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Abstract: (–)-Magellanine, (+)-magellaninone, and (+)-paniculatine are three natural products isolated
from the Lycopodium family that share a unique 6-5-5-6-fused tetracyclic diquinane core skeleton.
Several members of this family have potent s anti-inflammatory and acetylcholinesterase-inhibitory
properties and are under development for the treatment of Alzheimer’s and other neurodegenerative
diseases. Several research groups have undertaken the formal and total syntheses of this class of
natural products. This review highlights over 20 reported total syntheses of these three alkaloids and
the development of synthetic methods for the assembly of their core skeletons.
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1. Introduction

The lycopodium alkaloids, isolated from the club moss Lycopodium and named by
Linnaeus in 1753, represent a class of several-hundred natural products that were divided
by Backer into the following four sub-families based on their secondary metabolites [1]:
lycodine, lycopodine, fawcettimine, and miscellaneous (such as huperzine A and annotine)
(Figure 1). They have attractive biological and chemical properties. Some members of this
family display potent inhibitory activity against acetylcholinesterase, which is the key brain
enzyme responsible for the rapid degradation of the neurotransmitter acetylcholine [2,3].
This inhibition delays the hydrolysis of acetylcholine, thus increasing its levels in the
synaptic cleft. Therefore, many members of the lycopodium family have been explored for
the treatment of Alzheimer’s and other neurodegenerative diseases [1].
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Figure 1. Structures of lycodine, lycopodine, fawcettimine, huperzine A, and annotine.

The literature suggests that huperzine A (lycodine-type), annotine (miscellaneous-
type), and related compounds could be used for the treatment of inflammatory diseases
due to their ability to induce anti-inflammatory effects through the mitigation of cytokine
expression. Huperzine A inhibits cytoplasmic IκBα degradation and nuclear factor-KB
(NF-KB) translocation, while annotine multifunctionally decreases IL-2 and IL-6 cytokine
expression in dendritic cells, and, conversely, increases IL-10 secretion and promotes T-cell
maturation directed toward a Th2/Treg phenotype [4,5]. Similar anti-inflammatory effects
ameliorate the pathogenesis of experimental autoimmune encephalomyelitis by decreasing
inflammatory cell infiltration in the spinal cord through the inhibition of chemokine ligand
2 production [6]. Furthermore, studies show that lycopodium alkaloids confer an significant
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inherent inhibitory effect against foam cell formation, a characteristic of atherosclerotic
lesions [7].

The structures of (–)-magellanine (1) and (+)-magellaninone (2) of the fawcettimine
class, along with (+)-paniculatine (3) of the lycopodine class, are shown in Figure 2. These
three alkaloids were isolated from Austrolycopodium magellanicum and Austrolycopodium
paniculatum by Castillo and coworkers in the 1970s [8–11]. Structurally, compounds 1–3
share a 6-5-5-6-tetracyclic framework (ABCD), with a diquinane core (in red) and an N-
methyl piperidine ring (in blue). Magellanine and magellaninone share the ACD-ring but
vary in the oxidation state at C5. Paniculatine (3), on the other hand, comprises a unique
AB-ring with the same C5 as in 2. However, the A-ring consists of a 1,3-hydroxymethyl
substitution in a trans-relationship, thus differing from the enone found in 1 and 2.
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numbering of the core.

To the best of our knowledge, no significant biological studies have been conducted
on 1–3. However, several synthetic reports suggest that due to the structural similarities
between these three compounds and others in the lycopodium family, c could also possess
strong inhibitory activity against acetylcholinesterase, if not against other targets.

In this review, we wish to describe several reported syntheses of 1–3 through an initial
introduction of each report’s retrosynthesis, followed by a description of the synthetic route
designed for the construction of these complex natural products. Attention is paid to the
key steps of the total synthesis. In addition, we also briefly highlight several other notable
syntheses for the construction of the ring systems.

2. Early Synthetic Efforts from 1986–1993

Before describing the reported total syntheses of (–)-magellanine, (+)-magellaninone,
and (+)-paniculatine (1–3), it is worth highlighting some of the efforts before Overman’s
1993 landmark total synthesis due to their unique strategies in the context of constructing the
tetracyclic framework that defines these diquinane alkaloids. Of course, several other synthetic
studies have been reported throughout the years between 1993 and the present [12–14], some
of which will be briefly discussed in Section 4. In lieu of traditional retrosynthetic analyses for
these syntheses described in Section 2, a condensed scheme will be shown to highlight the
key transformations utilized in these strategies.

2.1. Paquette’s 1986 Synthesis

In 1986, Paquette and coworkers first reported a synthetic method to construct the
central 5-5-fused bicyclic core, fitted with appropriate functionalities that would later be
elaborated (Scheme 1) [15]. The model study was initiated by a 1,4-addition on cyclopen-
tenone 4 with 1,3-dithiane carbanion 5, liberated from its sodium salt [16]. A similar
chemistry had been developed by Heathcock and coworkers [17], wherein they utilized
the ketal for conjugate addition. Via the treatment of 6 with dilute HCl, a mixture of four
or more products emerged; the two of interest are shown above. For the two ß-hydroxy-
ketone enantiomers of 7, unique conditions were applied for their elimination to form 8.
For the (S)-enantiomer, a simple conversion of the hydroxy group to its mesylate followed
by elimination with triethylamine afforded 8 at an 82% yield. On the other hand, the
(R)-enantiomer underwent elimination through the Mitsunobu conditions [18], with PPh3
and DEAD, to afford 8 in 69% yield. This sequence results in pseudo-bicyclic pentanone 8
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in a 32–38% yield over the three steps. However, one drawback they had encountered was
that the α,ß-unsaturation in the indicated position is unfavored due to ring strain, similar to
that observed by Agosta and Wolff [19]. Via treatment with DBN, Paquette and coworkers
found that the double bond readily isomerizes to the ß,γ-position. This posed a hurdle that
would later be tackled in their 1993/94 synthesis, which is described in this review; the
enone functionality is pivotal to efficiently constructing the rest of molecules 1 and 2.
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Scheme 1. Paquette’s 1986 synthesis. HMPA = hexamethylphosphoramide. TEA = triethylamine.
DEAD = diethyl azodicarboxylate. THF = tetrahydrofuran.

2.2. Overman’s 1989 Synthesis

In 1989, Overman and coworkers, on the basis of their previous work involving a
cationic cyclization-pinacol rearrangement that was undertaken to construct oxygen hetero-
cycles [20,21], reported a “ring-enlarging cyclopentane annulation” sequence to construct
the 6-5-5-fused tricyclic ring system 14 found in 1–3 (Scheme 2A) [22]. This unique trans-
formation is initiated by 1,3-proton transfer, shown in 9, which subsequently undergoes
pinacol rearrangement (through intermediate 10) to form the exo-aldo-tetrahydrofuran
ring of 11. Dimethyl-acetal 12 exploits this chemistry to stereoselectively construct the
6-5-5-tricyclic core at an 80% yield over one step (Scheme 2B). The pinacol rearrangement
builds the northern cyclopentane ring as a single diastereomer, while the stereochemistry
of the methoxy group is influenced by the geometry of the silyl enol ether. The use of
the ß-isomer yields the α-methoxy as a single enantiomer, while the use of the α-silane
results in a 2:1 mixture of the α- and ß-appendages. Further oxidation is also exemplified
to form diketone 14. Similar to Paquette’s report, Overman and coworkers continued their
synthesis, which is examined later in this review, to achieve the first total synthesis of 1
and 2.
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Scheme 2. (A) Prins-pinacol rearrangement. (B) Overman’s 1989 strategy. TMS = trimethylsilyl.

2.3. Mehta’s 1987 and 1990 Syntheses

In 1987 and again in 1990, Mehta and coworkers reported their synthetic efforts
towards the construction of the carbon framework of 1–3. For their 1987 strategy [23],
readily accessible acetal 15 was alkylated via conjugate addition with an alkyl Grignard
reagent (Scheme 3). Consequently, a series of five steps was employed to construct the
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pseudo-tetracyclic scaffold of 17. First, 16 was converted to its corresponding enone via
a selenylation-selenoxide elimination sequence with the unsaturation resulting in the
southernmost C-C bond of the cyclopentanone ring. Wacker oxidation of the terminal
olefin to the methyl ketone was performed using Tsuji conditions [24], after which exposure
to basic conditions gave rise to an intramolecular Michael addition to construct the six-
membered ring. The resulting ketone was selectively capped through the Wittig conditions
to afford exo-methylene 17. This is a key handle that they envisioned would be required
for the synthesis of 1–3.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 25 
 

 

2.3. Mehta’s 1987 and 1990 Syntheses 

In 1987 and again in 1990, Mehta and coworkers reported their synthetic efforts 

towards the construction of the carbon framework of 1–3. For their 1987 strategy [23], 

readily accessible acetal 15 was alkylated via conjugate addition with an alkyl Grignard 

reagent (Scheme 3). Consequently, a series of five steps was employed to construct the 

pseudo-tetracyclic scaffold of 17. First, 16 was converted to its corresponding enone via a 

selenylation-selenoxide elimination sequence with the unsaturation resulting in the 

southernmost C-C bond of the cyclopentanone ring. Wacker oxidation of the terminal 

olefin to the methyl ketone was performed using Tsuji conditions [24], after which 

exposure to basic conditions gave rise to an intramolecular Michael addition to construct 

the six-membered ring. The resulting ketone was selectively capped through the Wittig 

conditions to afford exo-methylene 17. This is a key handle that they envisioned would be 

required for the synthesis of 1–3.  

 

 

Scheme 3. Mehta’s 1987 synthesis. THF = tetrahydrofuran. 

Several years later, Mehta’s group developed a new approach that used a highly 

constrained pentacyclic dione to construct the 5-5-5-fused tricyclic intermediate 20 as their 

key molecule to build the core tetracyclic scaffold (Scheme 4) [25]. First, over six steps, 

dione 18 was converted to ketone 19, which was then subjected to a thermally induced 

[2+2]-cycloreversion reaction under flash vacuum pyrolysis and a transposition of the 

enone to reveal 20 [26]. Over the course of the next four steps, the southern portion of 20 

was elaborated to construct the cyclohexanone moiety in 21, which, after another four 

steps, resulted in diketone 22, with the methyl-piperidine incorporated. The construction 

of the cyclohexanone ring is fairly similar to the aforementioned 1987 strategy, but differs 

at the last stage, wherein the ketone was kept intact as opposed to the Wittig route 

involving the capping of the ketone. The stereochemistry of 21 follows from the 

established literature that bicyclo[3.3.0]octanes predominantly react on the convex face, 

driven by the pseudo-axial proton, which is vicinal to the all-carbon quaternary center. 

With 22 in hand, Mehta and coworkers envisioned the completion of 1–3, albeit with no 

reported success (to the best our knowledge).  

 

 

Scheme 4. Mehta’s 1990 synthesis. 

2.4. Crimmins’ 1993 Synthesis 

Scheme 3. Mehta’s 1987 synthesis. THF = tetrahydrofuran.

Several years later, Mehta’s group developed a new approach that used a highly
constrained pentacyclic dione to construct the 5-5-5-fused tricyclic intermediate 20 as their
key molecule to build the core tetracyclic scaffold (Scheme 4) [25]. First, over six steps,
dione 18 was converted to ketone 19, which was then subjected to a thermally induced
[2+2]-cycloreversion reaction under flash vacuum pyrolysis and a transposition of the
enone to reveal 20 [26]. Over the course of the next four steps, the southern portion of 20
was elaborated to construct the cyclohexanone moiety in 21, which, after another four steps,
resulted in diketone 22, with the methyl-piperidine incorporated. The construction of the
cyclohexanone ring is fairly similar to the aforementioned 1987 strategy, but differs at the
last stage, wherein the ketone was kept intact as opposed to the Wittig route involving the
capping of the ketone. The stereochemistry of 21 follows from the established literature that
bicyclo[3.3.0]octanes predominantly react on the convex face, driven by the pseudo-axial
proton, which is vicinal to the all-carbon quaternary center. With 22 in hand, Mehta and
coworkers envisioned the completion of 1–3, albeit with no reported success (to the best
our knowledge).
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2.4. Crimmins’ 1993 Synthesis

In 1993, Crimmins and coworkers reported a cycloaddition strategy as a poten-
tial precursor for the complete or partial construction of the tetracyclic scaffold of 1–3
(Scheme 5) [27]. In their approach, carboxylic acid 23 was first transformed in a lengthy
but stereoselective 17-step synthesis to obtain 24. Consequently, a [2+2]-photoinduced
cycloaddition took place with irradiation in the near-UV range to afford 25 [28]. This
intramolecular cycloaddition is the first example of its kind that demonstrates asymmetric
induction directed by a stereocenter on a four-carbon tether [29,30]. With four stereo-
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centers, there are 16 conformations (eight chair and eight boat) in which the substrates
can interact. The anti-intermediate is primarily in a boat conformation, which places the
hydroxyl and methyl groups in the energetically favorable equatorial positions. However,
the syn-photosubstrate reacts in a chair confirmation, which puts the hydroxyl and methyl
groups in the axial positions. This gives rise to the mixture of diastereomers found in
this reaction, centered around the 4-6-fused ring system. Similar to Mehta, Crimmins and
coworkers envisioned that this strategy could be applied to the total synthesis of 1–3, but
no reports have been published to the best of our knowledge.
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3. Total Synthesis of Magellanine, Magellaninone, and Paniculatine (1–3)

This section describes the total syntheses of 1–3. Ten research groups’ studies reported
between 1993 and 2022 are highlighted.

3.1. Overman’s 1993 Synthesis of (–)-Magellanine and (+)-Magellaninone

Four years after their initial report, Overman and coworkers reported the first asym-
metric total synthesis of (–)-magellanine (1) and (+)-magellaninone (2) in 25 and 26 steps,
respectively [31]. As seen in the retrosynthesis (Scheme 6), they envisioned that the tetra-
cyclic skeleton of 1 and 2, outlined in 26, could be constructed by their previously developed
Prins-pinacol rearrangement of acetal 28 through oxonium intermediate 27. This trans-
formation was to be stereocontrolled so that Prins cyclization would occur on the convex
face of the cis-fused bicycle 27, as illustrated. It was thought that 28 was constructed from
the 1,2-addition of bicyclic vinyllithium 29 onto ketone 30; the latter traced back to an
enantiopure bicyclo[3.2.0]heptenone substrate 31.
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The synthesis commenced with the preparation of dimethylacetal 28 through five steps
(Scheme 7). This sequence, while not shown, includes a regioselective ring expansion of (+)-
31, as described by Cohen [32,33], and the conversion of the resulting α-methylthioketone
to a vinyl triflate, which was then converted to vinyl iodide with N-iodosuccinimide [34].
The iodide was lithiated and then added to cyclopentanone 30 (vide supra) which was
subsequently transformed to 28 through standard functional group manipulation protocols.
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Scheme 7. Overman’s synthesis. TES = triethylsilyl. DCM = dichloromethane. Jones oxidation =
CrO3, H+.

With enantiopure 28 in hand, the key Prins-pinacol rearrangement was executed.
This rearrangement occurs via the acid-catalyzed demethoxylation of acetal to form a
methoxycation, which then undergoes cyclization with the proximal olefin to complete the
Prins reaction. In the presence of an allylic silyl-ether, the Prins reaction can cascade into a
Pinacol rearrangement to eliminate the silyl group and form a ketone. The beauty of this
transformation is the establishment of five of the six stereocenters found in 1 and 2 with
complete stereocontrol throughout the sequence.

With the tetracyclic 6-5-5-5-fused skeleton constructed, the last major hurdle was the
construction of the piperidine from the cyclopentene ring. This was performed via the
oxidative cleavage of the double bond with osmium tetroxide [35], followed by double
reductive amination of the resulting di-aldehyde with a primary amine to afford 32 [36]. To
complete the total synthesis of 1 and 2, intermediate 32 was first transformed over three
steps to achieve 1, namely, through a Saegusa–Ito oxidation to install the α,ß-unsaturated
ketone [37]. Through this sequence, they were able obtain a separable mixture of 1 and 33
as C5-epimers, which, fortunately, could be oxidized with Jones conditions to afford 2 in
one step.

3.2. Paquette’s 1993/1994 Synthesis of (–)-Magellanine and (+)-Magellaninone

First in 1993 and later in 1994, Paquette and coworkers reported the total synthesis of
1 and 2 through a three-fold annulation strategy [38,39]. By examining the retrosynthesis
(Scheme 8), tetracyclic precursor 34 could be derived from 35 through a tandem vicinal
1,4-difunctionalization annulation initiated by a nitrogen-containing nucleophile [40]. The
six-membered ring in 35 was thought to be constructed from 36 through a dual Michael
ring annulation, encapsulating the three-fold annulation strategy. This was the method
of choice, as opposed to a more conventional Diels–Alder sequence, to obtain the correct
regioselectivity of the double bond and the oxygenated carbon atom. This retrosynthesis
scheme takes advantage of a reliable method to control stereochemistry at each step, with
the safety net of a kinetic resolution to resolve a mixture of enantiomers.
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To commence its synthesis (Scheme 9), ß-hydroxy ketone 37 was first mesylated and
eliminated to form the α,ß-unsaturated enone, to which α,ß-unsaturated keto-ester 42 was
added under basic conditions to afford pseudo-tricyclic 38 [41,42]. The stereochemistry of
the annulation results from two main factors: the presence of the ß-axial tertiary proton
in the diquinane scaffold that makes the same (bottom) face sterically unfavorable, and
the strong thermodynamic favorability of the 5-5-fused ring system towards being cis-
rather than trans-fused [43,44]. Thus, 42 is added onto the top face, which produces the
shown desired configuration. Enol 38 was then subjected to acidic conditions to promote
ß-elimination. This was followed by a Krapcho decarboxylation to yield enedione 39 [45].
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Scheme 9. Paquette’s 1993/94 synthesis. MsCl = mesyl = methanesulfonyl chloride. TEA = triethylamine.
THF = tetrahydrofuran. TsOH = tosylic = p-toluenesulfonic acid. DMF = N,N-dimethylformamide.
MOM = methoxymethyl.

With a reliable method to construct the pseudo-tricyclic scaffold with the proper func-
tionalities in place, a ten-step sequence was performed to construct tricyclic 40. While not
shown, this tedious stepwise process included: the conversion of a cyclohexanone moiety to
an α,ß-unsaturated, MOM-protected hydroxy group; the conversion of the 1,3-dithiane to a
MOM-protected alcohol; and then the careful transformation of the cyclopentenone ring to a
2-ethylnitrile methylester, resulting in intermediate 40. With 40 constructed, the piperidone
ring was constructed through an established protocol to afford 41. The use of NaBH4 and
Co(Cl)2 selectively reduces nitriles to their corresponding primary amines [46–48], which were
subjected to basic conditions to form the lactam and, subsequently, treated with methyliodide
to form the signature methylamide found in 1 and 2.

To complete the synthesis of 1, an eight-step sequence was performed. Among others,
a notable transformation was the conversion of the protected α,ß-unsaturated alcohol to
an ß-methyl enone, taking note of the new connectivity of the oxygen atoms. This allylic
rearrangement was performed to shift a secondary alcohol two carbons over, which was
then oxidized to form the ketone via Jones oxidation. With enedione 2 in hand, two steps
were performed to obtain 1, with one such step consisting of a hydride reduction, which
inadvertently formed the incorrect hydroxy stereocenter; however, conventional Mitsunobu
displacement and elimination resulted in epimerization [49].

3.3. Sha’s 1999 Synthesis of (+)-Paniculatine

In 1999, the third member of this sub-family of Lycopodium alkaloids, (+)-paniculatine,
was synthesized by Sha and coworkers for the first time [50]. This builds off their previous
work involving the utilization of α-carbonyl radical cyclization reactions to efficiently
construct complex natural products [51–53]. In their retrosynthetic analysis, they believed
that the piperidine ring of 3 could be constructed from a 1,4-addition of an acetate frag-
ment, followed by nitrogen insertion, utilizing methylamine as a linchpin (Scheme 10).
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Furthermore, tricyclic enone 43 was thought to be accessible from enedione 44, itself being
traced back to 45 via a tandem radical cyclization, to close the 5-5-fused diquinane core.
Iodide 45 could be simply stitched together with 1,4-addition of Grignard reagent 47 onto
enone 46 [54].
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Scheme 10. Sha’s retrosynthesis. Bn = benzyl. TMS = trimethylsilyl.

To commence their synthesis, Sha and coworkers constructed iodide 45 from 46
through the following procedure: Cu(I)-mediated 1,4-addition of 47 onto 46, followed
by trapping with TMSCl, and iodination with NaI/m-CPBA to yield 45 at a 67% yield
over two steps [55,56] (Scheme 11). This set the stage for their previously developed and
optimized tandem radical cyclization with Bu3SnH and AIBN to yield tricyclic intermediate
44 at an 82% yield with the correct stereochemistry. With enedione 44 in hand, a series
of 11 steps was utilized to construct enone 48 with a γ-TBS-silyl enol ether. Then, a
five-step sequence occurred to yield 50. First, the TBS-methyl ketene acetal underwent a
stereoselective Mukaiyama–Michael addition to enone 48 [57], followed by the removal
of the TBS group with acetic acid, and lastly Jones oxidation of the resulting primary
alcohol to the corresponding carboxylic acid. As expected, the 1,4-addition occurred on
the less-hindered face, which led to the construction of a carboxylic acid intermediate (not
shown here) at a 62% yield over three steps in the correct stereochemistry. From there, the
acylation of carboxylic acid 49 with oxalyl chloride and methylamine yielded amide 50,
which was then transformed through four steps to yield 3 in 23 longest linear steps.
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TMS = trimethylsilyl. Bn = benzyl. TBS = t-butyldimethylsilyl. THF = tetrahydrofuran. Jones
oxidation = CrO3, H+.
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3.4. Liao’s 2002 Synthesis of (±)-Magellanine

In 2002, Liao and coworkers disclosed a total synthesis of 1 as a racemic mixture [58].
As there was no graphically depicted retrosynthesis in the original paper, we have taken
the liberty to draw a brief scheme to explain their thought process (Scheme 12). First, 1
was thought to be traced back to ketone 51 through an intramolecular cyclization with
oxa-π-allyl Pd(II) intermediates and an oxidative cleavage/reductive amination sequence to
construct the piperidine core. Tricyclic 51 could be constructed from tetracyclic intermediate
52, which, in turn, originated from the manipulation of a Diels–Alder adduct formed by 53
and 54.
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Scheme 12. Liao ’s retrosynthesis in 2002.

After a thorough investigation of the conditions from their previous report [59], Liao
and coworkers set off to initiate a Diels–Alder-ODPM (oxa-di-π-methane) rearrangement
cascade reaction [60,61], which occurs through intermediate 57 (Scheme 13). This cascade
exploits the innate nature of each chemical reaction to stereoselectively construct the four
contiguous stereocenters at an early stage, whose result is intermediate 52. In addition,
the careful placement of an electron-withdrawing acetyl group further supplements this
transformation [62]. From there, a seven-step sequence was utilized to open the cyclo-
propane ring, stereoselectively form the secondary alcohol, and install an allyl side. With
intermediate 51 in hand, an intramolecular cyclization with oxa-π-allyl-Pd(II) intermediates
took place to afford tetracyclic enone 56 at a 60% yield over three steps.
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Scheme 13. Liao’s racemic synthesis of 1. DAIB = diacetoxyiodobenzene. LDA = lithium diisopropy-
lamide. TMSCl = trimethylsilyl chloride. THF = tetrahydrofuran. NMO = N-morpholine N-oxide.
DCM = dichloromethane. IPA = i-propyl alcohol.

With the ABC-ring system in place, the last piece of the puzzle was to form the D
ring. This was performed through oxidative cleavage with osmium tetroxide to cleave
the cyclopentene ring, and then double reductive amination to construct the piperidine
ring [36,63,64]. This racemic synthesis of 1 was completed in 14 steps at a 9% yield, thus
constituting a significant improvement to its predecessors.

3.5. Ishizaki’s 2005 Synthesis of (±)-Magellanine

In 2005, another report by Ishizaki and coworkers was published describing the formal
synthesis of racemic 1 [65]. Equipped with chemistry developed in their lab regarding
the intramolecular Pauson–Khand reaction of exocyclic enynes [66–72], they realized a
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novel means of constructing the ABC-rings of the magellanine-type diquinane alkaloids.
First, the piperidine moiety of 1 was thought to be derived from tricyclic enone 58, whose
diquinane 5-5-fused ring system could be constructed from the aforementioned Pauson–
Khand reaction of 59 (Scheme 14) [73]. The amino-enyne of 59 can be accessed from
carboxylic acid 60, for which the latter can come from the Ireland–Claisen rearrangement of
α,ß-unsaturated silyl enol ether 61. Lastly, 61 can be traced back to hydroxy enone 62 [74].

Molecules 2022, 27, x FOR PEER REVIEW 10 of 25 
 

 

 

Scheme 13. Liao’s racemic synthesis of 1. DAIB = diacetoxyiodobenzene. LDA = lithium 

diisopropylamide. TMSCl = trimethylsilyl chloride. THF = tetrahydrofuran. NMO = N-morpholine 

N-oxide. DCM = dichloromethane. IPA = i-propyl alcohol. 

With the ABC-ring system in place, the last piece of the puzzle was to form the D ring. 

This was performed through oxidative cleavage with osmium tetroxide to cleave the 

cyclopentene ring, and then double reductive amination to construct the piperidine ring 

[36,63,64]. This racemic synthesis of 1 was completed in 14 steps at a 9% yield, thus 

constituting a significant improvement to its predecessors.  

3.5. Ishizaki’s 2005 Synthesis of (±)-Magellanine  

In 2005, another report by Ishizaki and coworkers was published describing the 

formal synthesis of racemic 1 [65]. Equipped with chemistry developed in their lab 

regarding the intramolecular Pauson–Khand reaction of exocyclic enynes [66–72], they 

realized a novel means of constructing the ABC-rings of the magellanine-type diquinane 

alkaloids. First, the piperidine moiety of 1 was thought to be derived from tricyclic enone 

58, whose diquinane 5-5-fused ring system could be constructed from the aforementioned 

Pauson–Khand reaction of 59 (Scheme 14) [73]. The amino-enyne of 59 can be accessed 

from carboxylic acid 60, for which the latter can come from the Ireland–Claisen 

rearrangement of α,ß-unsaturated silyl enol ether 61. Lastly, 61 can be traced back to 

hydroxy enone 62 [74].  

 

 

Scheme 14. Ishizaki’s 2005 retrosynthesis. TIPS = triisopropylsilyl. Ac = acetate. Boc = t-

butoxycarbonyl. 

To prepare for their first key transformation, acetate 61 was first synthesized from 

hydroxy-enone 62 over three steps (Scheme 15). With 61 in hand, the Ireland–Claisen 

rearrangement occurred with a subsequent LiAlH4 reduction [14,74], which furnished 

primary alcohol 63 at a 70% yield, over two steps. Next, the installation of the alkyl chain 

was performed, which brought in a latent Boc-protected amine that could be subsequently 

adjusted, and 
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To prepare for their first key transformation, acetate 61 was first synthesized from
hydroxy-enone 62 over three steps (Scheme 15). With 61 in hand, the Ireland–Claisen
rearrangement occurred with a subsequent LiAlH4 reduction [14,74], which furnished
primary alcohol 63 at a 70% yield, over two steps. Next, the installation of the alkyl chain
was performed, which brought in a latent Boc-protected amine that could be subsequently
adjusted, and set up the 1,6-enyne for the Pauson–Khand annulation. After careful con-
sideration of the conditions, enyne 59 underwent Pauson–Khand annulation under cobalt
catalysis with a TMANO additive through the transition state that had been shown to
furnish tricyclic enone 58 at a 35% yield [75]. From there, the endgame was straightforward:
a series of functional group manipulations furnished 64, which was then transformed to
(±)-1 through Liao’s established condition.
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Scheme 15. Ishizaki’s 2005 synthesis. LDA = lithium diisopropylamide. HMPA = hexamethylphos-
phoramide. TBSCl = t-butyldimethylsilyl chloride. THF = tetrahydrofuran. TIPS = triisopropylsilyl.
TBS = t-butyldimethylsilyl. Boc = t-butoxycarbonyl. TMANO = trimethylamine N-oxide.



Molecules 2023, 28, 1501 11 of 23

3.6. Mukai’s 2007 Synthesis of 1–3

In 2007, the first collective synthesis of 1–3 was reported by Mukai and coworkers [76],
wherein they detailed a synthetic route to obtain advanced intermediate 65, from which
point a short sequence can be applied to furnish the three target compounds (Scheme 16).
Intermediate 65 can be derived from 66 through the expansion of the α-silyl cyclopentenone
ring to form piperidine, in addition to introducing unsaturation in the southwestern part of
the molecule. Based on work performed in their lab [77–87], intermediate 66 was envisaged
to be derived through a cobalt-mediated Pauson–Khand reaction of bicyclic 67, for which
the latter could be constructed from bicyclic enone 68. The synthesis of 68 would start from
another Pauson–Khand reaction of protected 1,2-diol enyne 69.
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Scheme 16. Mukai’s 2007 retrosynthetic analysis. MOM = methoxymethyl. TMS = trimethylsilyl.
SEM = trimethylsilyl ethoxymethyl. TBS = t-butyldimethylsilyl.

To kickstart the desired compound’s synthesis, enyne 69 underwent a Pauson–Khand
reaction under cobalt catalysis, which was subsequently mono-deprotected to yield 68
(Scheme 17). Extensive screening efforts surrounding the first Pauson–Khand reaction were
undertaken, with Sugihara’s conditions affording 68 with a good yield and stereoselectiv-
ity [88]. From there, a 16-step sequence was performed to construct 67 and set the stage
for the second Pauson–Khand reaction. This sequence, which is not depicted, started with
Ueno–Stork cyclization and subsequent allylation to form a γ-allyl lactone ring [89]. The
lactone was then opened to form the diol, while the allyl group was truncated by one carbon
to form a vinyl appendage. From there, standard functional group manipulations converted
the diol to SEM-protected hydroxy alkyne 67. With 67 stereoselectively constructed, the
second Pauson–Khand reaction took place to construct tetracyclic enone 68 at a 79% yield.
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Finally, the elaboration of the enone moiety to a piperidine and the introduction of the
C14-C15 unsaturation in 65 were realized through a 12-step sequence. With the advanced
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common intermediate 65 in hand, a series of five steps furnished 1 and 2, while a nine-step
sequence was required to yield product 3.

3.7. Yang’s 2014 Synthesis of 1–3

In 2014, Yang and coworkers also applied a divergent approach for the synthesis of 1–3
from a common intermediate (Scheme 18) [90], but they also recognized the difficulty that
their predecessors faced in their respective syntheses in the construction of the D piperidine
ring. Thus, they envisioned an ABD to ABCD ring construction approach, where the D
ring would be installed at an early stage to circumvent these known issues. Thus, the three
target compounds were thought to be traced back to intermediate 70—itself originating
from bicyclic 71—with a piperidone appendage. The extra hydroxy group at C3 serves
an important role in this synthesis. First, it is a labile group that can be removed at any
point, but it is ß to a ketone, which allows for a simple intramolecular aldol condensation
of diketone 71 [91]. This diketone comes from enone 72 through an annulation, for which
the latter can be constructed from alkylation between 73 and 74.
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Scheme 18. Yang’s retrosynthetic analysis. TBS = t-butyldimethylsilyl. Ts = tosyl = p-toluenesulfonyl.

The synthesis commenced with the construction of 72 through the alkylation of 74
onto 73 under NaH conditions, followed by the oxidative elimination of the thiol group
through the formation of a sulfoxide with m-CPBA (Scheme 19). With 72 in hand, a series
of 11 steps were used to install the B ring and set the stage for the intramolecular Aldol
addition. First, an allyl chain was installed via conjugate addition of allyl-TMS onto
enone 72, followed by the dihydroxylation of the allyl double bond utilizing osmium
tetroxide. From there, a cumbersome four-step sequence was employed to alkylate the
product intramolecularly to construct the B ring. This intermediate, not shown, was then
oxidized with PCC to furnish diketone 71, which was suitable for the Aldol addition.
For this key transformation, t-BuOK was utilized, furnishing 70 at a 68% yield, and thus
stereoselectively constructing the tetracyclic core skeleton of these alkaloids. From there, the
resulting hydroxy group was removed via Burgess dehydration, whose product was then
employed to construct 1 and 2 in ten steps. The endgame synthesis of 3 was interrupted with
Mukai’s documented protocol, thereby leading to the completion of the formal synthesis
from 74 in 12 steps. Accordingly, Yang and coworkers also synthesized two analogs of
(+)-paniculatine, namely 3-hydroxy-13-dehydropaniculatine and 13-epi-paniculatine. This
report was the first example of constructing the C ring last, which avoided the painful task
of stitching the D ring together at a late stage, a sequence many of the previous reports
had undertaken.
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TBS = t-butyldimethylsilyl.

3.8. Yan’s 2015 Synthesis of 1–3

Shortly after Yang, Yan and coworkers reported the shortest synthetic strategy (to
their knowledge) [92], employing 12–14 steps for the enantioselective synthesis of 1–3
(Scheme 20). Their strategy stems from the use of an inexpensive (R)-pulegone-derived
enone 79 to arrive at the common advanced intermediate 75. The Pd-catalyzed intramolec-
ular olefin insertion of triflate 76 facilitated the construction of the inner five-membered
ring of 75. The northern tetrahydropyridine could be installed through intermolecular
alkylation in tandem with the intramolecular acylation/ring-closure of 78. The origin of
78 can be traced through standard protocols, in this case employing the use of a Zn-Cu
reagent through 1,4-conjugatie addition on enone 79, which itself can be synthesized from
the aforementioned (R)-pulegone through known procedures.
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The synthesis leading to their first milestone 78 began with the installation of iodo-
alkylester 80 through a copper-catalyzed 1,4-addition of a zinc homoenolate in a complete
stereochemical control at an 85% yield (Scheme 21) [93,94]. To construct the B and D rings
simultaneously and stereoselectively, tandem base-promoted intramolecular cyclization
and intermolecular alkylation were applied. The addition of t-BuOK followed by a one-pot
addition of DBU and allyl bromide 77 afforded bicycle 81 at an 86% yield. The 5-6-fused
diketone ring system forces the active methylene proton into a pseudo-axial conformation,
resulting in a top-side attack onto bromide 77, which results in the R-configuration of the
piperidine moiety. With an intramolecular Heck reaction in mind to construct the C ring,
a series of three steps was employed to transform diketone 81 into triflate 76. This was
realized through a chemoselective ketalization, conversion of the remaining ketone to its
enol triflate, and then the removal of the dioxolane group to furnish 76 at a 73% yield over
the three steps. With the stage set, the key Pd-catalyzed intramolecular olefin insertion was
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performed, exposing 78 to Pd(OAc)2, PPh3, and Et3N, which afforded dienone 82 at an
82% yield.
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Scheme 21. Yan’s 2015 synthesis. TMS = trimethylsilyl. HMPA = hexamethylphosphoramide.
THF = tetrahydrofuran. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. Tf = triflate = trifluoromethane-
sulfonate. TEA = triethylamine. DMF = dimethylformamide.

With the tetracyclic skeleton constructed, the last challenge of the chemoselective
oxidation of the diene was explored. Through the extensive screening of conditions, it
was found that an enediketone intermediate (not shown) could be obtained through the
treatment of 82 with PdCl2/CuCl/O2 [95]. This introduced a ketone at C5, while the
unsaturation from the piperidine moiety could be removed through hydrogenation with
H2 and Pd/C. This afforded diketocarbamate 75 at an 86% yield. It was also proven that
this three-step sequence could also be performed in one pot, thereby furnishing the desired
product with comparable yields to the stepwise approach.

With the common intermediate 75 in hand, the endgame synthesis of 1–3 occurred via a
straightforward approach. The selective TBS protection of one of the two ketones, followed
by L-Selectride reduction and then deprotection, afforded 1. For 2 and 3, L-Selectride was
employed first to regioselectively reduce one of the two ketones, after which the protection
of the remaining ketone and reduction of the N-methylester to its corresponding methyl
took place. Lastly, unique to 2 and 3 is the unsaturation present in the western 6-membered
ring. This was realized through the addition of N-tert-butyl phenylsulfinimidoyl chloride,
which dehydrogenated the ketone to its enone. This afforded 2, which could then be
subjected to Dess–Martin oxidation to oxidize the secondary alcohol and thus furnish
(+)-magellaninone.

3.9. Qiu’s 2019 Synthesis of (+)-Paniculatine

More recently, Qiu and coworkers reported an asymmetric synthesis of (+)-paniculatine
in ten steps from two simple building blocks [96], which, to the best of our knowledge, is
the most concise synthesis to date (Scheme 22). They envisaged that 3 could be obtained
from the regio- and diastereoselective reduction of tetracyclic triketone 83. The key trans-
formation in their synthesis was an intramolecular Michael addition in 84 to forge one of
the 5-membered diquinane rings in 83. Bicycle 84 could be obtained from an intramolecular
alkylation through an iodohydrin derived from 85. Lastly, 85 could be stitched together
through 86, 87, and allyl-TMS.



Molecules 2023, 28, 1501 15 of 23

Molecules 2022, 27, x FOR PEER REVIEW 15 of 25 
 

 

Scheme 21. Yan’s 2015 synthesis. TMS = trimethylsilyl. HMPA = hexamethylphosphoramide. THF 

= tetrahydrofuran. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. Tf = triflate = 

trifluoromethanesulfonate. TEA = triethylamine. DMF = dimethylformamide. 

With the tetracyclic skeleton constructed, the last challenge of the chemoselective 

oxidation of the diene was explored. Through the extensive screening of conditions, it was 

found that an enediketone intermediate (not shown) could be obtained through the 

treatment of 82 with PdCl2/CuCl/O2 [95]. This introduced a ketone at C5, while the 

unsaturation from the piperidine moiety could be removed through hydrogenation with 

H2 and Pd/C. This afforded diketocarbamate 75 at an 86% yield. It was also proven that 

this three-step sequence could also be performed in one pot, thereby furnishing the 

desired product with comparable yields to the stepwise approach.  

With the common intermediate 75 in hand, the endgame synthesis of 1–3 occurred via 

a straightforward approach. The selective TBS protection of one of the two ketones, 

followed by L-Selectride reduction and then deprotection, afforded 1. For 2 and 3, L-

Selectride was employed first to regioselectively reduce one of the two ketones, after 

which the protection of the remaining ketone and reduction of the N-methylester to its 

corresponding methyl took place. Lastly, unique to 2 and 3 is the unsaturation present in 

the western 6-membered ring. This was realized through the addition of N-tert-butyl 

phenylsulfinimidoyl chloride, which dehydrogenated the ketone to its enone. This 

afforded 2, which could then be subjected to Dess–Martin oxidation to oxidize the 

secondary alcohol and thus furnish (+)-magellaninone.  

3.9. Qiu’s 2019 Synthesis of (+)-Paniculatine 

More recently, Qiu and coworkers reported an asymmetric synthesis of (+)-

paniculatine in ten steps from two simple building blocks [96], which, to the best of our 

knowledge, is the most concise synthesis to date (Scheme 22). They envisaged that 3 could 

be obtained from the regio- and diastereoselective reduction of tetracyclic triketone 83. 

The key transformation in their synthesis was an intramolecular Michael addition in 84 to 

forge one of the 5-membered diquinane rings in 83. Bicycle 84 could be obtained from an 

intramolecular alkylation through an iodohydrin derived from 85. Lastly, 85 could be 

stitched together through 86, 87, and allyl-TMS.  

 

 

Scheme 22. Qiu’s retrosynthetic analysis. TMS = trimethylsilyl. 

First, 86 and 87 were subjected to standard alkylation conditions, with the subsequent 

oxidation of the thioether and elimination of the sulfoxide group, to afford an enone 

intermediate (not shown). Through Hosomi–Sakurai allylation with allyl-TMS, the side 

chain was installed, granting 85 at a 75% yield over the three steps (Scheme 23). The 

diastereoselectivity of the allylation was controlled by the innate stereochemistry of 86, 

which is a derivative of enantiopure (R)-pulegone. Then, the terminal olefin of 85 was 

converted to an iodohydrin through NIS [97], followed by intramolecular alkylation to 
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First, 86 and 87 were subjected to standard alkylation conditions, with the subsequent
oxidation of the thioether and elimination of the sulfoxide group, to afford an enone
intermediate (not shown). Through Hosomi–Sakurai allylation with allyl-TMS, the side
chain was installed, granting 85 at a 75% yield over the three steps (Scheme 23). The
diastereoselectivity of the allylation was controlled by the innate stereochemistry of 86,
which is a derivative of enantiopure (R)-pulegone. Then, the terminal olefin of 85 was
converted to an iodohydrin through NIS [97], followed by intramolecular alkylation to
form the five-membered ring. The Dess–Martin oxidation of the secondary alcohol then
furnished bicycle 84 at an 84% yield over four steps. While at first the key Michael addition
seemed straightforward, this was not the case. This was likely due to the use of an amide
as an electron-withdrawing group, which loosely deactivates the α,ß-unsaturated system
required for the reaction. Standard bases, such as K2CO3, DBU, LDA, or NaH, proved
ineffective for this transformation. Through significant optimization, they found that t-
BuOK in dilute toluene under reflux conditions afforded the desired cyclized product 83
at a moderate yield. With the tetracyclic skeleton of paniculatine constructed, two final
steps were employed from 83 to complete the synthesis of 3. First, the protection of the
eastern ketone to form TBS enol-ether; then, the L-Selectride reduction of the remaining
ketone to the corresponding secondary alcohol; and finally deprotection, which afforded
(+)-paniculatine at a 70% yield over the three transformations.
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3.10. Yao’s 2022 Synthesis of 1–3

To the best of our knowledge, the most recent synthesis was reported in 2022 by Yao
and coworkers [98], which consisted of the collective synthesis of 1–3 (Scheme 24). They
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envisioned that the three natural products could be derived from the common intermediate
88. The piperidine ring of 88 could be derived from the reductive amination of aldehyde
89, which itself could be obtained from an intramolecular Michael addition of 90, a com-
mon procedure for 1,5-dicarbonyl systems. The enone moiety of 90 could come from the
dehydration of tertiary alcohol 91, for which the latter could come from an intramolecular
reductive C-C bond formation between the two carbonyls in 92 [99–101]. Methyl ester 92
can result from a functionally decorated intermediate 93, which, in turn, can be derived
from a four-step sequence of the Morita–Baylis–Hillman reaction, alcohol oxidation, and
two Michael additions. It is worth noting that Yao and coworkers initially described a
synthesis wherein R is a dioxolane acetal instead of a N-Boc group. In their initial synthesis
development, they successfully obtained intermediate 89; however, they decided to revisit
their lengthy scheme to 1) shorten the synthesis and 2) introduce the D-ring amine at an
early stage. Here, we describe the second edition of their synthesis.
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Scheme 24. Yao’s retrosynthetic analysis. Boc = t-butoxycarbonyl.

The first synthetic goal was the five-step synthesis of chiral intermediate 93 containing
a key quaternary carbon center (Scheme 25). First, a Morita–Baylis–Hillman reaction
between 94 and the alkyl aldehyde gave a ß-hydroxy enone intermediate as an inseparable
mixture of diastereomers. The secondary alcohol was then oxidized under Dess–Martin
conditions to deliver the 1,3-diketone at a 90% yield. Next, the two Michael additions were
implemented: the first to install the enolate derived from methyl acetate and the second
with acrolein. This yielded an alkylester-diketone intermediate that was cyclized to form
the southern tetrahydropyran ring in 93. This five-step sequence proved to be a robust
procedure that was applied for the large-scale preparation of enantiopure intermediate
93. With a sufficient quantity of 93 in hand, the intramolecular reductive C-C bond was
formed. In their 2012 and 2021 reports for the total synthesis of the fawcettimine-type
alkaloids [99,100], Yao and coworkers had discovered that lithium-arenides were capable
of forming this type of bond through single-electron reduction. This was applied in
the currently discussed route with the use of Li-naphthalide, leading to the production
of the resulting tertiary alcohol with high stereoselectivity, which was likely due to the
coordinating effects between the lithium ion and the neighboring methoxyl group, which
forces the alcohol onto the “top” face. Burgess dehydration then led to the formation of the
α,ß-unsaturated enone as a Z-isomer, which could be readily converted to an E-isomer 90
through irradiation at 390 nm.

The construction of the C-ring was carried out through the authors key intramolecular
cyclization of aldehyde 90. By analyzing the preceding literature [102–107], they had
discovered that the use of pyrrolidine and benzoic acid could forge this key C-C bond in
order to close the C-ring. Thus, through extensive condition screening, they found that
catalytic amounts of pyrrolidine (10 mol%) and benzoic acid (12 mol%) in DCE at reflux or
near-reflux conditions produced 89 at moderate to good yield.
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Lastly, the endgame synthesis of 1–3 was performed through a series of similar steps to the
preceding syntheses: the selective reduction of a ketone, the reduction of the remaining ketone,
and finally deprotection to furnish the three natural products in an enantioselective fashion.

4. Other Notable Syntheses

In this last section, we would like to highlight some of the formal syntheses as well as
unique strategies utilized to construct these complex natural alkaloids. This is by no means
a comprehensive list; a short scheme of the key transformation will be shown and described.

The first strategy to highlight is that reported by Meyers and coworkers in 1995
(Scheme 26) [108]. Their plan hinged on an adaptation of a known regioselective inter-
molecular 1,4-addition of enolates to activated acyloxypyridinium salts [109–113]. Thus,
pyridine 95 was treated with phenyl chloroformate to activate the pyridine ring for nu-
cleophilic attack; meanwhile, the addition of titanium chloride provided the enolate for
said attack. The result of this reaction was the 1,4-dihydropyridine product 96 at a 58% iso-
lated yield along with 16% regioisomers. While constituting an incomplete synthesis, this
strategy provides an efficient method for constructing all six stereogenic centers contained
in magellanine.
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Some time later, Sarpong and coworkers reported a similar pyridine-derived ap-
proach for the construction of the C ring (Scheme 27) [114]. In this strategy, they followed
conditions established by Echavarren for the direct regioselective arylation of pyridines
with palladium catalysis [115,116]. With the use of Pd(OAc)2 (10 mol%) and DavePhos
(30 mol%), vinyl triflate 97 was employed to close the C-ring of 98 at a 66% yield. Similar
to Meyers, to the best of our knowledge, Sarpong and coworkers have not completed the
total synthesis of 1–3; however, another unique approach was disclosed in 2017 [13].
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Lastly, a more recent strategy was reported by Barriault and coworkers in 2017
(Scheme 28) [117]. Their total synthesis of magellanine was conducted as a result of
their lab’s efforts toward the development of a gold(I)-catalyzed dehydro Diels–Alder
reaction [118]. In their work, they first identified ligand L1 as optimal for use in conjunc-
tion with gold(I) to initiate a stereoselective formal [4+2] between an enyne and an olefin.
Thus, enyne 99 was subjected to the shown conditions to afford 100 at a 91% yield. This
transformation efficiently constructed the CD-ring in a single step and at an excellent yield
and was shown to be sufficiently robust so as to be performed on a gram scale. From there,
Barriault and coworkers applied a 7-step synthesis to achieve magellaninone as a mixture
of enantiomers over 11 longest linear steps.
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5. Conclusions

This review highlights the development of synthetic strategies and their application in
the total synthesis of magellanine, magellaninone, and paniculatine, three natural prod-
ucts from the Lycopodium family. Due to the unique 6-5-5-6-fused ring system of these
molecules, each author devised a unique and robust method for their careful construction.
Of particular note is the construction of the C ring. While groups such as Yang, Qiu, and
Yan employed elementary transformations (albeit powerful and robust), the other authors
each devised their own unique strategies for the synthesis of this pivotal piece of the
puzzle. Another point that we found interesting was that many groups decided to start
with a derivative of the A-ring, most often through a pulegone-analog route. From there,
each group introduced each of the other three rings in very efficient manners through
reliable transformations. We hope that the chemistry introduced in this review may pro-
mote future progress in the pursuit of the total synthesis of Lycopodium alkaloids and
related compounds.
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