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Abstract: Efficient and mild synthetic routes for bioactive natural product derivatives are of current
interest for drug discovery. Herein, on the basis of the pharmacophore hybrid strategy, we report
a two-step protocol to obtain a series of structurally novel oleanolic acid (OA)-dithiocarbamate
conjugates in mild conditions with high yields. Moreover, biological evaluations indicated that
representative compound 3e exhibited the most potent and broad-spectrum antiproliferative effects
against Panc1, A549, Hep3B, Huh-7, HT-29, and Hela cells with low cytotoxicity on normal cells. In
terms of the IC50 values, these OA-dithiocarbamate conjugates were up to 30-fold more potent than
the natural product OA. These compounds may be promising hit compounds for the development of
novel anti-cancer drugs.

Keywords: structural modification; oleanolic acid; natural product derivative; dithiocarbamate;
hybrid strategy; antitumor activity

1. Introduction

Natural products and their derivatives have a long history in cancer therapy and
are important for drug development. Efficient and mild synthetic routes for bioactive
natural product derivatives are of current interest for drug discovery [1–4]. Recently,
pentacyclic triterpenes have been identified as the main biologically active components in
many traditional Chinese medicines [5,6]. Among them, oleanolic acid (OA) is the most
abundant and cheap; thus, OA and its derivatives have been widely investigated for their
diverse biological activities, including their anti-cancer, anti-inflammatory, anti-HIV, anti-
bacterial, anti-diabetic, and anti-hepatotoxic effects, among others [7–11]. Derivatization
of OA has yielded a wide variety of novel compounds for anti-cancer investigations
(Scheme 1) [11–15]; however, poor pharmacokinetic properties, low cell selectivities, limited
bioavailabilities, and synthetic complexity have hindered further clinical application [7].
Therefore, methods for readily accessible modification of OA to enhance its polarity and
anti-proliferative activity are urgently required.

Dithiocarbamates are an important class of sulfur-containing organic compounds
with a wide range of applications in both academia and industry [16–27]. They serve
as fungicides and pesticides in agriculture [17–19], vulcanization agents in the rubber
industry [20], radical chain transfer agents in polymerization [21], effective ligands in
coordination chemistry [22], and, last but not least, as biologically important structural
motifs in medicinal chemistry (Scheme 2) [23–27].
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In recent years, the pharmacophore hybrid strategy has emerged as an essential
method for the discovery and modification of lead compounds [28–31]. Covalently com-
bining two known pharmacophores yields a novel hybrid molecule, which can possess
integrated advantages for optimizing certain biological activities and overcoming the de-
ficiencies of a single drug [32–35]. In view of the high performance of dithiocarbamate
derivatives in structural modification, the synthesis of OA-dithiocarbamate conjugates
may enhance the polarities and antitumor properties of the reaction products in a readily
accessible manner [7,23–27]. The structural modifications of OA have mainly focused
on the C-3 hydroxyl and C-28 carboxyl groups (Scheme 1) [7]. The C-28 carboxyl group
can easily be esterified by alcohols or amidated by amines; however, the preparation of
OA-dithiocarbamate conjugates has not yet been documented in the literature [7–11]. In
order to simplify the synthetic route and control the polarity of target molecules, ethylidene
was chosen as a linker between OA and dithiocarbamates.
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2. Results and Discussion

To establish the optimal reaction conditions, we prepared key intermediate 2, as pre-
viously described [36,37]. Under the “standard” conditions, the reaction of 2 with CS2 and
pyrrolidine in a one-pot manner afforded the target product 3a in an 80% isolated yield. In
the “standard” conditions, 2 equiv. of K3PO4 was shown to be essential to yield the desired
product 3a (Entries 1–4, Table 1). Lowering the loading of K3PO4 to 1.5 equiv. led to a de-
creased yield of 3a (Entry 1, Table 1), while replacement of it by K2HPO4 or Li2CO3 resulted
in no desired product (Entries 2–3, Table 1). On the other hand, in the presence of 2 equiv. of
K2CO3, product 3a could be isolated with a 62% yield (Entry 4, Table 1). Changing the reaction
temperature or using other solvents, such as DMF, CH3CN, and EtOH, did not offer better
results (Entries 5–8, Table 1). Lower amounts of CS2 or pyrrolidine resulted in a decreased
yield of 3a (Entries 9–10, Table 1).

Table 1. Optimization of Reaction Conditions.
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Entry Base (equiv.) Solvent Isolated Yield of 3a (%)

1 K3PO4 (1.5) THF 72
2 K2HPO4 (2.0) THF 0
3 Li2CO3 (2.0) THF 0
4 K2CO3 (2.0) THF 62
5 K3PO4 (2.0) DMF 23
6 K3PO4 (2.0) CH3CN 19
7 K3PO4 (2.0) EtOH 34
8 a K3PO4 (2.0) THF 78
9 b K3PO4 (2.0) THF 64
10 c K3PO4 (2.0) THF 70

Variations from the “standard” conditions. a Reaction temperature was raised to 60 ◦C. b CS2 was used in 3.0 equiv.
instead of 4.5 equiv. c Pyrrolidine was used in 1.5 equiv. instead of 2.0 equiv.

With the optimal reaction conditions in hand, the substrate scope was subsequently
investigated, and the results are compiled in Figure 1. The replacement of the H-atom
of the pyrrolidine ring with other substituents, such as methyl, dimethyl, hydroxy, and
hydroxymethyl, worked well, affording the corresponding products 3b–3e in 69–85% yields.
Among them, hydroxyl containing products were obtained at slightly lower yields. This
reaction was also tolerant of fused-ring substrates, such as hexahydroisoindoline and
isoindoline, resulting in 3f and 3g with 77% and 90% yields, respectively.

To further enhance the structural diversity of products, various types of piperidine-
derived substrates were also examined, and all of them were compatible with the estab-
lished reaction conditions. First, methyl-, hydroxy-, hydroxymethyl-, hydroxyethyl-, and
phenyl-substituted piperidines reacted smoothly to give 3h–3m in 70–88% yields. Then,
methyl-, hydroxyethyl-, phenyl-, and aryl-substituted piperazines were also viable sub-
strates, affording 3n–3s in 71–89% yields. Moreover, thiomorpholine was also compatible,
leading to the formation of 3t in 72% yield. Gratifyingly, the mild reaction conditions, high
yields of products, and good functional group tolerances clearly demonstrated the advan-
tages of our pharmacophore hybrid strategy for the structural modification of OA. The
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isolated compounds 3a–3t were fully characterized by 1H and 13C NMR spectroscopy as
well as high-resolution mass spectrometry (see the Supplementary Information for details).
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Having obtained a series of structurally diverse OA-dithiocarbamates, we next per-
formed a systematic biological evaluation to examine whether introducing an extra dithio-
carbamate group could improve antitumor activities. These compounds were evaluated by
MTT assay against human pancreatic cancer (Panc1), human lung cancer (A549), human
hepatoma cell (Hep3B), human hepatoma cell (Huh-7), human colon cancer (HT-29), and
human cervical cancer (Hela) cells, with the widely used anticancer drugs fluorouracil,
docetaxel, and cisplatin as positive controls (Table 2). Most of the compounds exhibited
remarkable antiproliferative activities, and the IC50 values of ten selected compounds were
less than 50 µM on certain tumor cell lines. Among them, compounds 3e, 3i, 3j, and 3l
were shown to be excellent, with broad-spectrum antitumor activities as well as being up
to 30-fold more potent than the natural product OA and the positive controls; this might be
ascribed to the introduction of hydroxyl groups. Particularly, compound 3p was also found
to be a promising hit compound that was 20-fold more potent than the natural product OA
against HT-29 cells. Moreover, the cytotoxicities of compounds 3a-3t were also evaluated in
human normal hepatocytes (LO2) to determine whether these compounds preferred killing
tumor cells over normal cells. Excitingly, the IC50 value of compound 3e in LO2 cells was
62.8 µM, which was several times higher than that in the tumor cells.

Table 2. In Vitro Cytotoxicity Data of OA and Its Derivatives.

Compound
IC50

a (µM)

Panc1 A549 Hep3B Huh-7 HT-29 Hela LO2

OA >200 >200 >200 >200 >200 >200 140.1
5-fluorouracil 160.0 125.3 152.2 140.0 93.3 130.4 108.9
Docetaxel >200 >200 172.2 104.1 >200 135.0 139.7
Cisplatin >200 >200 >200 >200 >200 142.5 >200
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Table 2. Cont.

Compound
IC50

a (µM)

Panc1 A549 Hep3B Huh-7 HT-29 Hela LO2

3a >200 92.1 >200 144.9 ND b 89.4 113.4
3b 130.0 135.8 >200 >200 100.3 77.1 136.0
3c >200 64.3 ND >200 >200 133.7 ND
3d 15.7 42.5 26.3 64.6 ~18.3 11.9 34.1
3e 13.1 28.8 15.2 29.9 ~17.6 7.0 62.8
3f ND ND ND ND ND ND ND
3g 185.2 >200 >200 >200 121.3 >200 >200
3h >200 ND 176.5 96.9 106.7 106.2 >200
3i 16.9 24.4 ~18.7 70.6 ~18.4 7.8 30.3
3j 13.5 33.6 16.9 49.4 7.6 10.9 25.2
3k 59.0 >200 >200 106.7 >200 49.8 >200
3l 13.4 34.3 14.7 39.9 8.3 ND ND
3m >200 >200 160.1 >200 81.8 131.2 >200
3n 39.5 34.5 124.3 132.8 62.2 48.6 76.9
3o 31.1 32.6 35.8 22.9 27.5 36.4 24.1
3p 14.6 25.2 13.9 59.1 10.3 ND 20.6
3q >200 ND ND 183.1 187.4 >200 ND
3r >200 >200 161.2 >200 >200 192.0 >200
3s >200 ND >200 102.1 ND 115.4 ND
3t >200 40.3 64.5 72.9 ND 175.4 114.7

a Concentration inhibiting 50% of cell growth for 48 h exposure period of tested samples. b ND, not determined.

3. Materials and Methods
3.1. General Information

All organic solvents were dried and distilled by standard methods prior to use. 1H
and 13C NMR spectra were recorded on a Bruker AV II-400 spectrometer (BURKERT,
Ingelfingen, Germany) at 400 and 100 MHz, respectively. All chemical shifts were reported
in δ units with references to the residual solvent resonances of the deuterated solvents for
proton and carbon chemical shifts. High Resolution Mass Spectra (HRMS) were obtained on
a Thermo Q Exactive™ Focus Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (SCIEX,
Framingham, Massachusetts, USA). All other chemicals were purchased from either Aldrich
(Sigma-Aldrich, Shanghai, China) or Aladdin Chemical Co. (Aladdin Holdings Group Co.,
Ltd, Shanghai, China) and used as received, unless otherwise specified.

The optical density at 490 nm of each well was measured using a microplate reader
(Molecular devices corporation, Sunnyvale, CA. USA) to calculate the percent of cell
viability. The inhibition rates were calculated using GraphPad Prism 7.0 software. The
seven tested cell lines were obtained from the laboratory of Molecular Pharmacology,
Department of Pharmacology, School of Pharmacy, Southwest Medical University.

3.2. Experimental Section of Synthesis

[2-bromoethyl] 3-hydroxy-12-en-28-oic acid (2) [36–38] To a mixture of oleanolic acid
(913.4 mg, 2.0 mmol), K2CO3 (552.8 mg, 4.0 mmol), and DMF (40 mL), 1, 2-dibromoethane
(513 µL, 6.0 mmol) was slowly added at room temperature, and the mixture was then stirred
at 40 ◦C for 4 h. The resulting mixture was cooled to room temperature, then quenched with
ice water (50.0 mL), and the insoluble material was removed by a Buchner funnel. The organic
layer was separated, and the aqueous layer was extracted with ethyl acetate (50 mL × 3). The
organic solutions were combined and dried over anhydrous MgSO4. After removal of the
solvent, the residue was submitted to column chromatography on silica gel (200-300 mesh)
using petroleum ether and ethyl acetate (15/1 in v/v) as eluents to give 2 (957.6 mg, 85% yield)
as a white solid. 1H NMR (400 MHz, CDCl3): δ 5.30 (s, 1H, H-12), 4.35 (m, 2H, -OCH2C-), 3.49
(t, J = 5.5 Hz, 2H, BrCH2C-), 3.20 (d, J = 6.9 Hz, 1H, H-3), 2.87 (d, J = 12.2 Hz, 1H, H-18), 1.99
(m, 1H, -OH), 1.87 (m, 2H, -CH2), 1.72 (m, 3H, H-22, -CH, -CH2,), 1.62 (m, 6H, 3 × -CH2), 1.54
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(m, 3H, H-22, -CH, -CH2), 1.33 (m, 6H, 3 × -CH2), 1.18 (s, 1H, H-9), 1.13 (s, 3H, -CH3), 1.06 (s,
1H, H-5), 0.98 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 6H, 2 × -CH3), 0.77 (s, 3H, -CH3), 0.73
(s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 177.2 (C-28), 143.4 (C-13), 122.6 (C-12), 78.8 (C-3),
63.6 (-CO-), 55.2 (C-5), 47.6 (C-9), 46.8 (C-17), 45.7 (C-19), 41.6 (C-14), 41.2 (C-18), 39.3 (C-8),
38.7 (C-1), 38.4 (C-4), 37.0 (C-10), 33.8 (C-29), 33.1 (C-22), 32.7 (C-21), 32.4 (C-7), 30.7 (C-20),
29.1 (-CBr), 28.2 (C-15), 27.7 (C-23), 27.1 (C-27), 25.9 (C-30), 23.6 (C-2), 23.4 (C-11), 22.9 (C-16),
18.3 (C-6), 17.0 (C-26), 15.6 (C-24), 15.3 (C-25). HRMS (ESI): m/z calculated for C32H51BrO3
[M+H]+: 563.3100. Found: 563.3054.

[2-((pyrrolidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3a). To a mix-
ture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF (8.0 mL),
pyrrolidine (1.0 mmol, 82 µL) was slowly added at 0 ◦C, and the reaction mixture was then
stirred at 0 ◦C for 0.5 h. To the resulting mixture another THF solution (4.0 mL) of 2 (0.4 mmol,
225.4 mg) was added dropwise. The reaction mixture was stirred for 12 h at room temperature,
then quenched with ice water (15.0 mL), and the insoluble material was removed by a Buchner
funnel. After removal of the solvent, the residue was dissolved in ethyl acetate (15.0 mL).
Water (15.0 mL) was added to the resulting solution, the organic layer was separated, and the
aqueous layer was extracted with ethyl acetate (15.0 mL × 2). The organic solutions were
combined and dried over anhydrous Na2SO4. After removal of the solvent, the residue was
submitted to column chromatography on silica gel (200–300 mesh) using petroleum ether and
ethyl acetate (2/1 in v/v) as eluents to give 3a (201.3 mg, 80% yield) as a white solid. 1H NMR
(400 MHz, CDCl3): δ 5.29 (s, 1H, H-12), 4.27 (m, 2H, -OCH2C-), 3.92 (t, J = 6.9 Hz, 2H, -SCH2),
3.66 (t, J = 6.8 Hz, 2H, -NCH2), 3.59 (m, 2H, -NCH2), 3.20 (m, 1H, H-3), 2.87 (dd, J = 13.5,
3.4 Hz, 1H, H-18), 2.10 (m, 1H, -OH), 1.97 (m, 5H, H-22, -CH, 2 × -CH2), 1.87 (m, 2H, -CH2),
1.66 (d, J = 8.4 Hz, 3H, -NCH2CH2CH), 1.59 (m, 5H, -NCH2CH2CH, 2 × -CH2), 1.53 (m, 3H,
H-22, -CH, -CH2), 1.35 (m, 6H, 3 × -CH2), 1.16 (d, J = 4.0 Hz, 1H, H-9), 1.13 (s, 3H, -CH3), 1.04
(s, 1H, H-5), 0.98 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 6H, 2 × -CH3), 0.77 (s, 3H, -CH3),
0.73 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 191.7 (-CS2), 177.4 (C-28), 143.6 (C-13), 122.5
(C-12), 78.8 (C-3), 62.5 (-CO-), 55.2 (-NCH2), 55.1 (-NCH2), 50.6 (C-5), 47.6 (C-9), 46.7 (C-17),
45.8 (C-19), 41.6 (C-14), 41.2 (C-18), 39.3 (C-8), 38.7 (C-1), 38.5 (C-4), 37.0 (C-10), 35.0 (-CS), 33.8
(C-29), 33.1 (C-22), 32.7 (C-21), 32.4 (C-7), 30.7 (C-20), 28.1 (C-15), 27.7 (C-23), 27.2 (C-27), 26.1
(-CH2), 25.9 (C-30), 24.3 (-CH2), 23.7 (C-2), 23.4 (C-11), 22.9 (C-16), 18.3 (C-6), 17.1 (C-26), 15.7
(C-24), 15.3 (C-25). HRMS (ESI): m/z calculated for C37H59NO3S2 [M+H]+: 630.4015. Found:
630.3961.

[2-((2-methylpyrrolidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3b).
To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), 2-methylpyrrolidine (1.0 mmol, 101 µL) was slowly added at 0 ◦C, and the reaction
mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2 (0.4 mmol,
225.2 mg) was added dropwise to the resulting mixture. The reaction mixture was stirred for
12 h at room temperature, then quenched with ice water (15.0 mL), and the insoluble material
was removed by a Buchner funnel. After removal of the solvent, the residue was dissolved in
ethyl acetate (15.0 mL). Water (15.0 mL) was added to the resulting solution, the organic layer
was separated, and the aqueous layer was extracted with ethyl acetate (15.0 mL × 2). The
organic solutions were combined and dried over anhydrous Na2SO4. After removal of the
solvent, the residue was submitted to column chromatography on silica gel (200–300 mesh)
using petroleum ether and ethyl acetate (10/1 in v/v) as eluents to give 3b (213.6 mg, 83%
yield) as a white solid. 1H NMR (400 MHz, CDCl3): δ 5.30 (s, 1H, H-12), 4.52 (m, 1H, -OH),
4.26 (m, 2H, -OCH2C-), 3.93 (m, 1H, -NCH), 3.73 (m, 1H, -NCH), 3.44 (m, 2H, -SCH2), 3.21 (m,
1H, H-3), 2.87 (dd, J = 13.7, 3.8 Hz, 1H, H-18), 2.25 (m, 1H, -NCH), 2.02 (m, 4H, 2 × -CH2), 1.81
(m, 3H, H-11, -CH, -CH2), 1.63 (m, 7H,-NCH2CH2, -NCH2CH2, H-22, -CH, -CH2), 1.53 (m,
3H, H-22, -CH, -CH2), 1.42 (m, 2H, -CH2), 1.35 (m, 4H, 2 × -CH2), 1.28 (m, 3H, -CH3), 1.16 (t,
J = 4.2 Hz, 1H, H-9), 1.13 (s, 3H, -CH3), 1.04 (s, 1H, H-5), 0.98 (s, 3H, -CH3), 0.93 (s, 3H, -CH3),
0.90 (s, 6H, 2 × -CH3), 0.77 (s, 3H, -CH3), 0.74 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3):
δ 191.7 (-CS2), 177.5 (C-28), 143.6 (C-13), 122.5 (C-12), 78.9 (C-3), 62.6 (-CO-), 61.3 (-NCH2CH3),
58.0(-CH3), 55.2 (C-5), 50.4 (-NCH2), 47.6 (C-9), 46.7 (C-17), 45.8 (C-19), 41.7 (C-14), 41.3 (C-18),
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39.4 (C-8), 38.8 (C-1), 38.5 (C-4), 37.0 (C-10), 34.8 (-CS), 33.9 (C-29), 33.1 (C-22), 32.4 (C-21), 31.3
(C-7), 30.7 (C-20), 28.1 (C-15), 27.7 (C-23), 27.2 (C-27), 25.9 (C-30), 23.7 (C-2), 22.9 (C-11), 21.6
(C-16), 18.6 (-CH2), 18.3 (C-6), 17.5 (-CH2), 17.1 (C-26), 15.6 (C-24), 15.4 (C-25). HRMS (ESI):
m/z calculated for C38H61NO3S2 [M+H]+: 644.4171. Found: 644.4116.

[2-((2,2-dimethylpyrrolidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3c).
To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), 2,2-dimethylpyrrolidine (1.0 mmol, 120 µL) was slowly added at 0 ◦C, and the
reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2
(0.4 mmol, 225.9 mg) was added dropwise to the resulting mixture. The reaction mixture
was stirred for 12 h at room temperature, then quenched with ice water (15.0 mL), and
the insoluble material was removed by a Buchner funnel. After removal of the solvent,
the residue was dissolved in ethyl acetate (15.0 mL). To the resulting solution was added
water (15.0 mL), the organic layer was separated, and the aqueous layer was extracted
with ethyl acetate (15.0 mL × 2). The organic solutions were combined and dried over
anhydrous Na2SO4. After removal of the solvent, the residue was submitted to column
chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl acetate (10/1
in v/v) as eluents to give 3c (223.5 mg, 85% yield) as a white solid. 1H NMR (400 MHz,
CDCl3): δ 5.30 (s, 1H, H-12), 4.26 (m, 2H, -OCH2C-), 3.83 (t, J = 6.8 Hz, 1H, -NCH), 3.56 (m,
2H, -SCH2), 3.21 (m, 1H, -NCH), 2.87 (dd, J = 13.6, 3.7 Hz, 1H, H-18), 2.01 (m, 1H, -OH),
1.96 (m, 2H, -CH2), 1.88 (m, 3H, H-22, -CH, -CH2), 1.73 (s, 6H, 3 × -CH2), 1.63 (m, 8H,
4 × -CH2), 1.55 (m, 3H, -CH3), 1.46 (m, 3H, -CH3), 1.31 (m, 6H, 3 × -CH2), 1.16 (t, J = 5.6 Hz,
1H, H-9), 1.13 (s, 3H, -CH3), 1.04 (s, 1H, H-5), 0.98 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s,
6H, 2 × -CH3), 0.78 (s, 3H, -CH3), 0.73 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 191.4
(-CS2), 177.5 (C-28), 143.7 (C-13), 122.5 (C-12), 79.0 (C-3), 69.2 (-NCCH3CH3), 62.7 (-CO-), 55.2
(-NCH2), 53.8 (C-5), 47.6 (C-9), 46.7 (C-17), 45.8 (C-19), 43.3 (-CH2), 41.7 (C-14), 41.3 (C-18),
39.4 (C-8), 38.8 (C-1), 38.5 (C-4), 37.0 (C-10), 34.7 (-CS), 33.9 (C-29), 33.2 (C-22), 32.8 (C-21),
32.4 (C-7), 30.7 (C-20), 28.2 (C-15), 27.7 (C-23), 27.2 (C-27), 26.1 (-CH2), 25.9 (C-30), 24.8 (-CH2),
23.7 (C-2), 23.5 (C-11), 22.9 (C-16), 22.1 (-CH2), 18.4 (C-6), 17.1 (C-26), 15.7 (C-24), 15.4 (C-25).
HRMS (ESI): m/z calculated for C39H63NO3S2 [M+H]+: 658.4328. Found: 658.4303.

[2-((3-hydroxypyrrolidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid
(3d). To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and
THF (8.0 mL), 3-hydroxypyrrolidine (1.0 mmol, 81 µL) was slowly added at 0 ◦C, and the
reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2
(0.4 mmol, 224.7 mg) was added dropwise to the resulting mixture. The reaction mixture
was stirred for 12 h at room temperature, then quenched with ice water (15.0 mL), and
the insoluble material was removed by a Buchner funnel. After removal of the solvent,
the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the
resulting solution, the organic layer was separated, and the aqueous layer was extracted
with ethyl acetate (15.0 mL × 2). The organic solutions were combined and dried over
anhydrous Na2SO4. After removal of the solvent, the residue was submitted to column
chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl acetate (2/1
in v/v) as eluents to give 3d (180.7 mg, 70% yield) as a yellowish gel. 1H NMR (400 MHz,
CDCl3): δ 5.31 (s, 1H, H-12), 4.57 (m, 1H, -OH), 4.21 (m, 2H, -OCH2C-), 4.03 (m, 2H, -SCH2),
3.82 (m, 2H, -NCH2), 3.55 (m, 2H, -NCH2), 3.20 (m, 1H, H-3), 2.86 (d, J = 12.2 Hz, 1H, H-18),
2.15 (m, 1H, -OH), 2.05 (m, 2H, -CH2), 1.89 (m, 4H, 2 × -CH2), 1.67 (m, 6H, 3 × -CH2), 1.53
(m, 4H, 2 × -CH2), 1.33 (m, 7H, -CHOH, 3 × -CH2), 1.16 (t, J = 3.8 Hz, 1H, H-9), 1.13 (s,
3H, -CH3), 1.05 (s, 1H, H-5), 0.97 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (d, J = 2.3 Hz, 6H,
2 × -CH3), 0.77 (s, 3H, -CH3), 0.73 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 192.5
(-CS2), 177.7 (C-28), 143.5 (C-13), 122.5 (C-12), 79.0 (C-3), 70.7 (-COH), 68.8 (-NCH2CH), 63.2
(-NCH2), 62.5 (-CO-), 55.2 (C-5), 52.9 (-CH2), 48.6 (C-7), 47.6 (C-9), 46.8 (C-17), 45.8 (C-19),
41.7 (C-14), 41.3 (C-18), 39.3 (C-8), 38.7 (C-1), 38.5 (C-4), 37.0 (C-10), 35.0 (-CS), 33.8 (C-29),
32.9 (C-22), 32.4 (C-21), 30.7 (C-20), 28.1 (C-15), 27.7 (C-23), 27.1 (C-27), 25.9 (C-30), 23.7
(C-2), 23.4 (C-11), 22.9 (C-16), 18.3 (C-6), 17.1 (C-26), 15.7 (C-24), 15.4 (C-25). HRMS (ESI):
m/z calculated for C37H59NO4S2 [M+H]+: 646.3964. Found: 646.3917.
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[2-((3-(hydroxymethyl)pyrrolidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic
acid (3e). To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg),
and THF (8.0 mL), 3-(hydroxymethyl)pyrrolidine (1.0 mmol, 103 µL) was slowly added at
0 ◦C, and the reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0
mL) of 2 (0.4 mmol, 225.8 mg) was added dropwise to the resulting mixture. The reaction
mixture was stirred for 12 h at room temperature, then quenched with ice water (15.0 mL),
and the insoluble material was removed by a Buchner funnel. After removal of the solvent,
the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the
resulting solution, the organic layer was separated, and the aqueous layer was extracted
with ethyl acetate (15.0 mL × 2). The organic solutions were combined and dried over
anhydrous Na2SO4. After removal of the solvent, the residue was submitted to column
chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl acetate (1/1
in v/v) as eluents to give 3e (181.9 mg, 69% yield) as a yellowish gel. 1H NMR (400 MHz,
CDCl3): δ 5.30 (t, J = 3.2 Hz, 1H, H-12), 4.25 (m, 2H, -OCH2C-), 3.85 (m, 1H, -OH), 3.68
(m, 2H, -SCH2), 3.54 (m, 3H, -CH2OH, -NCH), 3.21 (m, 1H, H-3), 2.86 (dd, J = 13.7, 3.9
Hz, 1H, H-18), 2.55 (m, 1H, -NCH), 2.22 (m, 1H, -NCH), 2.08 (m, 1H, -NCH), 1.95 (m, 2H,
-CH2), 1.84 (m, 3H, -NCH2CH, -CH2), 1.70 (m, 1H, -OH), 1.63 (m, 6H, 2 × -CH3), 1.53 (m,
3H, -NCH2CH, -CH2), 1.42 (m, 3H, H-22, -CH, -CH2), 1.28 (m, 5H, H-22, -CH, 2 × -CH2),
1.21 (s, 1H, -CHCH2OH), 1.17 (t, J = 3.2 Hz, 1H, H-9), 1.13 (s, 3H, -CH3), 1.05 (s, 1H, H-5),
0.98 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 6H, 2 × -CH3), 0.77 (s, 3H, -CH3), 0.73 (s, 3H,
-CH3). 13C NMR (100 MHz, CDCl3): δ 192.0 (-CS2), 177.6 (C-28), 143.6 (C-13), 122.5 (C-12),
79.0 (C-3), 63.6 (-COH), 62.4 (-CO-), 57.5 (-NCH2CH), 55.2 (-C‘OH), 54.5 (-NC‘H2CH), 53.1
(-NCH2CH2), 50.1 (C-5), 47.6 (C-9), 46.8 (C-17), 45.8 (C-19), 41.7 (C-14), 41.3 (C-18), 39.5
(-CCH2OH), 39.3 (C-8), 38.7 (C-1), 38.5 (C-4), 37.0 (C-10), 35.0 (-CS), 33.8 (C-29), 33.1 (C-22),
32.7 (C-21), 32.4 (C-7), 31.5 (-NC‘H2CH2), 30.7 (C-20), 30.2 (-NCH2CH2), 28.4 (-C‘CH2OH),
28.1 (C-15), 27.7 (C-23), 27.1 (C-27), 26.6 (-C‘CH2OH), 25.9 (C-30), 23.7 (C-2), 23.4 (C-11),
22.9 (C-16), 18.3 (C-6), 17.1 (C-26), 15.7 (C-24), 15.4 (C-25). HRMS (ESI): m/z calculated for
C38H61NO4S2 [M+H]+: 660.4120. Found: 660.4069.

[2-((octahydro-1H-isoindole-2-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid
(3f). To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and
THF (8.0 mL), octahydro-1H-isoindole (1.0 mmol, 115 µL) was slowly added at 0 ◦C, and
the reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2
(0.4 mmol, 225.5 mg) was added dropwise to the resulting mixture. The reaction mixture
was stirred for 12 h at room temperature, then quenched with ice water (15.0 mL), and
the insoluble material was removed by a Buchner funnel. After removal of the solvent,
the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the
resulting solution, the organic layer was separated, and the aqueous layer was extracted
with ethyl acetate (15.0 mL × 2). The organic solutions were combined and dried over
anhydrous Na2SO4. After removal of the solvent, the residue was submitted to column
chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl acetate (10/1
in v/v) as eluents to give 3f (210.4 mg, 77% yield) as a yellowish gel. 1H NMR (400 MHz,
CDCl3): δ 5.20 (s, 1H, H-12), 4.18 (m, 2H, -OCH2C-), 3.76 (m, 2H, -SCH2), 3.52 (m, 4H, 2 ×
-NCH2), 3.10 (m, 1H, H-3), 2.77 (d, J = 11.0 Hz, 1H, H-18), 2.26 (m, 2H, -CH2), 2.09 (m, 1H,
-OH), 1.84 (m, 3H, H-22, -CH, -CH2), 1.52 (m, 8H, 4 × -CH2), 1.44 (m, 5H, H-22, -CH, 2 ×
-CH2), 1.30 (m, 8H, 4 × -CH2), 1.18 (m, 4H, 2 × -CH2), 1.07 (s, 1H, H-9), 1.04 (s, 3H, -CH3),
0.95 (s, 1H, H-5), 0.88 (s, 3H, -CH3), 0.83 (s, 3H, -CH3), 0.80 (s, 6H, 2 × -CH3), 0.67 (s, 3H,
-CH3), 0.64 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 192.3 (-CS2), 177.3 (C-28), 143.5
(C-13), 122.5 (C-12), 78.6 (C-3), 62.5 (-CO-), 58.9 (2 × -CH2), 55.2 (C-5), 54.5 (2 × -CH2), 47.5
(C-9), 46.6 (C-17), 45.7 (C-19), 41.6 (C-14), 41.2 (C-18), 39.3 (C-8), 38.7 (C-1), 37.6 (C-4), 36.9
(C-10), 35.8 (-CS), 34.9 (2 × -CH2), 33.8 (C-29), 33.1 (C-22), 32.7 (C-21), 32.3 (C-7), 30.6 (C-20),
28.1 (C-15), 27.7 (C-23), 27.1 (C-27), 26.9 (C-30), 25.9 (C-2), 25.6 (2 × -CH2), 23.6 (C-11),
22.6 (C-16), 18.3 (C-6), 17.1 (C-26), 15.7 (C-24), 15.3 (C-25). HRMS (ESI): m/z calculated for
C41H65NO3S2 [M+H]+: 684.4484. Found: 684.4430.
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[2-((isoindoline-2-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3g). To a mix-
ture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF (8.0 mL),
isoindoline (1.0 mmol, 113 µL) was slowly added at 0 ◦C, and the reaction mixture was
then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2 (0.4 mmol, 226.4 mg)
was added dropwise to the resulting mixture. The reaction mixture was stirred for 12 h at
room temperature, then quenched with ice water (15.0 mL), and the insoluble material was
removed by a Buchner funnel. After removal of the solvent, the residue was dissolved in ethyl
acetate (15.0 mL). Water (15.0 mL) was added to the resulting solution, the organic layer was
separated, and the aqueous layer was extracted with ethyl acetate (15.0 mL × 2). The organic
solutions were combined and dried over anhydrous Na2SO4. After removal of the solvent,
the residue was submitted to column chromatography on silica gel (200–300 mesh) using
petroleum ether and ethyl acetate (10/1 in v/v) as eluents to give 3g (243.9 mg, 90% yield) as
a yellowish solid. 1H NMR (400 MHz, CDCl3): δ 7.31 (m, 4H, Ar-H), 5.30 (t, J = 3.3 Hz, 1H,
H-12), 5.20 (s, 2H, -OCH2C-), 4.99 (s, 2H, -NCH2), 4.32 (m, 2H, -NCH2), 3.66 (m, 2H, -SCH2),
3.19 (m, 1H, H-3), 2.95 (m, 1H, -OH), 2.88 (dd, J = 13.7, 4.0 Hz, 1H, H-18), 1.85 (m, 2H, -CH2),
1.69 (m, 3H, H-22, -CH, -CH2), 1.54 (m, 6H, 3 × -CH2), 1.42 (m, 3H, H-22, -CH, -CH2), 1.23
(m, 6H, 3 × -CH2), 1.17 (t, J = 4.4 Hz, 1H, H-9), 1.12 (s, 3H, -CH3), 1.04 (s, 1H, H-5), 0.95 (s,
3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 3H, -CH3), 0.86 (s, 3H, -CH3), 0.74 (s, 3H, -CH3), 0.72 (s,
3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 192.7 (-CS2), 177.5 (C-28), 143.6 (C-13), 135.2 (Ph),
134.9 (Ph), 128.1 (Ph), 127.9 (Ph), 122.8 (Ph), 122.7 (Ph), 122.5 (C-12), 78.9 (C-3), 62.3 (-CO-), 60.5
(-NCH2), 55.7 (-NCH2), 55.1 (C-5), 47.5 (C-9), 46.7 (C-17), 45.8 (C-19), 41.6 (C-14), 41.3 (C-18),
39.3 (C-8), 38.7 (C-1), 38.4 (C-4), 37.0 (C-10), 35.3 (-CS), 33.8 (C-29), 33.1 (C-22), 32.7 (C-21),
32.4 (C-7), 30.7 (C-20), 28.1 (C-15), 27.7 (C-23), 27.1 (C-27), 25.9 (C-30), 23.6 (C-2), 23.4 (C-11),
22.9 (C-16), 18.2 (C-6), 17.1 (C-26), 15.5 (C-24), 15.3 (C-25). HRMS (ESI): m/z calculated for
C41H59NO3S2 [M+H]+: 678.4015. Found: 678.3996.

[2-((4-methylpiperidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3h).
To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), 4-methylpiperidine (1.0 mmol, 100 µL) was slowly added at 0 ◦C, and the reaction
mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2 (0.4 mmol,
224.6 mg) was added dropwise to the resulting mixture. The reaction mixture was stirred
for 12 h at room temperature, then quenched with ice water (15.0 mL), and the insoluble
material was removed by a Buchner funnel. After removal of the solvent, the residue was
dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the resulting solution,
the organic layer was separated, and the aqueous layer was extracted with ethyl acetate
(15.0 mL × 2). The organic solutions were combined and dried over anhydrous Na2SO4.
After removal of the solvent, the residue was submitted to column chromatography on
silica gel (200–300 mesh) using petroleum ether and ethyl acetate (10/1 in v/v) as eluents
to give 3h (199.8 mg, 76% yield) as a white solid. 1H NMR (400 MHz, CDCl3): δ 5.23 (s,
1H, H-12), 4.21 (m, 2H, -OCH2C-), 3.54 (m, 2H, -SCH2), 3.10 (m, 3H, -NCH2, H-3), 2.80 (d,
J = 12.2 Hz, 1H, H-18), 1.89 (m, 1H, -OH), 1.80 (m, 2H, -NCH2), 1.70 (m, 3H, H-22, -CH,
-CH2), 1.58 (m, 7H, -CHCH3, 3 × -CH2), 1.46 (m, 4H, 2 × -CH2), 1.33 (m, 5H, H-22, -CH,
2 × -CH2), 1.20 (m, 6H, 3 × -CH2), 1.10 (s, 1H, H-9), 1.06 (s, 3H, -CH3), 0.98 (s, 1H, H-5),
0.92 (s, 6H, 2 × -CH3), 0.86 (s, 3H, -CH3), 0.83 (s, 6H, 2 × -CH3), 0.71 (s, 3H, -CH3), 0.67 (s,
3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 194.8 (-CS2), 177.5 (C-28), 143.7 (C-13), 122.6
(C-12), 79.1 (C-3), 62.5 (-CO-), 55.3 (C-5), 53.6 (-NCH2, -NCH2), 47.7 (C-9), 46.8 (C-17), 45.9
(C-19), 41.8 (C-14), 41.4 (C-18), 39.4 (C-8), 38.8 (C-1), 38.5 (C-4), 37.1 (C-10), 35.8 (-CS), 34.0
(C-29), 33.2 (-NCH2CH2, -NCH2CH2), 33.1 (C-22), 32.8 (C-21), 32.5 (C-7), 31.0 (-CCH3), 30.8
(C-20), 28.2 (C-15), 27.8 (C-23), 27.3 (C-27), 26.0 (C-30), 23.7 (C-2), 23.5 (C-11), 23.0 (C-16),
21.4 (-CH3), 18.4 (C-6), 17.2 (C-26), 15.7 (C-24), 15.4 (C-25). HRMS (ESI): m/z calculated for
C39H63NO3S2 [M+H]+: 658.4328. Found: 658.4275.

[2-((4-hydroxypiperidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3i).
To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), 4-hydroxypiperidine (1.0 mmol, 103.5 mg) was slowly added at 0 ◦C, and the
reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2
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(0.4 mmol, 225.4 mg) was added dropwise to the resulting mixture. The reaction mixture
was stirred for 12 h at room temperature, then quenched with ice water (15.0 mL), and
the insoluble material was removed by a Buchner funnel. After removal of the solvent,
the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the
resulting solution, the organic layer was separated, and the aqueous layer was extracted
with ethyl acetate (15.0 mL × 2). The organic solutions were combined and dried over
anhydrous Na2SO4. After removal of the solvent, the residue was submitted to column
chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl acetate (1/1
in v/v) as eluents to give 3i (184.6 mg, 70% yield) as a yellow gel. 1H NMR (400 MHz,
CDCl3): δ 5.50 (s, 1H, -OH), 5.30 (s, 1H, H-12), 4.60 (s, 1H, -CHOH), 4.28 (m, 2H, -SCH2),
3.61 (m, 2H, -NCH2), 3.21 (m, 1H, H-3), 3.08 (s, 2H, -NCH2), 2.87 (d, J = 11.0 Hz, 1H, H-18),
2.00 (m, 1H, -OH), 1.87 (s, 2H, -CH2), 1.76 (m, 3H, H-22, -CH, -CH2), 1.62 (m, 6H, 3 × -CH2),
1.53 (m, 5H, H-22, -CH, 2 × -CH2), 1.42 (m, 4H, 2 × -CH2), 1.27 (m, 6H, 3 × -CH2), 1.16 (t,
J = 3.7 Hz, 1H, H-9), 1.13 (s, 3H, -CH3), 1.04 (s, 1H, H-5), 0.98 (s, 3H, -CH3), 0.93 (s, 3H,
-CH3), 0.90 (s, 6H, 2 × -CH3), 0.77 (s, 3H, -CH3), 0.74 (s, 3H, -CH3). 13C NMR (100 MHz,
CDCl3): δ 194.6 (-CS2), 177.4 (C-28), 143.6 (C-13), 122.5 (C-12), 78.9 (C-3), 62.4 (-CO-), 55.2
(C-5), 47.6 (C-9), 46.7 (C-17), 45.8 (C-19), 41.7 (C-14), 41.3 (C-18), 39.4 (C-8), 38.8 (C-1), 38.5
(C-4), 37.0 (C-10), 35.7 (-CS), 33.9 (C-29), 33.1 (C-22), 32.8 (C-21), 32.4 (C-7), 31.0 (-COH), 30.7
(C-20), 28.1 (C-15), 27.7 (C-23), 27.2 (C-27), 26.9 (-NCH2, -NCH2), 25.9 (C-30), 23.7 (C-2), 23.4
(C-11), 22.9 (C-16), 21.3 (-NCH2CH2, -NCH2CH2), 18.4 (C-6), 17.1 (C-26), 15.6 (C-24), 15.4
(C-25). HRMS (ESI): m/z calculated for C38H61NO4S2 [M+H]+: 660.4120. Found: 660.4080.

[2-((4-(hydroxymethyl)piperidine-1-carbonothioyl)thio)-ethyl] 3-hydroxy-12-en-28-oic
acid (3j). To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg),
and THF (8.0 mL), 4-(hydroxymethyl)piperidine (1.0 mmol, 115.3 mg) was slowly added
at 0 ◦C, and the reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution
(4.0 mL) of 2 (0.4 mmol, 225.9 mg) was added dropwise to the resulting mixture. The
reaction mixture was stirred for 12 h at room temperature, then quenched with ice water
(15.0 mL), and the insoluble material was removed by a Buchner funnel. After removal
of the solvent, the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was
added to the resulting solution, the organic layer was separated, and the aqueous layer
was extracted with ethyl acetate (15.0 mL × 2). The organic solutions were combined and
dried over anhydrous Na2SO4. After removal of the solvent, the residue was submitted
to column chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl
acetate (2/1 in v/v) as eluents to give 3j (199.3 mg, 74% yield) as a yellow gel. 1H NMR
(400 MHz, CDCl3): δ 5.57 (s, 1H, -CHCH2OH), 5.31 (s, 1H, H-12), 4.64 (s, 1H, -CHOH), 4.26
(m, 2H, -OCH2C-), 3.60 (m, 2H, -SCH2), 3.51 (m, 2H, -NCH2), 3.21 (m, 2H, -NCH2), 3.13 (m,
1H, H-3), 2.86 (dd, J = 13.5, 3.7 Hz, 1H, H-18), 1.96 (m, 1H, -OH), 1.91 (m, 2H, -CH2), 1.87
(m, 3H, -OH, -CH2), 1.63 (m, 6H, 3 × -CH2), 1.52 (m, 5H, -CHOH, 2 × -CH2), 1.38 (m, 6H,
3 × -CH2), 1.27 (m, 4H, 2 × -CH2), 1.16 (t, J = 4.4 Hz, 1H, H-9), 1.13 (s, 3H, -CH3), 1.05 (s,
1H, H-5), 0.98 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 6H, 2 × -CH3), 0.77 (s, 3H, -CH3),
0.73 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 194.8 (-CS2), 177.5 (C-28), 143.6 (C-13),
122.5 (C-12), 78.9 (C-3), 66.5 (-CH2OH), 62.4 (-CO-), 55.2 (C-5), 47.6 (C-9), 46.7 (C-17), 45.8
(C-19), 41.6 (C-14), 41.3 (C-18), 39.3 (C-8), 38.7 (C-1), 38.5 (C-4), 38.4 (-NCH2, -NCH2), 37.0
(C-10), 36.6 (-NCH2CH2, -NCH2CH2), 35.6 (-CS), 33.8 (C-29), 33.1 (C-22), 32.7 (C-21), 32.4
(C-7), 31.5 (-CCH2OH), 30.7 (C-20), 28.1 (C-15), 27.7 (C-23), 27.1 (C-27), 25.9 (C-30), 23.6
(C-2), 23.4 (C-11), 22.9 (C-16), 18.3 (C-6), 17.1 (C-26), 15.6 (C-24), 15.3 (C-25). HRMS (ESI):
m/z calculated for C39H63NO4S2 [M+H]+: 674.4277. Found: 674.4230.

[2-((2-(2-hydroxyethyl)piperidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid
(3k). To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and
THF (8.0 mL), 2-(2-hydroxyethyl)piperidine (1.0 mmol, 128.1 mg) was slowly added at 0 ◦C,
and the reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of
2 (0.4 mmol, 225.6 mg) was added dropwise to the resulting mixture. The reaction mixture
was stirred for 12 h at room temperature, then quenched with ice water (15.0 mL), and the
insoluble material was removed by a Buchner funnel. After removal of the solvent, the residue
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was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the resulting solution,
the organic layer was separated, and the aqueous layer was extracted with ethyl acetate
(15.0 mL × 2). The organic solutions were combined and dried over anhydrous Na2SO4. After
removal of the solvent, the residue was submitted to column chromatography on silica gel
(200–300 mesh) using petroleum ether and ethyl acetate (2/1 in v/v) as eluents to give 3k
(200.7 mg, 73% yield) as a yellowish gel. 1H NMR (400 MHz, CDCl3): δ 5.93 (m, 1H, -OH), 5.30
(t, J = 3.3 Hz, 1H, H-12), 4.55 (m, 1H, -CHOH), 4.28 (m, 2H, -OCH2C-), 3.62 (m, 3H, -CHOH,
-SCH2), 3.39 (m, 1H, H-3), 3.16 (m, 3H, -NCH2, -NCH), 2.87 (dd, J = 13.7, 3.9 Hz, 1H, H-18),
2.14 (m, 1H, -OH), 1.95 (m, 2H, -CH2), 1.87 (m, 3H, -CHCH2CH2OH, H-22, -CH), 1.79 (m, 1H,
H-22, -CH), 1.70 (m, 6H, 3 × -CH2), 1.59 (m, 6H, 3 × -CH2), 1.53 (m, 4H, 2 × -CH2), 1.38 (m,
6H, 3 × -CH2), 1.17 (t, J = 4.3 Hz, 1H, H-9), 1.13 (s, 3H, -CH3), 1.05 (s, 1H, H-5), 0.98 (s, 3H,
-CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 6H, 2 × -CH3), 0.77 (s, 3H, -CH3), 0.74 (s, 3H, -CH3). 13C
NMR (100 MHz, CDCl3): δ 196.4 (-CS2), 177.4 (C-28), 143.5 (C-13), 122.5 (C-12), 78.8 (C-3), 58.1
(-CO-), 56.0 (-NCH), 55.2 (C-5), 47.6 (C-9), 46.7 (C-17), 46.0 (C-19), 45.8 (-CH2OH), 41.6 (C-14),
41.3 (C-18), 39.3 (C-8), 38.7 (C-1), 38.5 (C-4), 37.0 (C-10), 35.6 (-CS), 33.8 (C-29), 33.1 (C-22), 32.9
(C-21), 32.7 (C-7), 32.4 (-NCH2), 30.7 (C-20), 29.3 (-CH2CH2OH), 28.1 (C-15), 27.7 (C-23), 27.1
(C-27), 25.9 (C-30), 25.8 (-NCHCH2), 23.6 (C-2), 23.4 (C-11), 22.9 (C-16), 19.2 (-NCH2CH2CH2),
18.3 (C-6), 17.1 (C-26), 17.1 (-NCH2CH2), 15.6 (C-24), 15.3 (C-25). HRMS (ESI): m/z calculated
for C40H65NO4S2 [M+H]+: 688.4433. Found: 688.4418.

[2-((4-(2-hydroxyethyl)piperidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic
acid (3l). To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg),
and THF (8.0 mL), 4-(2-hydroxyethyl)piperidine (1.0 mmol, 130.8 mg) was slowly added
at 0 ◦C, and the reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution
(4.0 mL) of 2 (0.4 mmol, 226.4 mg) was added dropwise to the resulting mixture. The
reaction mixture was stirred for 12 h at room temperature, then quenched with ice water
(15.0 mL), and the insoluble material was removed by a Buchner funnel. After removal
of the solvent, the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was
added to the resulting solution, the organic layer was separated, and the aqueous layer
was extracted with ethyl acetate (15.0 mL × 2). The organic solutions were combined and
dried over anhydrous Na2SO4. After removal of the solvent, the residue was submitted
to column chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl
acetate (2/1 in v/v) as eluents to give 3l (195.2 mg, 71% yield) as a yellowish gel. 1H NMR
(400 MHz, CDCl3): δ 5.23 (t, J = 3.3 Hz, 1H, H-12), 4.53 (m, 1H, -OH), 4.21 (m, 2H, -OCH2C-),
3.95 (m, 2H, -SCH2), 3.75 (m, 2H, -NCH2), 3.53 (m, 2H, -NCH2), 3.14 (m, 1H, H-3), 2.79
(dd, J = 13.6, 3.7 Hz, 1H, H-18), 2.07 (m, 2H, -CH2), 1.90 (m, 1H, -OH), 1.81 (m, 3H, -CH2,
-NCH2CH2CH), 1.61 (m, 2H, -CH2), 1.56 (m, 6H, 3 × -CH2), 1.45 (m, 4H, 2 × -CH2), 1.25 (m,
6H, 3 × -CH2), 1.10 (t, J = 4.6 Hz, 1H, H-9), 1.06 (s, 3H, -CH3), 0.98 (s, 1H, H-5), 0.91 (s, 3H,
-CH3), 0.86 (s, 3H, -CH3), 0.83 (s, 6H, 2 × -CH3), 0.70 (s, 3H, -CH3), 0.67 (s, 3H, -CH3). 13C
NMR (100 MHz, CDCl3): δ 194.5 (-CS2), 177.5 (C-28), 143.5 (C-13), 122.5 (C-12), 77.0 (C-3),
62.4 (-CO-), 60.4 (-CH2OH), 59.6 (-NCH2), 55.2 (C-5), 52.3 (-NCH2), 50.4 (-CH2CH2OH),
47.5 (C-9), 46.7 (C-17), 45.7 (C-19), 41.6 (C-14), 41.2 (C-18), 39.3 (C-8), 38.7 (C-1), 38.5 (C-4),
36.9 (C-10), 35.6 (-CS), 33.8 (C-29), 33.1 (C-22), 32.7 (C-21), 32.4 (C-7), 31.6 (-NCH2CH2), 30.7
(C-20), 28.1 (C-15), 27.6 (C-23), 27.1 (C-27), 25.9 (C-30), 23.6 (C-2), 23.4 (C-11), 22.9 (C-16),
21.1 (-CHCH2CH2OH), 18.3 (C-6), 17.1 (C-26), 15.7 (C-24), 15.3 (C-25). HRMS (ESI): m/z
calculated for C40H65NO4S2 [M+H]+: 688.4433. Found: 688.4366.

[2-((4-phenylpiperidine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3m).
To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), 4-phenylpiperidine (1.0 mmol, 164.7 mg) was slowly added at 0 ◦C, and the
reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2
(0.4 mmol, 225.2 mg) was added dropwise to the resulting mixture. The reaction mixture
was stirred for 12 h at room temperature, then quenched with ice water (15.0 mL), and
the insoluble material was removed by a Buchner funnel. After removal of the solvent,
the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the
resulting solution, the organic layer was separated, and the aqueous layer was extracted
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with ethyl acetate (15.0 mL × 2). The organic solutions were combined and dried over
anhydrous Na2SO4. After removal of the solvent, the residue was submitted to column
chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl acetate
(10/1 in v/v) as eluents to give 3m (253.2 mg, 88% yield) as a yellowish gel. 1H NMR
(400 MHz, CDCl3): δ 7.31 (m, 2H, Ar-H), 7.21 (m, 3H, Ar-H), 5.30 (t, J = 3.3 Hz, 1H, H-12),
4.32 (m, 2H, -OCH2C-), 3.63 (m, 2H, -SCH2), 3.20 (m, 3H, H-3, -NCH2), 2.88 (m, 2H, H-18,
-NCH2CH2CH), 1.99 (m, 1H, -OH), 1.96 (m, 2H, -CH2), 1.88 (m, 3H, H-22, -CH, -CH2), 1.64
(m, 8H, 2 × -NCH2, 2 × -CH2), 1.51 (m, 3H, H-22, -CH, -CH2), 1.44 (m, 4H, 2 × -NCH2),
1.28 (m, 6H, 3 × -CH2), 1.17 (t, J = 3.6 Hz, 1H, H-9), 1.13 (s, 3H, -CH3), 1.05 (s, 1H, H-5), 0.97
(s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 3H, -CH3), 0.89 (s, 3H, -CH3), 0.76 (s, 3H, -CH3),
0.75 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 195.1 (-CS2), 177.5 (C-28), 144.3 (Ph),
143.6 (C-13), 128.7 (Ph), 126.8 (Ph), 122.6 (C-12), 78.9 (C-3), 62.4 (-CO-), 55.2 (C-5), 47.6 (C-9),
46.8 (C-17), 45.8 (C-19), 42.6 (-NCH2), 41.7 (C-14), 41.3 (C-18), 39.4 (C-8), 38.8 (C-1), 38.5
(C-4), 37.0 (C-10), 35.9 (-CS), 34.7 (-NCH2CH2CH), 33.9 (C-29), 33.2 (C-22), 32.8 (C-21), 32.4
(C-7), 30.7 (C-20), 28.2 (C-15), 27.7 (C-23), 27.2 (C-27), 27.0 (-NCH2CH2), 25.9 (C-30), 25.3
(-NCH2CH2), 23.7 (C-2), 23.5 (C-11), 23.0 (C-16), 18.4 (C-6), 17.2 (C-26), 15.7 (C-24), 15.4
(C-25). HRMS (ESI): m/z calculated for C44H65NO3S2 [M+H]+: 720.4484. Found: 720.4450.

[2-((4-methylpiperazine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3n). To
a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), 4-methylpiperazine (1.0 mmol, 112 µL) was slowly added at 0 ◦C, and the reaction
mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2 (0.4 mmol,
225.0 mg) was added dropwise to the resulting mixture. The reaction mixture was stirred for
12 h at room temperature, then quenched with ice water (15.0 mL), and the insoluble material
was removed by a Buchner funnel. After removal of the solvent, the residue was dissolved in
ethyl acetate (15.0 mL). Water (15.0 mL) was added to the resulting solution, the organic layer
was separated, and the aqueous layer was extracted with ethyl acetate (15.0 mL × 2). The
organic solutions were combined and dried over anhydrous Na2SO4. After removal of the
solvent, the residue was submitted to column chromatography on silica gel (200–300 mesh)
using petroleum ether and ethyl acetate (1/4 in v/v) as eluents to give 3n (234.3 mg, 89%
yield) as a yellowish gel. 1H NMR (400 MHz, CDCl3): 5.30 (t, J = 3.3 Hz, 1H, H-12), 4.36 (s,
2H, -OCH2C-), 4.28 (m, 2H, -NCH2), 3.96 (s, 2H, -NCH2), 3.61 (m, 2H, -SCH2), 3.21 (m, 1H,
H-3), 2.87 (dd, J = 13.6, 4.0 Hz, 1H, H-18), 2.50 (s, 4H, 2 × -NCH2), 2.34 (s, 3H, -CH3), 1.97
(m, 1H, -OH), 1.87 (m, 2H, -CH2), 1.64 (m, 6H, 3 × -CH2), 1.53 (m, 3H, H-22, -CH, -CH2), 1.40
(m, 3H, H-22, -CH, -CH2), 1.27 (m, 6H, 3 × -CH2), 1.16 (t, J = 4.3 Hz, 1H, H-9), 1.13 (s, 3H,
-CH3), 1.05 (s, 1H, H-5), 0.98 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 6H, 2 × -CH3), 0.78 (s,
3H, -CH3), 0.73 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 195.9 (-CS2), 177.4 (C-28), 143.6
(C-13), 122.5 (C-12), 78.9 (C-3), 62.3 (-CO-), 55.2 (C-5), 54.4 (-NCH2), 47.6 (C-9), 46.7 (C-17), 46.4
(-CH2CH2), 45.8 (C-19), 45.6 (-NCH3), 41.7 (C-14), 41.3 (C-18), 39.3 (C-8), 38.7 (C-1), 38.4 (C-4),
37.0 (C-10), 35.6 (-CS), 33.8 (C-29), 33.1 (C-22), 32.7 (C-21), 32.4 (C-7), 30.7 (C-20), 28.1 (C-15),
27.7 (C-23), 27.2 (C-27), 25.9 (C-30), 23.6 (C-2), 23.4 (C-11), 22.9 (C-16), 18.3 (C-6), 17.1 (C-26),
15.6 (C-24), 15.3 (C-25). HRMS (ESI): m/z calculated for C38H62N2O3S2 [M+H]+: 659.4280.
Found: 659.4239.

[2-((4-(2-hydroxyethyl)piperazine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic
acid (3o). To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg),
and THF (8.0 mL), 4-(2-hydroxyethyl)piperazine (1.0 mmol, 123 µL) was slowly added at
0 ◦C, and the reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution
(4.0 mL) of 2 (0.4 mmol, 224.9 mg) was added dropwise to the resulting mixture. The
reaction mixture was stirred for 12 h at room temperature, then quenched with ice water
(15.0 mL), and the insoluble material was removed by a Buchner funnel. After removal
of the solvent, the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was
added to the resulting solution, the organic layer was separated, and the aqueous layer was
extracted with ethyl acetate (15.0 mL × 2). The organic solutions were combined and dried
over anhydrous Na2SO4. After removal of the solvent, the residue was submitted to column
chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl acetate (1/5
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in v/v) as eluents to give 3o (195.5 mg, 71% yield) as a yellowish gel. 1H NMR (400 MHz,
CDCl3): δ 5.30 (t, J = 3.1 Hz, 1H, H-12), 4.33 (s, 1H, -NCH), 4.28 (m, 2H, -OCH2C-), 3.99 (s,
1H, -NCH), 3.69 (m, 2H, -NCH2), 3.61 (m, 2H, -SCH2), 3.21 (m, 1H, H-3), 2.86 (dd, J = 13.7,
4.1 Hz, 1H, H-18), 2.63 (t, J = 5.2 Hz, 4H, 2 × -NCH2), 2.61 (s, 1H, -OH), 1.97 (m, 1H, -OH),
1.88 (m, 2H, -CH2), 1.66 (m, 2H, -CH2), 1.60 (m, 5H, H-22, -CH, 2 × -CH2), 1.53 (m, 4H, 2 ×
-CH2), 1.43 (m, 3H, H-22, -CH, -CH2), 1.33 (m, 4H, 2 × -CH2), 1.27 (m, 4H, 2 × -CH2), 1.16
(t, J = 4.4 Hz, 1H, H-9), 1.13 (s, 3H, -CH3), 1.05 (s, 1H, H-5), 0.98 (s, 3H, -CH3), 0.93 (s, 3H,
-CH3), 0.90 (s, 6H, 2 × -CH3), 0.77 (s, 3H, -CH3), 0.73 (s, 3H, -CH3). 13C NMR (100 MHz,
CDCl3): δ 196.1 (-CS2), 177.5 (C-28), 143.6 (C-13), 122.5 (C-12), 79.0 (C-3), 62.3 (-CO-), 59.1
(-NCH2CH2OH), 57.9 (-NCH2CH2OH), 55.2 (C-5), 52.3 (-NCH2CH2), 47.6 (C-9), 46.8 (C-17),
45.8 (C-19), 41.7 (C-14), 41.3 (C-18), 39.4 (C-8), 38.8 (C-1), 38.5 (C-4), 37.0 (C-10), 35.7 (-CS),
33.9 (C-29), 33.1 (C-22), 32.4 (C-21), 31.5 (C-7), 30.7(-NCH2CH2), 30.2 (C-20), 28.1 (C-15),
27.7 (C-23), 27.2 (C-27), 25.9 (C-30), 23.7 (C-2), 23.4 (C-11), 22.9 (C-16), 18.4 (C-6), 17.1 (C-26),
15.6 (C-24), 15.4 (C-25). HRMS (ESI): m/z calculated for C39H64N2O4S2 [M+H]+: 689.4386.
Found: 689.4336.

[2-((4-phenylpiperazine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3p).
To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), 4-phenylpiperazine (1.0 mmol, 150 µL) was slowly added at 0 ◦C, and the reaction
mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2 (0.4 mmol,
226.7 mg) was added dropwise to the resulting mixture. The reaction mixture was stirred
for 12 h at room temperature, then quenched with ice water (15.0 mL), and the insoluble
material was removed by a Buchner funnel. After removal of the solvent, the residue was
dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the resulting solution,
the organic layer was separated, and the aqueous layer was extracted with ethyl acetate
(15.0 mL × 2). The organic solutions were combined and dried over anhydrous Na2SO4.
After removal of the solvent, the residue was submitted to column chromatography on
silica gel (200–300 mesh) using petroleum ether and ethyl acetate (1/5 in v/v) as eluents
to give 3p (247.8 mg, 86% yield) as a yellowish solid. 1H NMR (400 MHz, CDCl3): δ 7.30
(m, 2H, Ar-H), 6.93 (m, 3H, Ar-H), 5.30 (t, J = 3.2 Hz, 1H, H-12), 4.49 (s, 2H, -OCH2C-),
4.29 (m, 2H, -NCH2), 4.10 (m, 2H, -NCH2), 3.64 (m, 2H, -SCH2), 3.30 (t, J = 4.9 Hz, 4H, 2 ×
-NCH2), 3.20 (m, 1H, H-3), 2.87 (dd, J = 13.6, 3.9 Hz, 1H, H-18), 1.97 (m, 1H, -OH), 1.88 (m,
2H, -CH2), 1.67 (m, 4H, 2 × -CH2), 1.58 (m, 4H, 2 × -CH2), 1.51 (m, 3H, H-22, -CH, -CH2),
1.35 (m, 7H, H-22, -CH, 3 × -CH2), 1.17 (t, J = 4.0 Hz, 1H, H-9), 1.13 (s, 3H, -CH3), 1.05 (s,
1H, H-5), 0.97 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 3H, -CH3), 0.89 (s, 3H, -CH3), 0.76
(s, 3H, -CH3), 0.74 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 196.1 (-CS2), 177.4 (Ph),
150.2 (Ph), 143.6 (C-13), 129.3 (Ph), 122.5 (C-12), 120.6 (Ph), 116.3 (Ph), 78.9 (C-3), 62.2 (-CO-),
55.2 (C-5), 48.7 (-NCH2), 48.2 (-NCH2), 47.6 (C-9), 46.7 (C-17), 45.8 (C-19), 41.6 (C-14), 41.3
(C-18), 39.3 (C-8), 38.7 (C-1), 38.4 (C-4), 37.0 (C-10), 35.6 (-CS), 33.8 (C-29), 33.1 (C-22), 32.7
(C-21), 32.4 (C-7), 30.7 (C-20), 28.1 (C-15), 27.7 (C-23), 27.1 (C-27), 25.9 (C-30), 23.6 (C-2),
23.4 (C-11), 22.9 (C-16), 18.3 (C-6), 17.1 (C-26), 15.6 (C-24), 15.3 (C-25). HRMS (ESI): m/z
calculated for C43H64N2O3S2 [M+H]+: 721.4437. Found: 721.4411.

[2-((4-(o-tolyl)piperazine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3q).
To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), 4-(o-tolyl)piperazine (1.0 mmol, 177.9 mg) was slowly added at 0 ◦C, and the
reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2
(0.4 mmol, 225.9 mg) was added dropwise to the resulting mixture. The reaction mixture
was stirred for 12 h at room temperature, then quenched with ice water (15.0 mL), and
the insoluble material was removed by a Buchner funnel. After removal of the solvent,
the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the
resulting solution, the organic layer was separated, and the aqueous layer was extracted
with ethyl acetate (15.0 mL × 2). The organic solutions were combined and dried over
anhydrous Na2SO4. After removal of the solvent, the residue was submitted to column
chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl acetate (10/1
in v/v) as eluents to give 3q (246.7 mg, 84% yield) as a yellowish gel. 1H NMR (400 MHz,
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CDCl3): δ 7.17 (t, J = 7.9 Hz, 1H, Ar-H), 6.73 (m, 3H, Ar-H), 5.30 (t, J = 3.1 Hz, 1H, H-12),
4.46 (s, 2H, -OCH2C-), 4.27 (m, 2H, -NCH2), 4.10 (s, 2H, -NCH2), 3.64 (m, 2H, -SCH2), 3.28
(t, J = 5.0 Hz, 4H, 2 × -NCH2), 3.18 (m, 1H, H-3), 2.87 (dd, J = 13.6, 3.8 Hz, 1H, H-18), 2.32 (s,
3H, -CH3), 1.97 (m, 1H, -OH), 1.87 (m, 2H, -CH2), 1.69 (m, 4H, 2 × -CH2), 1.58 (m, 5H, H-22,
-CH, 2 × -CH2), 1.51 (m, 3H, H-22, -CH, -CH2), 1.35 (m, 6H, 3 × -CH2), 1.17 (t, J = 3.8 Hz,
1H, H-9), 1.13 (s, 3H, -CH3), 1.05 (s, 1H, H-5), 0.97 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s,
3H, -CH3), 0.89 (s, 3H, -CH3), 0.76 (s, 3H, -CH3), 0.74 (s, 3H, -CH3). 13C NMR (100 MHz,
CDCl3): δ 195.9 (-CS2), 177.4 (C-28), 150.2 (Ph), 143.5 (C-13), 139.0 (Ph), 129.1 (Ph), 122.5
(C-12), 121.5 (Ph), 117.1 (Ph), 113.4 (Ph), 78.8 (C-3), 62.3 (-CO-), 55.2 (C-5), 48.8 (-NCH2), 47.6
(C-9), 46.7 (C-17), 45.8 (C-19), 41.6 (C-14), 41.3 (C-18), 39.3 (C-8), 38.7 (C-1), 38.4 (C-4), 37.0
(C-10), 35.6 (-CS), 33.8 (C-29), 33.1 (C-22), 32.7 (C-21), 32.4 (C-7), 30.7 (C-20), 28.1 (C-15),
27.7 (C-23), 27.1 (C-27), 26.9 (-NCH2CH2), 25.9 (C-30), 23.6 (C-2), 23.4 (C-11), 22.9 (C-16),
21.8 (-CH3), 18.3 (C-6), 17.1 (C-26), 15.6 (C-24), 15.4 (C-25). HRMS (ESI): m/z calculated for
C44H66N2O3S2 [M+H]+: 735.4593. Found: 735.4540.

[2-((4-(m-tolyl)piperazine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3r). To
a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF (8.0 mL),
4-(m-tolyl)piperazine (1.0 mmol, 174 µL) was slowly added at 0 ◦C, and the reaction mixture
was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2 (0.4 mmol, 226.1 mg) was
added dropwise to the resulting mixture. The reaction mixture was stirred for 12 h at room
temperature, then quenched with ice water (15.0 mL), and the insoluble material was removed
by a Buchner funnel. After removal of the solvent, the residue was dissolved in ethyl acetate
(15.0 mL). Water (15.0 mL) was added to the resulting solution, the organic layer was separated,
and the aqueous layer was extracted with ethyl acetate (15.0 mL × 2). The organic solutions
were combined and dried over anhydrous Na2SO4. After removal of the solvent, the residue
was submitted to column chromatography on silica gel (200–300 mesh) using petroleum ether
and ethyl acetate (10/1 in v/v) as eluents to give 3r (235.0 mg, 80% yield) as a white solid. 1H
NMR (400 MHz, CDCl3): δ 7.16 (t, J = 7.9 Hz, 1H, Ar-H), 6.72 (m, 3H, Ar-H), 5.30 (s, 1H, H-12),
4.40 (s, 2H, -OCH2C-), 4.28 (m, 2H, -NCH2), 4.11 (m, 2H, -NCH2), 3.60 (m, 2H, -SCH2), 3.27 (m,
4H, 2 × -NCH2), 3.18 (m, 1H, H-3), 2.87 (dd, J = 13.5, 3.5 Hz, 1H, H-18), 2.32 (s, 3H, -CH3), 1.95
(m, 1H, -OH), 1.86 (m, 2H, -CH2), 1.62 (m, 7H, H-22, -CH, 3 × -CH2), 1.51 (m, 3H, H-22, -CH,
-CH2), 1.42 (m, 2H, -CH2), 1.32 (m, 6H, 3 × -CH2), 1.17 (t, J = 3.1 Hz, 1H, H-9), 1.13 (s, 3H, -CH3),
1.04 (s, 1H, H-5), 0.96 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 3H, -CH3), 0.89 (s, 3H, -CH3), 0.75
(s, 3H, -CH3), 0.74 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 195.9 (-CS2), 177.4 (C-28), 150.2
(Ph), 143.5 (C-13), 139.0 (Ph), 129.1 (Ph), 122.5 (C-12), 121.5 (Ph), 117.1 (Ph), 113.4 (Ph), 78.8 (C-3),
62.3 (-CO-), 55.2 (C-5), 48.8 (-NCH2), 47.6 (C-9), 46.7 (C-17), 45.8 (C-19), 41.6 (C-14), 41.3 (C-18),
39.3 (C-8), 38.7 (C-1), 38.4 (C-4), 37.0 (C-10), 35.6 (-CS), 33.8 (C-29), 33.1 (C-22), 32.7 (C-21), 32.4
(C-7), 30.7 (C-20), 28.1 (C-15), 27.7 (C-23), 27.1 (C-27), 26.9 (-NCH2CH2), 25.9 (C-30), 23.6 (C-2),
23.4 (C-11), 22.9 (C-16), 21.8 (-CH3), 18.3 (C-6), 17.1 (C-26), 15.6 (C-24), 15.4 (C-25). HRMS (ESI):
m/z calculated for C44H66N2O3S2 [M+H]+: 735.4593. Found: 735.4537.

[2-((4-(p-tolyl)piperazine-1-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3s).
To a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), 4-(p-tolyl)piperazine (1.0 mmol, 177.1 mg) was slowly added at 0 ◦C, and the
reaction mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2
(0.4 mmol, 225.8 mg) was added dropwise to the resulting mixture. The reaction mixture
was stirred for 12 h at room temperature, then quenched with ice water (15.0 mL), and
the insoluble material was removed by a Buchner funnel. After removal of the solvent,
the residue was dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the
resulting solution, the organic layer was separated, and the aqueous layer was extracted
with ethyl acetate (15.0 mL × 2). The organic solutions were combined and dried over
anhydrous Na2SO4. After removal of the solvent, the residue was submitted to column
chromatography on silica gel (200–300 mesh) using petroleum ether and ethyl acetate (10/1
in v/v) as eluents to give 3s (249.6 mg, 85% yield) as a white solid. 1H NMR (400 MHz,
CDCl3): δ 7.10 (d, J = 8.3 Hz, 2H, Ar-H), 6.84 (d, J = 8.5 Hz, 2H, Ar-H), 5.30 (t, J = 3.3 Hz,
1H, H-12), 4.48 (s, 2H, -NCH2), 4.30 (m, 2H, -OCH2C-), 4.10 (s, 2H, -NCH2), 3.64 (m, 2H,
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-SCH2), 3.23 (m, 4H, 2× -NCH2), 3.19 (d, J = 4.8 Hz, 1H, H-3), 2.87 (dd, J = 13.7, 4.0 Hz, 1H,
H-18), 2.28 (s, 3H, -CH3), 1.97 (m, 1H, -OH), 1.87 (m, 2H, 2× -CH2), 1.65 (m, 6H, 3× -CH2),
1.50 (m, 4H, 2× -CH2), 1.40 (m, 4H, 2× -CH2), 1.29 (m, 4H, 2× -CH2) 1.17 (t, J = 4.1 Hz, 1H,
H-9), 1.13 (s, 3H, -CH3), 1.05 (s, 1H, H-5), 0.97 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 3H,
-CH3), 0.89 (s, 3H, -CH3), 0.76 (s, 3H, -CH3), 0.74 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3):
δ 196.0 (-CS2), 177.4 (C-28), 148.1 (Ph), 143.6 (C-13), 130.3 (Ph), 129.8 (Ph), 122.5 (C-12), 116.8
(Ph), 78.9 (C-3), 62.3 (-CO-), 55.2 (C-5), 49.4 (-NCH2), 47.6 (C-9), 46.7 (C-17), 45.8 (C-19),
41.7 (C-14), 41.5 (C-18), 41.3 (-NCH2CH2), 39.3 (C-8), 38.7 (C-1), 38.4 (C-4), 37.0 (C-10), 35.6
(-CS), 33.8 (C-29), 33.1 (C-22), 32.7 (C-21), 32.4 (C-7), 30.7 (C-20), 28.1 (C-15), 27.7 (C-23), 27.1
(C-27), 25.9 (C-30), 23.6 (C-2), 23.4 (C-11), 22.9 (C-16), 20.5 (-CH3), 18.3 (C-6), 17.1 (C-26),
15.6 (C-24), 15.3 (C-25). HRMS (ESI): m/z calculated for C44H66N2O3S2 [M+H]+: 735.4593.
Found: 735.4562.

[2-((thiomorpholine-4-carbonothioyl)thio)ethyl] 3-hydroxy-12-en-28-oic acid (3t). To
a mixture of CS2 (1.8 mmol, 108 µL), anhydrous K3PO4 (0.8 mmol, 169.1 mg), and THF
(8.0 mL), thiomorpholine (1.0 mmol, 94 µL) was slowly added at 0 ◦C, and the reaction
mixture was then stirred at 0 ◦C for 0.5 h. Another THF solution (4.0 mL) of 2 (0.4 mmol,
225.1 mg) was added dropwise to the resulting mixture. The reaction mixture was stirred
for 12 h at room temperature, then quenched with ice water (15.0 mL), and the insoluble
material was removed by a Buchner funnel. After removal of the solvent, the residue was
dissolved in ethyl acetate (15.0 mL). Water (15.0 mL) was added to the resulting solution,
the organic layer was separated, and the aqueous layer was extracted with ethyl acetate
(15.0 mL × 2). The organic solutions were combined and dried over anhydrous Na2SO4.
After removal of the solvent, the residue was submitted to column chromatography on
silica gel (200–300 mesh) using petroleum ether and ethyl acetate (10/1 in v/v) as eluents
to give 3t (190.4 mg, 72% yield) as a white gel. 1H NMR (400 MHz, CDCl3): δ 5.29 (s, 1H,
H-12), 4.61 (s, 2H, -OCH2C-), 4.26 (m, 2H, -NCH2), 3.61 (m, 2H, -SCH2), 3.21 (m, 1H, H-3),
2.86 (dd, J = 13.5, 3.6 Hz, 1H, H-18), 2.75 (m, 4H, 2 × -SCH2), 1.97 (m, 1H, -OH), 1.88 (m, 2H,
-CH2), 1.63 (m, 6H, 3 × -CH2), 1.53 (m, 3H, H-22, -CH, -CH2), 1.42 (m, 4H, 2 × -CH2), 1.35
(m, 3H, H-22, -CH, -CH2), 1.27 (m, 4H, 2 × -CH2), 1.16 (t, J = 3.6 Hz, 1H, H-9), 1.13 (s, 3H,
-CH3), 1.04 (s, 1H, H-5), 0.98 (s, 3H, -CH3), 0.93 (s, 3H, -CH3), 0.90 (s, 6H, 2 × -CH3), 0.78
(s, 3H, -CH3), 0.73 (s, 3H, -CH3). 13C NMR (100 MHz, CDCl3): δ 195.9 (-CS2), 177.5 (C-28),
143.6 (C-13), 122.6 (C-12), 79.0 (C-3), 62.2 (-CO-), 55.3 (C-5), 47.7 (C-9), 46.8 (C-17), 45.8
(C-19), 41.7 (C-14), 41.3 (C-18), 39.4 (C-8), 38.8 (C-1), 38.5 (C-4), 37.1 (C-10), 35.8 (-CS), 33.9
(C-29), 33.2 (C-22), 32.8 (C-21), 32.5 (C-7), 30.8 (C-20), 28.2 (C-15), 27.8 (C-23), 27.2 (C-27),
27.0 (-NCH2), 25.9 (C-30), 23.7 (C-2), 23.5 (C-11), 23.0 (C-16), 18.4 (C-6), 17.2 (C-26), 15.7
(C-24), 15.4 (C-25), 14.2 (-SCH2). HRMS (ESI): m/z calculated for C37H59NO3S3 [M+H]+:
662.3735. Found: 662.3673.

3.3. Preliminary Biological Study

The in vitro cytotoxic activities of the compounds were evaluated by MTT assay against
Panc1, A549, Hep3B, Huh-7, HT-29, Hela, LO2. Cell lines were obtained from the Laboratory
of Molecular Pharmacology, Southwest Medical University. Briefly, different tumor cells grew
in DMEM medium except for A549, which used 1640 medium. Cells ((3–5) × 103 cells/well)
were harvested at the log phase of growth and seeded in 96-well plates. After 24 h incubation
at 37 ◦C in 5% CO2 to allow cell attachment, cultures were exposed to various concentrations
of the isolated compounds for 48 h. Finally, the MTT solution was added. Plates were further
incubated for 4 h at 37 ◦C after adding 150 µL/well of DMSO and shaking for 10 min on
the shaker platform. The plates were read in a 96-well plate reader at 490 nm wavelength.
The results were expressed as IC50 values, and were defined as the concentration at which
50% survival of cells was obtained. Fluorouracil, docetaxel, and cisplatin were co-assayed as
positive controls.
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4. Conclusions

In summary, we have synthesized a series of OA-dithiocarbamate derivatives in a two-
step protocol at room temperature, offering a readily accessible synthetic route to obtain
novel OA derivatives in high yields. Moreover, some of the compounds were shown to be
promising hit compounds, with remarkably improved broad-spectrum antiproliferative
activities compared to the natural product OA. Mechanistic insights of their activities on
certain tumor cell lines are currently underway in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28031414/s1. Figures S1–S42: 1H and 13C NMR spectrum
of 2, 3a–t; Figures S43–S63: HRMS spectrum of 2, 3a–t.
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