In this context, we
will show the recent uses of the simple and relatively weak Lewis acid BPh3—discovered 100 years
ago—as a metal-free catalyst for various organic transformations. The first part will highlight catalytic
applications in polymer synthesis such as the copolymerization of epoxides with CO2, isocyanate,
and organic anhydrides to various polycarbonate copolymers and controlled diblock copolymers as
well as alternating polyurethanes. This is followed by a discussion of BPh3 as a Lewis acid component
in the frustrated Lewis pair (FLP) mediated cleavage of hydrogen and hydrogenation catalysis. In
addition, BPh3-catalyzed reductive N-methylations and C-methylations with CO2 and silane to
value-added organic products will be covered as well along with BPh3-catalyzed cycloadditions
and insertion reactions. Collectively, this mini-review showcases the underexplored potential of
commercially available BPh3 in metal-free catalysis.

Keywords: triphenyl borane; metal-free catalysis; Lewis acid; frustrated Lewis pair; cycloaddition;
hydrogenation; hydrosilylation; polymerization; carbon dioxide

1. Introduction

Last year marked the 100th anniversary of the discovery of triphenyl borane, BPh3,
the first isolated triaryl borane by E. Krause and R. Nitsche [1]. The authors obtained BPh3
as a crystalline solid through the treatment of BF3 with excess phenyl magnesium bromide
followed by distillation under vacuum. About 50 years later, its solid-state structure was
determined by single crystal X-ray crystallography [2]. The results revealed a trigonal
planar coordination environment for boron with the three phenyl rings being tilted by
about 30◦ toward the plane.

BPh3 has found widespread application as a promoter in the hydrocyanation of olefins
in the presence of Ni complexes and is used industrially by Du Pont for its hydrocyanation
of butadiene to adiponitrile, a nylon intermediate [3]. In addition, BPh3 has been em-
ployed extensively as a diphenyl boryl transfer agent in the synthesis of boron-containing
heterocyclic materials with remarkable photophysical properties, such as electro- and
photoluminescence and aggregation-induced emission (AIE) [4–17]. BPh3 is a relatively
weak Lewis acid that forms Lewis acid–base adducts with pyridine and a wide variety of
aliphatic amines [18]. These stable adducts have found use as catalysts for the polymer-
ization of acrylic esters [3], as antifouling reagents in marine environments [19–21] and as
agrochemical fungicides [22–24].

Despite its early discovery and structural simplicity, BPh3 has not risen to the same
prominence amongst scientists in academia as has its ingenious perfluorinated and highly
Lewis acidic counterpart, B(C6F5)3, first reported in 1963 [25]. Perhaps one major factor
that has caused BPh3 to lag behind B(C6F5)3, particularly in the emerging field of metal-free
Lewis acid catalysis, is its comparably low Lewis acidity [26]. As high Lewis acidity is
often key to the activation and rapid catalytic transformation of organic substrates, it is
not a surprise that B(C6F5)3 has been at the forefront of current research in metal-free
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catalysis [27–36]. However, as the development and application of new boron Lewis acids
have expanded at an amazing pace over the past 20 years, it has also become apparent
that tuning the Lewis acidity of the catalyst can be an important factor in achieving new
modes of substrate activation and selectivity. A prime example of this development has
been the application of frustrated Lewis pairs (FLPs) [37–39] in catalytic hydrogenations of
unsaturated organic molecules. Work from various groups has shown that weaker Lewis
acid components may exhibit better performances, improved functional group tolerances,
or different selectivities [40–45].

In this context, this mini-review aims to showcase the underexplored potential of
commercially available and weakly Lewis-acidic BPh3 in metal-free catalysis. Particular
emphasis is given to the role of BPh3 as a catalyst in polymer synthesis, in frustrated Lewis
pair (FLP) mediated hydrogen cleavage, and hydrogenation catalysis as well as transforma-
tions of CO2 to value-added organic products and Lewis acid catalyzed cycloadditions and
insertion reactions.

2. BPh3 in Polymerization Catalysis

In developing effective “latent catalysts” for the curing of epoxy resins that overcome
issues associated with previously utilized systems, such as poor solubility and hygroscop-
icity, Endo and co-workers studied Lewis pairs of general formula Ph3PCHRBX3, where
X = H, Ph, F (Scheme 1) [46,47]. Most of these air- and moisture-stable zwitterionic phos-
phonium borates 1–6, derived from reactions of the respective boranes with phosphonium
ylides, proved to be active pre-catalysts in the co-polymerization of bisphenol A and bisphe-
nol A diglycidyl ether at high temperatures (Scheme 1). The pre-catalyst activity at 120 ◦C
was found to be in the following order: 4 > 2 > 1 > 3 > 5 > 6. The fact that BPh3-adduct
4 and BH3-adduct 2 converted the bisphenol A diglycidyl ether within 3 h to ca. 90%
and 70%, respectively, whereas BF3-adduct 6 was essentially inactive, impressively shows
the importance of steric and electronic parameters in the design of Lewis pairs as active
polymerization catalysts.
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Whether BX3 remains to be intact as a catalyst during the course of the reaction is ques-
tionable given the harsh conditions and the Bronsted acidity of bisphenol A. 

Scheme 1. Catalytic copolymerization of bisphenol A and bisphenol A diglycidyl ether.

The key to the catalytic activity of the phosphonium borate catalysts 1-6 was assumed
to be their thermally induced dissociation to BX3 and Ph3P=CHR, with the degree of
dissociation being a sensitive function of temperature as well as the strength of the C-B
bond (Scheme 2). The significantly better performances of the BPh3-ylide and BH3-ylide
adducts 4 and 2 compared to the BF3-ylides 5 and 6 have been attributed to their weaker
B-C bonds due to the lower Lewis acidity of BPh3 and BH3. Upon dissociation of the
adduct, the resulting phosphonium ylide serves as an initiator deprotonating the phenolic
OH group of bisphenol A to generate a phenoxide anion. BX3 activates, as a Lewis acid, the
epoxide functionality, facilitating its ring-opening via nucleophilic attack of the phenoxide
anion. Whether BX3 remains to be intact as a catalyst during the course of the reaction is
questionable given the harsh conditions and the Bronsted acidity of bisphenol A.
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The past decade has witnessed increasing interest in the metal-free catalyzed forma-
tion of cyclic organic carbonates and polycarbonates from epoxide monomers and CO2 as
an alternative to metal-based catalysts [48–51]. Recent reports from Feng [50] and Darens-
bourg [51] demonstrated that metal-free Lewis pairs can be utilized as effective catalysts
in the copolymerizing of propylene oxide (PO) with CO2 or carbonyl sulfide (COS). The
catalyst systems comprised triethyl borane as a Lewis acid, and amines, onium salts, or
alkoxides as Lewis bases.

The Kerton group investigated the activity of BPh3 and B(C6F5)3 as catalysts and
bis(triphenylphosphine)iminium chloride (PPNCl) as a co-catalyst for the reaction of propy-
lene oxide (PO) and CO2 at 100 ◦C (Scheme 3) [52]. Both were active catalysts in generating
propylene carbonate under identical conditions. These findings were in stark contrast
with previous work using triethyl borane as the catalyst, which produced poly(propylene
carbonate) [50]. It is worthwhile noting that based on initial rate measurements, the catalyst
system BPh3/PPNCl was more than five times faster than B(C6F5)3/PPNCl. This is most
likely due to the significantly higher Lewis acidity of B(C6F5)3, which binds much more
strongly to the Cl- anion of co-catalyst PPNCl than BPh3 does. Consistent with kinetic
studies revealing that lowering the CO2 pressure increases the reaction rate, BPh3 catalyzed
the reaction of epichlorohydrin with CO2, even under atmospheric CO2 pressure, to give
the respective cyclic carbonate as the sole product.

In addition, BPh3 was found to catalyze the copolymerization of CO2 with cyclo-
hexene oxide (CHO) and vinyl cyclohexene oxide (VCHO), respectively, at low catalyst
loadings. Polycarbonates with high numbers of averaged molecular weights and excellent
polydispersities were obtained. In the absence of CO2, BPh3 catalyzed the ring opening of
CHO to give the epoxide homopolymer (Scheme 3).

In a follow-up study, Kerton and co-workers investigated the ability of BPh3 to cat-
alyze the addition of Si–H groups onto a vinyl-substituted polycarbonate [53]. In a ‘one-pot’
sequence, BPh3 catalyzed both reactions: the copolymerization of VCHO and CO2 to
polycarbonate followed by the hydrosilylation of the vinyl groups in the polymer with
phenyl dimethyl silane to give side-chain silylated polycarbonate (Scheme 4). Perhaps
for steric reasons, the degree of hydrosilylation of polycarbonate was only 10%. How-
ever, when using a polycarbonate terpolymer derived from CHO, VCHO, and CO2, the
degree of hydrosilylation could be increased to 36%, in this case with H2SiPh2 as the
hydrosilylation reagent.
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In 2021, Kerton et al. disclosed the BPh3/PPNCl catalyzed copolymerization of organic
anhydrides and epoxides [54]. Cyclohexene oxide (CHO), vinyl cyclohexene oxide (VCHO)
and also limonene oxide (LO) could be polymerized with phthalic anhydride (PAH) and cis-
4-cyclohexene-1,2-dicarboxylic anhydride (CDA), respectively, to give perfectly alternating
copolymers with excellent polydispersities (Figure 1).

In addition, the authors discovered that these perfectly alternating co-polymers can
be further polymerized to form controlled diblock copolymers using BPh3/PPNCl as the
catalyst system. For example, PAH was first allowed to react with excess CHO to generate
copolymer I. Once the full conversion of PAH was achieved, the second anhydride, CDA,
was added and allowed to react to completion, resulting in the selective formation of
controlled diblock copolymer II (Scheme 5). Similarly, by sequentially adding CO2 to the in
situ generated copolymer I, controlled diblock copolymer III could be obtained again with
high selectivity and excellent polydispersities. It is worthwhile noting that the markedly
stronger Lewis acid B(C6F5)3 was not an active catalyst either for epoxide/anhydride
copolymerization or for epoxide/anhydride/CO2 block copolymerizations. However, it
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was found that when B(C6F5)3 was added to diblock copolymer III, the carbonate block of
the polymer was depolymerized to give the respective cyclic carbonate.
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Gnanou, Feng, and co-workers investigated triethyl borane (BEt3) catalyzed copoly-
merizations of epoxides with organic isocyanates to polyurethanes [55], challenging trans-
formations due to the propensity of most isocyanates to undergo side-reactions such as
homopolymerization, cyclotrimerization and [2 + 3] cycloaddition with epoxides. Strongly
electron-withdrawing p-tosyl isocyanate (TSI) was found to be the most suitable substrate
selectively undergoing copolymerization with a range of epoxides to form almost perfectly
alternating polyurethanes (less than 1% ether linkages in the polymer) in high yields and
purities. Interestingly, when investigating the impact of the Lewis acidity of the borane
catalyst on the rate of propylene oxide/TSI copolymerization, it was found that with BPh3,
a stronger Lewis acid than BEt3, the reaction occurred explosively with the release of large
amounts of heat. Astonishingly, with very low catalyst loadings of 0.05 mol% BPh3 and
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0.1 mol% PPNCl, complete polymerization was accomplished within 10 min with turnover
frequencies of over 10,000 h−1, and a remarkably high number of averaged molecular
weight (Mn = 225,000 g/mol), exclusively alternating polyurethane structure and a poly-
dispersity of 1.51. Unfortunately, a substrate scope with this highly active and selective
catalyst system was not investigated (Scheme 6).
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3. BPh3 as an FLP Component in Hydrogenation Catalysis

Stephan and co-workers’ discovery that Lewis acidic boranes can actively participate
in the heterolytic cleavage of H2 via a frustrated Lewis pair (FLP) approach [37–39] opened
the door to the design of metal-free catalysts for the hydrogenation of unsaturated organic
substrates [56–60]. Briefly, FLPs comprise sterically encumbered Lewis acid–base pairs,
unable to form Lewis acid–base adducts due to unfavorable steric interactions. As a result,
Lewis acidity and basicity of the individual FLP components remain unquenched, thus en-
abling the heterolytic cleavage of H2, a key step in catalytic hydrogenation reactions [41–45].
Typically, active FLP catalysts are comprised of strongly Lewis acidic, often highly flu-
orinated or chlorinated aryl boranes coupled with relatively weak N- or P-containing
Lewis bases. Theoretical studies concerning the thermodynamic feasibility of the FLP-
mediated H2 cleavage, however, suggested that weak Lewis acids could be active as well,
provided that a sufficiently strong base is present [61]. In this context, it is worthwhile
noting that Stephan, in one of his seminal papers [38], disclosed the stochiometric H2
cleavage utilizing the FLPs B(C6F5)3/P(But)3 and BPh3/P(But)3. The former FLP with
B(C6F5)3 (∆HHA = −112 kcal/mol) quickly and quantitatively generated the phosphonium
borate salt [HB(C6F5)3][HP(But)3] at room temperature, whereas with less acidic BPh3
(∆HHA = −74.4 kcal/mol) salt [HBPh3][HP(But)3] was formed in only 33% yields after
24 h. However, theoretical calculations by Papai and co-workers appear to contradict the
effectiveness of BPh3/P(But)3 to cleave H2 as the reaction was calculated to be endergonic
(∆GR = +18.2 kcal/mol), while for B(C6F5)3/P(But)3 the reaction with H2 was exergonic
(∆GR = −14.7 kcal/mol) [61].

Building on these and other results [62,63], Krempner et al. employed the bulky
organosuperbases Verkade base (pKa = ~33 in CH3CN) and phosphazene (pKa ~28 in
CH3CN) in combination with BPh3 (Scheme 7) [64]. Upon exposure to H2, both FLPs
instantly generated the corresponding borate salts 7 and 8 in yields of 71% and 85%, resp.
Solutions of 8 appeared to be thermally stable, while 7 in solution quickly released H2
when heated to 60 ◦C, indicating reversibility of heterolytic hydrogen cleavage, which is
key to the development of effective hydrogenation catalysts. In fact, BPh3/phosphazene
was demonstrated to be an active FLP catalyst system in the quantitative hydrogenation of
the N-benzylidene aniline to N-benzyl aniline in THF as solvent.

An interesting extension of this concept was recently introduced by Hu and co-
workers for the FLP-catalyzed hydrogenation of alkynes [65]. Because the molecular FLP
BPh3/pyridine thermally degraded during hydrogenation of phenylacetylene (conversion
12% after 12 h at 120 ◦C and 50 bar H2), the group developed a polymeric Lewis acid based
on BPh3. The synthesis is illustrated in Scheme 8 and involves a classical Friedel–Crafts
reaction of BPh3 with 1,2-dichloroethane in the presence of AlCl3.
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This polymeric Lewis acid, Poly-BPh3, combined with pyridine as the Lewis base
was shown to be active in the semi-hydrogenation of a variety of aliphatic and aromatic
terminal alkynes at 120 ◦C to preferentially give the corresponding alkenes. The Lewis
acid component of this FLP, Poly-BPh3, is reusable without loss of catalytic activity after
being recovered from the reaction mixture, and appears to be thermally and hydrolytically
remarkably stable.

Recent developments concerning iridium- and ruthenium-catalyzed hydrogenations
of organosilicon compounds [66–70] motivated the Cantat group to design FLP catalysts
for the metal-free hydrogenation of various organosilanes with Si-X bonds (X = OTf, I,
Br, Cl) [71]. After extensive screening, B(2,6-F2-C6H3)3 as the Lewis acid combined with
stochiometric amounts of 2,2,6,6-tetramethylpiperidine (TMP) as the base was identified as
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the most effective FLP catalyst for the hydrogenation of Me3SiX (X = OTf, I, Br) to Me3SiH
(Scheme 9). Employing the same FLP catalyst, Et3SiOTf, Ph3SiOTf, and (Pri)2Si(OTf)2
could be hydrogenated to the corresponding hydrosilanes in good yields as well. However,
irrespective of the base used, B(2,6-F2-C6H3)3 was not able to convert the more challenging
substrate Me3SiCl to Me3SiH, primarily because of the comparably stronger Si-Cl bond
and lower hydricity of the respective borohydride anion, HB(2,6-F2-C6H3)3

–, formed upon
H2-splitting. Building on the idea of favoring the thermodynamics by increasing the
hydricity of the borohydride, less Lewis acidic BPh3 was tested in combination with
stronger base phosphazene to ensure H2-cleavage. With this FLP in hand, 28% of Me3SiCl
were converted after 72 h to Me3SiH in yields of 26%. Moreover, upon adding the chloride
abstracting additive NaOTf, the yields of Me3SiH were further increased to a respectable
52% (Scheme 9).
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Silylenes, divalent silicon species of general formula R1R2Si, are known to exhibit
amphoteric behavior, capable of serving either as Lewis acids or Lewis bases. In this
respect, Kira, Mueller, and co-workers investigated the potential of sterically overcrowded
silylene 9 to be an active component in the heterolytic cleavage of H2 via an FLP approach
(Scheme 10) [72]. It was found that 9 not only actively engaged in H2 splitting, it was
also fully hydrogenated to hydrosilane 13 in isolated yields ranging from 75–84% with
catalytic amounts of either Lewis base (PPh3, NPh3, PEt3, and NEt3) or Lewis acids such
as BEt3 and BPh3. NMR spectroscopic investigations in solution showed that neither
PPh3 nor BPh3 forms a classical Lewis acid–base adduct, indicative of FLP formation
in both cases. Nonetheless, when H2 was introduced into the solution, rapid formation
of hydrosilane 13 occurred. Based on DFT calculations, a mechanism was proposed in
which BPh3 initially forms the weak complex 10 with the silylene, which is stabilized
by ca. −7 kcal/mol compared to the starting materials. Subsequent heterolytic cleavage
of H2 leads to the formation of silylium borate 12; its formation is slightly endothermic
(+14 kcal/mol). Finally, the hydride is transferred from the borohydride to the silylium
cation to give the final product 2, a strongly exothermic process (−37 kcal/mol). It should
be noted that strong Lewis acid B(C6F5)3 was not capable of hydrogenating silylene 9,
instead, degradation occurred.
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4. Hydrosilylation Catalysis

Arguably, one of the most challenging metal-free catalyzed reductive transformations
represents the reduction of organic amides to amines [73–75]. In 2016, Okuda and co-
workers reported the highly selective hydrosilylation of a variety of aromatic and aliphatic
tertiary amides to the corresponding amines with 10 mol% BPh3 as the catalyst system and
2 eq. of PhMeSiH2 as the reducing agent (Scheme 11) [76].
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Aromatic and aliphatic tertiary amines were obtained in good to excellent isolated
yields. In contrast, α,β-unsaturated amides underwent hydrosilylation of the olefinic
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groups (C=C) to give the respective α-silylated amides. In addition, this process showed
a good functional group tolerance with additives such as acetophenone, ethyl acetate,
N-benzylidene aniline, tert-butyl isocyanate, and thiophene not inhibiting the activity of
the catalyst. Only in the case of benzaldehyde and ethanol, hydrosilylation and dehy-
drosilylation, respectively, occurred prior to amide reduction. The addition of pyridine
deactivated the catalyst due to irreversible Lewis acid–base adduct formation with BPh3.
The BPh3-catalyzed amide hydrosilylations described by Okuda’s group appear to be
superior in terms of both functional group tolerance and chemo-selectivity when compared
with other metal-free catalysts reported in the literature [74,75]. For example, B(C6F5)3
catalyzes the reduction of both functional groups of 14, the ester as well as the amide, to
give benzylamine 15. In contrast, BPh3 reduces the amide group while keeping the ester
group intact leading to the selective formation of the ester-functionalized benzylamine 16
(Scheme 11) [74].

The same group reported the BPh3-catalyzed hydrosilylation of CO2 (Scheme 12) [77].
This approach enabled the highly selective formation of silyl formates with various hy-
dro silanes such as PhSiH3, PhMeSiH2 or Et3SiH in polar solvents such as acetonitrile,
nitromethane and propylene carbonate. No turnover was observed in less polar and
non-polar solvents such as benzene, toluene, tetrahydrofuran (THF) and CH2Cl2. Mecha-
nistically the BPh3-catalyzed hydrosilylation of CO2 is suggested to proceed via the dual
activation of CO2 and organosilane by BPh3, where polar solvents with high dielectric
constants stabilize the partially charged transient species (Scheme 11). Note that strongly
Lewis acidic B(C6F5)3 itself was not capable of catalyzing the hydrosilylation of CO2, while
as the FLP component in combination with tetramethyl piperidine (TMP) as a Lewis base
and with an excess of triethylsilane CO2 was quantitatively reduced to give CH4 [78].
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More recently, Ema and co-workers reported the utilization of CO2 as C1-feedstock for
the reductive methylation of secondary and tertiary aromatic amines derivatives, employing
PhSiH3 as a reducing agent and BPh3 as the catalyst (Scheme 13) [79,80]. The N-methylation
of sec-amines was achieved with 1 atm of CO2, 4.0 equivalents of PhSiH3 and 5 mol% of
BPh3 under solvent-free conditions at 30 ◦C. The process tolerates various functional groups
such as halides, nitrile, nitro, ester and alkoxy groups. On the other hand, C-methylenation
was observed with tertiary aromatic amines to give the corresponding diarylmethanes in
moderate yields at 40 ◦C. Note that B(C6F5)3 was inactive even at higher temperatures in any
of these transformations, probably due to irreversible Lewis acid–base adduct formation.
Similar to what was seen for the reaction of tertiary aromatic amines, 1-methylindole at
30◦C converted to 3,3′-methylenebis(1-methylindole) 18 in good yields. On the contrary,
B(C6F5)3 catalyzed the formal hydrogenation of the olefinic bond of N-methyl indole to
selectively give N-methyl dihydroindole 19.
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Motivated by the moderate water tolerance of B(C6F5)3 in catalytic hydrogenation
reactions [81], Ingleson and co-workers disclosed the triaryl borane catalyzed reductive
aminations of aldehydes to aromatic and aliphatic amines using Me2PhSiH as the reducing
agent [82,83]. Notably, the employed catalysts BPh3 and B(C6F5)3 showed strikingly differ-
ent selectivities for aliphatic and aromatic amine substrates (Scheme 14). With B(C6F5)3
as the catalyst, the amine substrates were limited to aryl amines (pKa of the conjugate
acid < 12), while with weaker Lewis acidic BPh3, the more basic alkyl amines (pKa of the
conjugate acid > 16) performed well with excellent conversions and yields. These findings
were attributed to the different interactions of the amine base with the intermediately
formed water adducts H2O→BPh3, and H2O→B(C6F5)3. Thus, with more basic alkyl
amines, irreversible deprotonation of the highly acidic adduct H2O→B(C6F5)3 (pKa = 8.4
in CH3CN) occurred, resulting in the degradation of the catalyst. BPh3, on the other hand,
undergoes rapid protodeboronation in the presence of the more acidic aryl amines. It is
worth noting that the in situ generated Lewis acid B(3,5-Cl2-C6H3)3, whose Lewis acidity
is in between B(C6F5)3 and BPh3, was capable of catalyzing the reductive amination with
both aryl and alkyl amines. However, a detailed substrate scope was not explored with
B(3,5-Cl2-C6H3)3 as the catalyst.
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5. Miscellaneous

Krempner and co-worker reported the Lewis acid catalyzed [2 + 3] cycloaddition of
Bestmann’s ylide, Ph3P=C=C=O, with nitrones to produce a variety of previously unknown
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5-isoxazolidinones with exocyclic phosphonium ylide functionality in excellent isolated
yields [84]. Subsequent quenching with reactive aldehydes via a classical Wittig reaction
gave access to 5-isoxazolidinones with exocyclic double bonds (Scheme 15).
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isoxazolidinone with exocyclic phosphonium ylide moiety and their Wittig reaction.

Of the boron-containing Lewis acid catalysts tested, BPh3 proved to be most effective
in providing the cycloaddition product in almost quantitative yields within 8 h at room
temperature. Weaker Lewis acids such as BEt3, BMes3 and B(OMe)3 were inactive even
at elevated temperatures, while B(C6F5)3, the strongest amongst the Lewis acids studied,
required 80 ◦C and 16 h to quantitatively produce the cycloaddition product. The authors
proposed a mechanism (Scheme 16) in which the borane catalyst activates the nitrone via
Lewis acid–base interactions, which facilitates the nucleophilic attack of the ylidic carbon
of Ph3PCCO resulting in the cyclized borane-5-isoxazolidinone adduct from which the
5-isoxazolidinone is liberated via borane–nitrone adduct formation. The higher activity of
the BPh3 over its more acidic counterpart B(C6F5)3 is attributed to the latter forming stable
adducts with both Ph3PCCO and the nitrone, while BPh3 does not [85].
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with nitrones (LA = Lewis acid).

Recently, Cummins and co-workers disclosed the synthesis and reaction behavior
of highly strained tri-tert-butylphosphatetrahedrane 20 (Scheme 17) [86]. Thus, upon the
addition of BPh3 (20 mol%), 20 underwent rapid dimerization to form the bicyclic structure
22 in 72% yield. To trap potential intermediates, tetrahedrane 20 was treated with a 20-fold
excess of styrene, which in the presence of BPh3 (20 mol%) furnished the cycloaddition
product 23 in a yield of 88%. Similarly, BPh3 catalyzed the cycloaddition of 20 with 1 atm of
ethylene to give the corresponding bicyclic structure 24 in yields of 74%. Quantum chemical
calculations revealed BPh3 to mediate C−P bond cleavage to give intermediately tri-tert-
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butyl-phospacyclobutadiene 21, which subsequently either dimerizes to 22 or undergoes a
formal [2 + 4] cycloaddition with styrene and ethylene to yield 23 and 24, respectively.
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Finally, Grubba et al. demonstrated the ability of BPh3 to act as an efficient Lewis
acid catalyst in the diphosphination of CO2 and CS2 (Scheme 18) [87]. BPh3-catalyzed
insertion of CO2 and CS2 into the P-P bond of unsymmetrical diphosphines 25 led to the
selective formation of products 26 of the general formula (R2N)2P–E–C(=E)–P(But)2, where
the central carbon of CE2 binds to the more nucleophilic P(But)2 moiety. In elucidating the
reaction mechanism, it was found that neither CO2 nor the bulky diphosphines reacted with
BPh3 individually to form the Lewis acid–base adducts, respectively, suggesting FLP-type
behavior. It was proposed that the FLP diphosphine/BPh3 synergistically interacts with
CO2 resulting in rapid P-P bond insertion.
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