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Scatter plot matrices 
The scatter plot matrices of datasets used in this study were shown below. Diagonal 

components give the distribution of each feature. Other components give a correlation between 

the two features. 

 

 

Figure S1 The scatter plot matrix of the ORAC dataset [1]. 

 



3 
 

 
 

 

Figure S2 The scatter plot matrix of the SOAC dataset [2]. 
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Figure S3 The scatter plot matrix of the MTT dataset [3]. 
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Figure S4 The scatter plot matrix of the ABTS dataset [4]. 
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Figure S5 The scatter plot matrix of the DPPH dataset [5]. Since DPPH dataset was used to solve 

a classification task, target values were dropped at this figure. This dataset is composed of 97 

positive data and 101 negative data. 
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Figure S6 The scatter plot matrix of the dataset of phytochemicals sold by Tokyo Chemical 

Industry Co., Ltd. [6] 
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Figure S7 The scatter plot matrix of the dataset of compounds on Standard Tables of Food 

Composition in Japan [7]. 
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Partial correlation matrices 
Partial correlation matrices obtained from datasets used in the supervised learning were 

shown below as heatmaps. The partial correlation matrix 𝜌 is obtained from the inverse of the 

variance-covariance matrix Π   as shown in Equation S1. Each component 𝜌   represents the 

correlation between residuals obtained by sub-tracting the contributions of other features from the 

corresponding features. In this way, we confirmed that no dependency existed between the 

features. 𝜌 𝑝𝑝 𝑝    when Π 𝑝 ⋯ 𝑝⋮ ⋱ ⋮𝑝 ⋯ 𝑝    S1  

 

 

Figure S8 The partial correlation matrix of the ORAC dataset. 
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Figure S9 The partial correlation matrix of the SOAC dataset. 

 

 
Figure S10 The partial correlation matrix of the MTT dataset. 
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Figure S11 The partial correlation matrix of the ABTS dataset. 

 

 
Figure S12 The partial correlation matrix of the DPPH dataset. 
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Comparison of UMAP 
The two UMAP [8] parameters in this study, n_neighbors, and min_dist were uniformly set 

to 15 and 0.1, respectively. The former is a parameter that adjusts the ease of plot aggregation, and 

the latter is a parameter that sets the minimum distance between each plot. UMAP plots obtained 

from 200 molecular descriptors, extended connectivity fingerprints [9], and 15 features were 

shown in Figure S13-15, respectively. In Figure S13 and S14, since most compounds were clustered 

at the center, it is difficult to make a chemical interpretation from these two figures. Figure S15 

was obtained by using 15 features excluding features calculated with PM7 such as bond 

dissociation energy (BDE), ionization potential (IP), and proton affinity (PA).  

  

Figure S13 Distribution of antioxidants obtained from 200 molecular descriptors by using UMAP. 

It is generated by ChemPlot [10]. 
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Figure S14 Distribution of antioxidants obtained from extended connectivity fingerprints by 

using UMAP. It is generated by ChemPlot [10]. 
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Figure S15 Distribution of antioxidants obtained from 15 features by using UMAP. Bond 

dissociation energy (BDE), ionization potential (IP), and proton affinity (PA) were excluded from 

18 common features. 
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