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Abstract: Optically active citramalic acid (CMA) is naturally present as an acidic taste component
in fruits, such as apples. The absolute configuration of CMA in such fruits was investigated by
high‑performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) following pre‑
column derivatization with a chiral reagent, benzyl 5‑(2‑aminoethyl)‑3‑methyl‑4‑oxoimidazolidine‑
1‑carboxylate. The developed LC–MS/MS method successfully separated the enantiomers of CMA
using an octadecylsilica columnwith a resolution and separation factor of 2.19 and 1.09, respectively.
Consequently, the R‑form of CMA was detected in the peel and fruit of three kinds of apple at con‑
centrations in the 1.24–37.8 and 0.138–1.033 mg/wet 100 g ranges, respectively. In addition, R‑ CMA
was present in commercial apple juice, whereas no quantity was detected in commercial blueberry,
perilla, or Japanese apricot juice.

Keywords: citramalic acid; high‑performance liquid chromatography–tandem mass spectrometry
(LC–MS/MS); benzyl 5‑(2‑aminoethyl)‑3‑methyl‑4‑oxoimidazolidine‑1‑carboxylate (CIM‑C2‑NH2)

1. Introduction
Citrus and other fruits contain organic acids that contribute to their sour taste. Dicar‑

boxylic acids, such as malic acid (Mal), tartaric acid (Tar), and citramalic acid (CMA) are
representative organic acids in such fruits, with the structure of CMA (2‑methylmalic acid)
being similar to that of Mal. CMA exists as a pair of optical isomers due to the presence of
an asymmetric carbon at its 2‑position, with the (−)‑form (i.e., R‑form) previously reported
to be present in apple peels [1]. R‑(−)‑CMA is enzymatically produced by CMA synthase
in plants and yeast from achiral pyruvic acid and acetyl coenzyme A (Scheme S1a) [2,3]
through a metabolic pathway referred to as the “CMA pathway”.

Aspergillus niger, a filamentous fungus, and Alcaligenes Xylosoxidans IL142 bacteria
have been recently reported to produceCMA from3S‑citramalyl CoAvia itaconic acid [4,5].
The bacterial CMA‑production pathway (Scheme S1b) has been suggested to give the S‑
form of CMA [4–6].

We recently developed a high‑performance liquid chromatography–tandem mass spec‑
trometry (LC–MS/MS) technique that involves forming a mixture of diastereomers through
pre‑columnderivatizationwithbenzyl 5‑(2‑aminoethyl)‑3‑methyl‑4‑oxoimidazolidine‑1‑carbo
xylate (CIM‑C2‑NH2) (Scheme 1) [7]. Consequently, the enantiomers of CMA were sepa‑
rated by LC–MS/MS using an octadecylsilica (ODS) column, and we showed that R‑CMA
was present in a commercial red‑wine sample [7]. To the best of our knowledge, to date, the
presence of R‑CMA in natural fruits has not been confirmed by chromatography. Therefore,
to determine the absolute configuration of CMA in fruit samples, an LC–MS/MS technique ca‑
pable of separating the enantiomers of CMA offering high efficiency is needed. Accordingly,
in this study, we determined the contents and absolute configurations of CMA detected in
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three kinds of commercially purchased apples by LC–MS/MS. Furthermore, the presence of
optically active CMA in commercial fruit juice was examined.
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Scheme 1. Chemical structure of citramalic acid (CMA) and its derivatization with benzyl 5‑(2‑
aminoethyl)‑3‑methyl‑4‑oxoimidazolidine‑1‑carboxylate (CIM‑C2‑NH2).

2. Materials and Methods
2.1. Chemicals

R‑ and S‑CMA were purchased from Sigma (St. Louis, CA, USA) and Toronto Re‑
search Chemicals (Toronto, ON, Canada), respectively. Formic acid (HPLC‑grade) was ob‑
tained from the FujifilmWako Pure Chemical Corporation (Osaka, Japan). Triphenylphos‑
phine (TPP) and 2,2′‑dipyridyl disulfide (DPDS) were obtained from Tokyo Chemical In‑
dustry Co., Ltd. (Tokyo, Japan). CH3CN (LCMS‑grade) was obtained from Kanto Kagaku
Co., Ltd. (Tokyo, Japan). Phosphate‑buffered saline (PBS) was obtained from the Nissui
Pharmaceutical Co., Ltd. (Tokyo, Japan). H2O was purified using a Milli‑Q Labo system
(Nihon Millipore Co. Ltd., Tokyo, Japan). R‑CIM‑C2‑NH2 was synthesized following our
previously reported method [7].

2.2. Optical Rotations
R‑ and S‑CMA were dissolved in 1 M HCl to prepare 0.46 and 0.48 w/v% solutions,

respectively. The optical rotation of each solution was measured with a P‑2200 digital
polarimeter (Jasco Corporation, Tokyo, Japan) using a 100‑mm quartz cell.

2.3. Sample Preparation
Commercially available Toki, Tsugaru, and Sun‑Tsugaru apples were purchased from

a local market in Tokyo. The apples were peeled manually using a kitchen knife, after
which the peel and fruit were homogenized using a BM‑FX08‑GA kitchenmixer (Zojirushi
Corporation, Osaka, Japan). For the analysis of fruit of apple, the fruit was homogenized,
then centrifuged at 3500 rpm for 15 min, after which the supernatant was centrifuged at
12,000 rpm for 15 min at 4 ◦C. The resulting supernatant (10 µL) was subjected to analy‑
sis. For the peel of apple, water was added to the peel in a weight ratio of 2:1 and the
mixture was homogenized. The homogenate was centrifuged at 3500 rpm for 15 min, af‑
ter which the supernatant was centrifuged at 12,000 rpm for 15 min at 4 ◦C. The obtained
supernatant (diluted 50 times with H2O, 10 µL) was derivatized by first mixing it with an
internal standard (IS) (10 µM sodium D‑lactate (13C3, 98%) and 1.0 mM L‑lactate ‑3,3,3‑d3
in PBS, 10 µL), TPP and DPDS in CH3CN (250 mM, 10 µL each), and then with R‑CIM‑C2‑
NH2 in CH3CN (10mM, 10µL). The resultantmixturewas allowed to stand for 30min at 60
◦C. The derivatization reaction was terminated by adding 50 µL of HCO2H/H2O/CH3CN
(0.05/80/20, v/v/v).

2.4. LC–MS/MS
An LCMS‑8040 (Shimadzu corporation, Kyoto, Japan) LC–MS/MS system fitted with

an InertSustain C18 (150 mm × 2.1 mm i.d., 3 µm) column (Tokyo, Japan) was used, with
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the CTO‑20A (Shimadzu) column oven maintained at 40 ◦C. The mobile phase consisted
of 0.05% formic acid in H2O (A) and 0.05% formic acid in CH3CN (B) with the gradient
elution performed at 0.3 mL/min using the following time program: 0–30 min: A 85%,
30.01–40 min: A 80%, 40.01–74 min: A 70%.

The MS was operated in positive ion‑mode with electrospray ionization as the ion
source. The heat‑block and desolvation‑line temperatures were set at 300 and 500 ◦C, re‑
spectively. The nebulizer and drying gas flow rates were 3.0 and 15 L/min, respectively.
The collision‑induced dissociation (CID) gas (Argon) pressure and voltage of ion spray
were 230 kPa and 5 kV, respectively. The MRM method of CMA was 667.1 > 91.05 and
362.2 (Figure S1), and the IS was 353.45 > 91.15, which were used in our previous paper [7].
The MRM chromatogram of the IS was shown in Figure S2.

2.5. Validation
2.5.1. Calibration Curves

The linear calibration curves of fruits were prepared by plotting the peak area ratio
against the concentration (5.0, 10, 25, 50, and 100 µM for fruit, and 100, 250, 500, 1000, and
2500 µM for peel). The standard solution was diluted 50 times, derivatized, and examined
using the same method employed for the apple samples.

2.5.2. Intra and Inter‑Day Precisions
Sun‑Tsugaru fruit or peel samples were derivatized as described in Section 2.3. Intra‑

day precision was determined four times (n = 4), whereas inter‑day precision was deter‑
mined over 4 d (n = 4).

2.5.3. Recovery
The Sun‑Tsugaru fruit or peel solution (10 µL) was added to the standard solution

(fruit: 25 and 50 µM, peel: 500 and 1000 µM, 10 µL) and water (480 µL). These samples
(10 µL, n = 4) were treated as described in Section 2.3, with recoveries determined as pre‑
viously reported [8].

3. Results
3.1. R‑ and S‑CMA Standards

The optical rotations of theR‑ and S‑CMA standards obtained from the supplierswere
measured first; R‑CMA (0.46 in 1MHCl) and S‑CMA (0.48 in 1MHCl) exhibited rotations
of –11.4341 and +18.0296, respectively.

The R‑ and S‑CMA standards were derivatized into a pair of diastereomers using R‑
CIM‑C2‑NH2, a chiral derivatization reagent [7].

Figure 1a shows the MS/MS spectra of the R‑ and S‑CMA derivatives; it is obvious
that both spectra are similar. Therefore, the cleavage pattern of the derivative with CIM‑
C2‑NH2 might not differ between the enantiomers (Figure 1b).

Figure 2 shows the time‑course CMA‑derivatization profiles with CIM‑C2‑NH2 in the
presence of TPP and DPDS, which plateau after 30 min; consequently, the derivatization
time was set as 30 min. Figure 3a shows the chromatograms of the R‑ and S‑CMA stan‑
dards following derivatization, revealing that the peak corresponding to R‑CMA eluted
at 66.5 min, whereas that corresponding to S‑CMA eluted at 68.6 min, with the resolution
and separation factor (separation parameters) determined to be 2.19 and 1.09, respectively.
In addition, neither optically active CMA was observed to racemize (Figure 3a). Hence,
the absolute configuration of CMA present in apple samples can be determined by the de‑
veloped LC–MS/MSmethod; consequently, the absolute configurations of CMApresent in
various apple samples were investigated next.
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3.2. CMA in Apples and Commercial Fruit Juice
To investigate the organic acid contents of natural apples, apple fruit and peel were

homogenized separately and then diluted 50 times with H2O. The diluted extract was cen‑
trifuged and directly derivatized with the CIM‑C2‑NH2 pre‑column reagent, in the pres‑
ence of TPP and DPDS as condensing agents. Figure 3b–g show the representative chro‑
matograms of natural apple samples, revealing that these samples contain only R‑CMA.
The small peaks shown in Figure 3c,e,g were considered as noise peaks originating from
the derivatization reagent, CIM‑C2‑NH2, because these small peaks were also detected in
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the chromatogram of a blank sample, which is a sample prepared without apple peel or
fruit. The amount present per 100 g of each sample is shown in Figure 4.
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Figure 4. R‑CMA contents in apple samples: (a) peel and (b) fruit (*: p < 0.05 by Tukey multiple com‑
parison).

Table 1 shows theR‑CMAvalidation data determined for apple peel and fruit samples
using the developed LC–MS/MS method. The relative standard deviations (RSDs) of peel
samples are 1.33% and 1.72% for intra‑ and inter‑day precisions, respectively, with 93%
recoveries (each). The apple fruit samples exhibited intra‑ and inter‑day precision RSDs
of 1.84% and 7.89%, respectively, with recoveries of 87 and 86%. In addition, the limit
of detection of the method (LOD) was determined to be 15.40 fmol (signal to noise ratio
(S/N) = 3).

TheR‑CMAcontents (mean± SE)were 36.5± 1.21, 10.5± 2.12, and 8.74± 5.87mg/wet
100 g in the peel (n = 3), whereas 0.922 ± 0.066, 0.522 ± 0.141, and 0.292 ± 0.114 mg/wet
100 g in the fruit (n = 3) of Toki, Tsugaru, and Sun‑Tsugaru, respectively. As concluded from
Figure 4, the R‑CMA content of the different apple types varied significantly. In addition,
commercial apple juice was found to contain considerable amounts of R‑CMA, whereas
no CMA was detected in blueberry, perilla, or Japanese apricot juice (Figure 5).
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Table 1. Validation experiments.

□ Linearity □ Sensitivity □ Precision □ Accuracy

□
Equation R2 □ LOD a

□
Intra‑
day

Inter‑
day □ Recovery

□ (fmol, S/N b = 3) RSD c

% RSD c % (%, ± SD)

□ □ □ □ □ □ □ low high

R‑CMA
in peel 7.52 × 10−4 x + 0.0204 0.9996 □ 15.43 □ 1.33 1.72 □ 93 ± 4.6 93 ± 1.1

R‑CMA
in fruit 8.83 × 10−4 x + 0.000599 0.9968 □ □ 1.84 7.89 □ 87 ± 2.4 86 ± 2.7

a Limit of detection. b Signal‑to‑noise ratio. c Relative standard deviation.
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4. Discussion
CMA is a useful industrial starting material for the synthesis of methacrylic acid,

which is polymerized to form transparent and solid plastics [9]. Consequently, metabol‑
ically engineered Escherichia Coli bacteria that produce CMA have been intensively re‑
searched [10–12]. The CMA biosynthetic pathway (Scheme S1a) produces various com‑
pounds including essential branched‑chain amino acids, such as isoleucine, valine, and
leucine. Some straight‑ and branched‑chain carboxylate esters are also produced, which
contribute to the aroma of fruit. It is reported that the CMA biosynthetic pathway is fun‑
damentally involved in the procedure of fruit ripening [3,13]. The first product of this
pathway is R‑(−)‑CMA (Scheme S1a), whereas some bacteria produce the S‑form of CMA
(Scheme S1b) [4–6].

Useful information on the configuration of naturally occurring CMA has been re‑
ported recently, stating that two pathways are capable of enzymatically producing opti‑
cally pure CMA enantiomers: S‑CMA is formed in bacteria [4] and fruits [14], whereas
R‑CMA is produced in other fruits [1], yeast [15], andMethanogenic Archaea [16].

Chromatography is a useful method for determining the absolute configuration of
CMA because it can provide enantiomeric ratios in an operationally simple manner. With
regard to enantiomeric separationmethodologies reportedpreviously forCMA, some stud‑
ies using a chiral stationary phase inHPLC have been reported [17,18]; however, such tech‑
niques have been rarely applied to real food samples. Indeed, the little information on the
enantiomeric separation of CMA in various natural samples appears to exist, and the stere‑
ochemistry of CMA present in various kinds of plants, fruits, or bacterial samples remains
unclear. With this in mind, we pre‑column derivatized the two carboxylic acid groups of
CMAwith CIM‑C2‑NH2, a chiral reagent, which enabled the CMA enantiomers present in
fruit samples to be analyzed using LC–MS/MS.

The present data on Toki, Tsugaru, and Sun‑Tsugaru apples reveal that the fruits con‑
tain only R‑CMA. CMA is biosynthesized enzymatically from non‑chiral pyruvic acid and
acetyl coenzyme‑A by CMA synthase via the CMA pathway in plants [3,9], and CMA is
subsequently converted to citraconic acid by 2‑isopropylmalate isomerase (IPMI). There‑
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fore, it is likely that R‑CMA is biosynthesized by CMA synthase. In addition, IPMI is
likely to recognize R‑CMA and produce olefins through dehydration processes in apples
(Scheme S1).

(−)‑CMA (i.e., R‑CMA) has been previously reported to accumulate in beer produced
using respiratory‑deficient beer yeast [15]. In addition, Howell et al. demonstrated that
R‑CMA is produced by a recombinant CMA synthase, which uses aMethanogenic Archaea
bacterial cimA gene, by gas‑chromatography (GC) using a chiral (G‑TAChiraldex) capillary
GC column [16]. These reports support the notion that CMA synthase can produce R‑
CMA inmicroorganisms. We previously reported the presence of R‑CMA in a commercial
fermented product (i.e., wine) [7].

Meanwhile, only the S‑form of Mal (i.e., L‑Mal) has been reported to exist in fruits.
Indeed, we observed only S‑Mal in apples by column‑switchingHPLCusing a fluorescence
detection method [19]. Therefore, S‑Mal is produced by fumarase (EC 4.2.1.2) in fruits via
the Krebs cycle. Further research into other fruits and plants, along with biochemical and
molecular‑biology experiments, are necessary to elucidate the mechanisms responsible for
the exclusive production of R‑CMA in fruits and plants.

The present data also indicate that more R‑CMA is present in the peels rather than the
fruits of Tsugaru, Sun‑Tsugaru, and Toki apples. These results are consistent with previous
studies reporting that CMA is more abundant in peels than in fruits [1], although the CMA
configuration had not been clarified.

Noro et al. previously suggested that red apple peel contains higher amounts of CMA
than yellow peel, and that CMA may contribute to the production of the red anthocyanin
pigment in the skins of apples [20]. The present study revealed that the CMA content in
Toki, whose peel is yellow, was higher than CMA content in Tsugaru or Sun‑Tsugaru, whose
peels are red. Therefore, the relationship between peel color and CMA content remains
unclear, with Di Matteo et al. recently reporting no relationship between them [21].

To certify that apples contain only R‑CMA, we examined two types of commercial
apple juice manufactured using cultivated apples, as well as a selection of other juices. It
was revealed that only apple juice contains R‑CMA, whereas no CMAwas detected in the
other commercial juices, including blueberry, Japanese apricot, and perilla.

With regard to the limitation of the present study, the enantiomeric form of CMA
present in other fruits remains unclear. In addition, the effect of seasonal changes aswell as
ripening or climacteric differences on CMA chirality will be the subjects of future studies.

The present study revealed that onlyR‑CMA is present in apples, and that pre‑column
derivatization with CIM‑C2‑NH2 (a chiral reagent) together with LC–MS/MS is highly ef‑
ficient for enantiomerically separating chiral acidic compounds, such as CMA, present in
fruit samples.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041556/s1, Scheme S1: Biosynthetic pathways for (a)
R‑ and (b) S‑CMA, Figure S1: MS/MS spectra of R‑CMA detected in the samples prepared from
apple peel, fruit, and juice. Figure S2: MRM chromatogram of the internal standard used in the
present study.
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