
Citation: Kukla, P.; Greiner, L.; Eibl,

S.; Döring, M.; Schönberger, F.

Phosphasilazanes as Inhibitors for

Respirable Fiber Fragments Formed

during Burning of Carbon-Fiber-

Reinforced Epoxy Resins. Molecules

2023, 28, 1804. https://doi.org/

10.3390/molecules28041804

Academic Editors: Chao Ma and

Pradip K. Bhowmik

Received: 30 December 2022

Revised: 19 January 2023

Accepted: 31 January 2023

Published: 14 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Phosphasilazanes as Inhibitors for Respirable Fiber Fragments
Formed during Burning of Carbon-Fiber-Reinforced Epoxy
Resins
Philipp Kukla 1, Lara Greiner 2, Sebastian Eibl 2 , Manfred Döring 1 and Frank Schönberger 1,*

1 Fraunhofer Institute for Structural Durability and System Reliability LBF, Schlossgartenstr. 6,
64289 Darmstadt, Germany

2 Bundeswehr Research Institute for Materials, Fuels and Lubricants, Institutsweg 1, 85435 Erding, Germany
* Correspondence: frank.schoenberger@lbf.fraunhofer.de; Tel.: +49-6151-705-8705

Abstract: Carbon-fiber-reinforced polymer composites (CFRPs) exhibit additional hazards during
and after burning due to respirable fragments of thermo-oxidatively decomposed carbon fibers. In
this study, various phosphasilazanes are incorporated into the RTM 6 epoxy matrix of a CFRP to
investigate their flame-retarding and fiber-protective properties via cone calorimetry. Residual carbon
fibers are analyzed using SEM and EDX regarding their diameter and elemental composition of
deposits. The decomposition process of phosphasilazanes is characterized by DIP-MS and infrared
spectroscopy of char. Flame-retardant efficiency and mode of action are correlated with the chemical
structure of the individual phosphasilazane and compared for neat resin and composite samples.
Phosphasilazanes mainly acting in the condensed phase show beneficial fiber-protective and flame-
retardant properties. Those with additional gas phase activity are less efficient. The phosphasilazanes
degrade thermally via scission of the Si-N bond. The distribution and agglomeration of deposited
particles, formed during the fire, influence the residual fiber diameters. Continuous layers show
the best combination of flame retardancy and fiber protection, as observed for N-dimethylvinylsilyl-
amidophosphorus diphenylester.

Keywords: epoxy resin; phosphasilazanes; carbon fiber; fiber degradation; cone calorimeter

1. Introduction

Carbon-fiber-reinforced polymer (CFRP) composites show beneficial properties com-
pared to pure plastics since they combine properties of the single materials in the lightweight
composites. Epoxy resins are often used as high-performance matrices, especially in sport
goods, transportation, or aviation due to their thermal and environmental resistance and
insolubility [1–4]. Depending on the used fibers, electrical, thermal, and mechanical prop-
erties can be adjusted [1,5,6].

Thermo-oxidative degradation of the carbon fibers (CFs) in such composites represents
an additional hazard in burning events in addition to heat and toxic gases. In an accident
with an external heating source, the fibers are decomposed and detectable in the generated
soot [7–9]. Because fibers with diameters lower than 3 µm, a length greater than 5 µm,
and an aspect ratio greater than 3:1 are respirable, they are considered cancerogenic by the
World Health Organization (WHO) [10]. Respirable fibers were detected in the residue
of irradiated samples as well as on the protective suit of firemen in a large-scale burning
test. The surface of these fiber fragments is porous and can, thus, take up toxic combustion
products. Hence, fiber protection is necessary for burning events in order to inhibit fiber
decomposition [11–15].

Fiber protection can be achieved via protective layers, such as char, glass, or intu-
mescing barriers [16,17]. Glass or ceramic structures can be applied as a coating on fibers.
Protective coatings on composites prohibit the exchange of heat and combustible volatiles.
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Therefore, matrix degradation is hindered and, thus, they act as flame retardants. A combi-
nation of char and glass formation acts synergistically. The yield of residues is higher than
expected. Specifically, a combination of silicon and phosphorus-containing compounds
is beneficial. The silicon moieties form a polar glass that cannot bind to nonpolar char
or carbon fibers, but to glass fibers. On the other hand, the phosphorus moiety is able to
form phosphates that bind covalently to the char [18–20]. Additionally, it promotes char
generation [18–20].

These coatings can be generated from pre-ceramic polymers in an extra processing
step [21–23]. Polysilazanes, for example, generate ceramics, such as silicon carbide (SiC),
silicon nitride (Si3N4), and hybrid materials thereof (SiCN). [24] These ceramics can be
incorporated into carbon fibers. Therefore, they enhance the tensile strength of such
composites, especially at elevated temperatures of up to 400 ◦C [21,25].

The abovementioned ceramic coatings have a negative impact on overall mechanical
performance, weight, or price. For example, the interlaminar shear strength is decreased
by 25% by such coatings, leading to insufficient properties for applications in aviation and
aerospace [26]. Hence, a different approach is used in this paper. Instead of a ceramic
coating, the pre-ceramic structure is incorporated into an epoxy resin matrix. The pre-
ceramic structure generates a protective layer during the burning event. The interlaminar
shear strength is less decreased by the incorporation of flame retardants into the matrix
and their content can be varied.

Silicones and siloxanes show good in situ flame-retardant properties regarding the
matrix in carbon-fiber-reinforced composites [27,28]. They also result in negative effects,
especially in promoting fiber degradation [29]. On the other hand, phosphorus-containing
moieties acting in the condensed phase show both flame-retardant as well as fiber-protective
properties [29,30]. Combinations of phosphorus and silazane moieties provide promising
results for glass-fiber-reinforced composites [31–33]. Therefore, this paper focuses on
phosphasilazanes for carbon fiber protection.

In our previous work, we developed novel phosphasilazanes, which contain both
phosphorus and silazane moieties [34]. Flame-retardant properties were achieved in neat
epoxy resin depending on the chemical environment at the phosphorus atom. Phosphasi-
lazanes with high oxygen content promoted char generation or even intumescence in the
case of the structure containing salicylic acid. This led to higher char yields and better
flame-retardant performance in both thermo-analysis and cone calorimetry. On the other
hand, a higher amount of silazane groups within one molecule at the same concentration
increased flammability. Phosphorus moieties acting in the gaseous phase were antagonized
with the generation of char [34].

In this paper, the potential of these phosphasilazanes is examined to inhibit the
generation of respirable carbon fiber fragments via cone calorimetry. The residual fibers
and char were analyzed using SEM, EDX, and IR spectroscopy. Additionally, the mode of
action of this type of flame retardant in carbon-fiber-reinforced epoxy resin is described.
Mass spectroscopy was applied to reveal the degradation modes of phosphasilazanes. This
way, knowledge on the mechanisms of flame retardancy and inhibition of fiber degradation
is attained.

2. Results
2.1. Burning Behavior—Cone Calorimetry

Flame-retardant effects are characterized in comparison to neat resin samples from
our previous publication (Figure 1) [34]. We showed that the chemical environment of the
phosphorus atom in the phosphasilazane affects fire properties in the neat epoxy resin.
Specifically, phosphasilazanes with an oxygen-rich environment at the phosphorus atom
leading to a mode of action in the condensed phase showed improved flame retardancy
in neat resin. For PO(OPh)2-VSil 1, charring occurs. SCP-VSil 3 also exhibits intumescing
char. Both structures contain two OR moieties at the phosphorus atom. On the other hand,
structures with increased silazane content (POOPh-VSil2 2 and Spiro-VSil2 5) or with a
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predominant mode of action in the gaseous phase such as DOPO-VSil 4 provide less flame
retardancy due to a carbon- or nitrogen-rich environment at the phosphorus atom. The
vinyl moiety does not affect the mechanical properties of the matrix. It is degraded at lower
temperatures than a methyl moiety [35]. This leads to the methyl moiety degrading after
the matrix and, thus, to less effective flame-retardant properties than in the presented vinyl
moieties.
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Figure 1. Schematic influence of structural variation in the phosphorus atom on flame-retardant
properties of phosphasilazanes in neat epoxy resin. Reprinted from [34].

In this study, cone calorimetry is used for the characterization of carbon-fiber-reinforced
samples with phosphasilazanes (Figure 2). In the RTM 6 composite without any phosphasi-
lazane 0, the heat release rate (HRR) rises fast after ignition, leading to multiple peaks
originating from delamination processes [12,36,37]. During delamination, adjacent carbon
fiber layers are separated. Hence, additional volatiles are released abruptly. Their combus-
tion leads to a higher HRR. Afterwards, the HRR is decreased until the next delamination.
For the CFRP containing phosphasilazanes, no sharp HRR peaks are observed. This is
analogous to other silazane-containing carbon-fiber composites, explained with a slower,
more continuous burning of the sample [38,39]. A single and comparably small peak is
observed for PO(OPh)2-VSil 1 and POOPh-VSil2 2. Two peaks with a higher intensity arise
for SCP-VSil 3, DOPO-VSil 4, and for Spiro-VSil2 5, indicating a charring effect for these
samples. The second peak describes less-efficient barrier effects compared to PO(OPh)2-
VSil 1 and POOPh-VSil2 2 by the formed char at the end of combustion, when the pyrolysis
front reaches the back of the sample. The char might even degrade, leading to worse
flame-retardant properties for SCP-VSil 3, DOPO-VSil 4, and for Spiro-VSil2 5.
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Figure 2. HRR curves for PO(OPh)2-VSil 1, POOPh-VSil2 2, SCP-VSil 3 (above), and DOPO-VSil
4 and Spiro-VSil2 5 (below) in carbon-fiber-reinforced RTM 6 composites from cone calorimetry
(60 kW m−2).

The pHRR is reduced for all samples containing phosphasilazane flame retardants
(Table 1). PO(OPh)2-VSil 1 shows the highest reduction of 52%, down to 260 kW m−2 and,
thus, is considered the most effective flame retardant from this series. POOPh-VSil2 2 and
DOPO-VSil 4 also decrease the pHRR by around 30%. The least effective flame retardants
are SCP-VSil 3 and Spiro-VSil2 5, which still reduce this parameter by 12%. The same trend
is observed for the maximum average rate of heat emitted (MARHE).
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Table 1. Overview on results from cone calorimetry after 300 s at 60 kW m−2.

TTI/
s

TTF/
s

pHRR/
kW m−2

THR X−1/
MJ m−2

MARHE/
kW m−2

TSR X−1/
m2 m−2

mR/
% X

RTM 6 + CF 0 31
±2

193
±42

492
±19

72
±1

484
±10

3760
±170

59
±1 0.43

+PO(OPh)2-VSil 1 18
±4

173
±68

260
±32

55
±7

271
±8

2290
±270

65
±9 0.27

+POOPh-VSil2 2 19
±1

186
±48

342
±18

57
±3

431
±37

2130
±140

64
±7 0.27

+SCP-VSil 3 32
±3

211
±29

423
±9

72
±7

413
±38

3820
±470

48
±7 0.49

+DOPO-VSil 4 26
±2

212
±41

363
±34

64
±3

344
±16

3170
±420

51
±7 0.39

+Spiro-VSil2 5 18
±4

121
±85

434
±44

68
±3

444
±19

2520
±140

52
±5 0.45

In order to compare the total heat release (THR), it must be normalized to the matrix
content (X), whereby X describes the mass ratio of resin and flame retardant to the overall
sample mass. The obtained values for X vary between 0.27 and 0.49, which is typical
for hand lamination processing [40,41]. The THR X−1 is equal to the reference sample of
RTM 6 0 for SCP-VSil 3 and Spiro-VSil2 5 and, thus, these samples do not indicate flame
retardancy. The parameter is reduced for PO(OPh)2-VSil 1 and POOPh-VSil2 2 by over 20%
to 55 MJ m−2 and 57 MJ m−2, respectively.

The total smoke release per matrix content (TSR X−1) also hints at the mode of action.
If this value is decreased, it describes a mode of action in the condensed phase, whereas an
increased TSR X−1 indicates a mode of action in the gaseous phase, like for THR X−1. This
parameter is comparable for SCP-VSil 3 (3820 m2 m−2) to the carbon-fiber-reinforced resin
0 (3760 m2 m−2). Hence, the TSR X−1 also does not indicate an efficient flame retardancy
for SCP-VSil 3. The other phosphasilazanes and especially PO(OPh)2-VSil 1 as well as
POOPh-VSil2 2 decrease this parameter by up to 45% (2290 m2 m−2 and 2130 m2 m−2).
Therefore, it supports the result of action in the condensed phase.

The residual mass (mR) is normally another indicator for the mode of action, but this
value is not significant due to variation in matrix content in the samples resulting from the
hand lamination process.

The time to ignition (TTI) is reduced by 5–13 s for the various phosphasilazane-
containing samples, except for SCP-VSil 3 compared to the pure RTM 6 composite. The
reduction in TTI is common for flame retardants acting in the condensed phase since the
surface heats faster. Because of this and the double peak in HRR, PO(OPh)2-VSil 1, POOPh-
VSil2 2, DOPO-VSil 4, and Spiro-VSil2 5 are considered to act partially in the condensed
phase in the CFRP samples. On the other hand, the pHRR, MARHE, and THR X−1 are not
influenced for Spiro-VSil2 5. Therefore, this molecule shows neither flame-retardant nor
flame-accelerant properties. The time to flameout (TTF) is not influenced significantly by
the phosphasilazanes compared to RTM 6 0.

These results suggest two different modes of action for the flame-retardant properties
in the phosphasilazanes. On the one hand, a reduced TTI in combination with decreased
pHRR and THR X−1 describe increased flame retardancy in the condensed phase [42,43],
as shown before for PO(OPh)2-VSil 1 in neat resin [34]. On the other hand, reduced times
to ignition with a relatively high pHRR indicate fuel-like behavior, leading to worse flame-
retardant performance, like for Spiro-VSil2 5 [44]. This would be expected from the silazane
moiety because of its flammability [45]. Therefore, in principle, two competing effects occur
in carbon-fiber-reinforced samples, depending on the phosphasilazane.
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2.2. Burning Behavior—UL94 Burning Test

The results obtained by cone calorimetry indicate differences in flame-retardant prop-
erties for the various phosphasilazanes, which is supported by vertical UL94 burning
tests.

Despite some samples having a V-1 or V-0 classification in neat resin formulation [34],
the investigated composite samples achieve no classification (n.c.) in vertical UL94 burning
tests (Table 2). This may result from carbon fibers weakening the flame-retardant effect
in the condensed phase by increasing the sample surface (see below). Still, a decrease in
the mean first burning time t1 is detectable by the addition of phosphasilazanes. Whilst
PO(OPh)2-VSil 1 has a high mean first burning time t1 of 44 s, it is below 10 s for SCP-VSil
3, DOPO-VSil 4, and Spiro-VSil2 5. The value is not decreased for POOPh-VSil2 2 as the
sample burns completely after first ignition.

Table 2. Overview of results from vertical UL94 burning test including mean first burning time (t1).

Mean t1 in
UL94 Burning Test/s

UL94-V
Classification

UL94-V
Classification of

Neat Resin Samples
[34]

RTM 6 + CF 0 complete burning n.c. n.c.
+PO(OPh)2-VSil 1 44 n.c. V-1
+POOPh-VSil2 2 complete burning n.c. n.c.
+SCP-VSil 3 0 n.c. V-0
+DOPO-VSil 4 7 n.c. n.c.
+Spiro-VSil2 5 0 n.c. n.c.

Composite samples with comparable flame retardants are reported to achieve a clas-
sification in the literature, but they have either increased sample thickness or increased
flame-retardant loadings [28,46]. While 3–4 mm-thick samples may provide a V-0 classi-
fication, investigated composite samples were only 2 mm thick. The decreased sample
thickness was used in order to visualize possible effects on flame retardancy and inhibition
of carbon fiber degradation.

The obtained results are as expected, since flame retardants with a mode of action in
the condensed phase (e.g., PO(OPh)2-VSil 1), in general, lead to worse UL-94 classifications
for CFRP than flame retardants (partially) acting in the gaseous phase (e.g., DOPO-VSil 4).

2.3. Characterization of Residual Fibers by SEM

The composite samples consist of the bare fibers after combustion in cone calorimetry,
since the epoxy matrix degrades mostly. Carbon fibers in the RTM 6 composite 0 without
flame retardants are thermally degraded during irradiation (Figure 3a). At first, single
holes are generated on the surface. These grow and tunnel through the fiber with longer
irradiation. Due to this, fibers break and result in lower fiber length. The mean fiber
diameter is reduced to 4.0 µm simultaneously [29].
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Figure 3. SEM images of carbon fibers after cone calorimetry (1200 s, 60 kW m−2). (a) Without flame
retardant and with (b) PO(OPh)2-VSil 1, (c) POOPh-VSil2 2, (d) SCP-VSil 3, (e) DOPO-VSil 4, (f)
Spiro-VSil2 5. Exemplary defects of fibers are marked with an arrow. Areas analyzed by EDX are
marked with an oval.

If phosphasilazanes are incorporated into the matrix, the fibers are less decomposed
(Figure 3b–f). Neither tunneling holes nor broken fibers occur. Still, fiber damage is
observable for samples containing phosphasilazanes. The fiber surface is not smooth, but
depressions along the fiber axis appear. There are depositions in the form of agglomerated
particles inside the depressions. They are also aligned along the fiber axis for the samples
containing POOPh-VSil2 2, SCP-VSil 3, DOPO-VSil 4, and Spiro-VSil2 5. Hence, these
particles are not dispersed continuously. In comparison, PO(OPh)2-VSil 1 shows deposits
in the form of connected material instead of particles. This material covers the whole fiber,
lowering the number of depressions.

The residual fibers were also examined via optical microscopy in order to determine
average diameters of at least 30 detected fibers (Table 3). Additionally, the minimum fiber
diameter is given to show whether single respirable fibers are generated. Airborne fibers
are not detectable this way. Hence, a model is necessary for evaluating the formation
of respirable fiber fragments. The fiber diameter of 3 µm is here described as the lower
limit defined by the WHO. Fibers below this WHO limit are present for the pure RTM 6
composite 0, indicating respirable fiber fragments in the gaseous phase during combustion.
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Therefore, a reduction in fibers below the WHO limit is associated with the potential for
inhibition of the generation of respirable fiber fragments. The untreated fibers have a mean
diameter of 7.3 µm.

Table 3. Overview of fiber diameters of at least 30 fibers after irradiation in a cone calorimeter
(60 kW m−2, 1200 s).

Fiber Diameter/µm
Mean Minimum

RTM 6 + CF 0 4.0 ± 0.5 2.9
+PO(OPh)2-VSil 1 6.5 ± 0.3 5.8
+POOPh-VSil2 2 5.9 ± 0.6 4.8
+SCP-VSil 3 5.6 ± 0.5 4.4
+DOPO-VSil 4 5.7 ± 0.5 4.7
+Spiro-VSil2 5 5.7 ± 0.7 4.0

All flame-retarded samples exhibit less decreased fiber diameters compared to the
pure RTM 6 composite 0 (4.0 µm). PO(OPh)2-VSil 1 is the sample providing the most
effective combination of silazane and phosphorus moiety regarding fiber protection. The
mean diameter is 6.5 ± 0.3 µm. This effect can be explained by the mode of action in the
condensed phase for the phosphasilazane, which leads to a closed protective layer and a
classification in UL94 burning tests in the neat resin [34].

The mean fiber diameters of the phosphasilazanes 2-5 are slightly lower compared to
PO(OPh)2-VSil 1, and similar within standard deviation. Still, the mean fiber diameters
are also above the WHO limit of 3 µm for respirable fibers. The same result is observed for
minimum fiber diameters, indicating a reduction in respirable fibers. PO(OPh)2-VSil 1 has
the highest (5.8 µm), whilst it is lowest for Spiro-VSil2 5 (4.0 µm). The difference between
these two samples is 1.8 µm, indicating different fiber protection efficiency.

All examined phosphasilazanes act as inhibitors for fiber degradation. Particularly,
PO(OPh)2-VSil 1 leads to fiber diameters beyond similar phosphorus-containing flame
retardants acting in the condensed phase known from previous works (e.g., Novolac-SCP
(mean fiber diameter 6.0 ± 0.7 µm), TAHHT-DDPO (6.3 ± 0.4 µm)) [11,30,47]. In order to
determine the influence of the silazane moiety on fiber-degradation-inhibiting properties,
the residues are further analyzed by EDX and IR spectroscopy.

2.4. Characterization of Residues by EDX

The average elemental compositions of the deposits on the fibers are compared from
multiple EDX measurements. The carbon content is detected with high concentrations since
the background of these residues is carbon fibers. Hence, the values have to be compared
relatively (Table 4).

Table 4. Mean elemental concentrations in deposits on carbon fibers after irradiation in cone calorime-
try (1200 s, 60 kW m−2).

Carbon/% Nitrogen/% Oxygen/% Silicon/% Phosphorus/%

RTM 6 + CF 0 95.3 3.6 1.1 not detected not detected
+PO(OPh)2-VSil 1 49.7 0.9 30.6 17.3 1.5
+POOPh-VSil2 2 37.3 1.0 40.9 18.8 2.0
+SCP-VSil 3 87.1 1.6 7.9 1.6 1.8
+DOPO-VSil 4 88.8 1.7 6.5 1.5 1.5
+Spiro-VSil2 5 40.9 0.8 38.5 17.1 2.6

The residues from RTM 6 without a flame retardant on carbon fibers show high carbon
and nitrogen contents. Both contents decrease for phosphasilazane-containing samples
because the deposits mainly consist of oxygen, silicon, and phosphorus. The nitrogen
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content is decreasing along with carbon content. Hence, the measured nitrogen content is
dominantly attributed to the fiber.

The measured carbon and nitrogen contents are highest for the deposits of SCP-VSil 3
and DOPO-VSil 4 among the investigated phosphasilazanes. Additionally, the content of
oxygen, silicon, and phosphorus is the lowest. These results, at first, indicate low amounts
of deposits. Further, the ratio of oxygen to silicon is high with 4.9 for SCP-VSil 3 and
4.3 for DOPO-VSil 4. For example, the generation of SiO2 species is described by a ratio
of only two, as approximately observed for the other phosphasilazanes 1, 2, and 5 (see
below). Therefore, in SCP-VSil 3 and DOPO-VSil 4, additional phosphorus structures, such
as PO4 [48] or P2O5 [33], are present.

A higher content of silicon and oxygen related to the phosphorus content is noticeable
for the particles generated from the structures of PO(OPh)2-VSil 1, POOPh-VSil2 2, and
Spiro-VSil2 5. Along with the low carbon concentrations, this indicates high amounts
of residues on the fiber. The sample containing PO(OPh)2-VSil 1 generates mainly SiO2
species, as indicated by the lowest oxygen:silicon ratio of roughly two and the lowest
relative phosphorus concentration. The relative phosphorus concentration slightly increases
for POOPh-VSil2 2 and Spiro-VSil2 5. This increase correlates to a higher tendency for
agglomeration of residual particles, as seen for other phosphorus flame retardants [47].

The results from EDX measurements support the analyzed fiber diameters. PO(OPh)2-
VSil 1 acts as the best inhibitor of fiber degradation among the investigated phosphasi-
lazanes. In the SEM/EDX images, deposits consisting of mainly SiO2 species are observed
as connected structures on the fiber surface. Consequently, fiber diameter is the highest. A
high phosphorus content in the residues increases the tendency for agglomeration. The
agglomerates are not dispersed on the whole fiber, leading to less inhibition of fiber degra-
dation, as observed by lower fiber diameters, especially for SCP-VSil 3 and DOPO-VSil 4.

In order to comprehensively determine the mechanisms of fiber protection, the
residues are analyzed by IR spectroscopy.

2.5. Characterization of Char by IR Spectroscopy

ATR-FTIR spectra of char residues for neat resin samples after irradiation in cone
calorimeter (500 s, 35 kW m−2, analogue to [34]) show characteristic peaks for C=C
(1560 cm−1 and 1220 cm−1), P=O (1200 cm−1), and Si-O (1080 cm−1, 450 cm−1) vibrations
(Figure 4) [49,50]. The bands at about 970 cm−1 result from Si-N or P-O-P vibrations [31,49].
All spectra were normalized to the band intensity of C=C vibrations at 1600 cm−1. These
vibrations are attributed to char and result dominantly from the combustion of the matrix
resin. A second vibration is observable for the residue of the matrix RTM 6 0 at 1250 cm−1,
slightly overlapping possible bands for P=O signals in flame-retardant structures.

Interpretation of band intensities is limited for ATR-FTIR spectra. Nevertheless, several
trends can be observed. Especially for POOPh-VSil2 2, an increased amount of SiOx species
is formed during combustion. This is expected as this compound contains the largest
amount of silicon. The similar phosphasilazane PO(OPh)2-VSil 1 shows the second-highest
amount of SiOx. There is no distinct signal for SCP-VSil 3, DOPO-VSil 4, and Spiro-VSil2 5
at 1080 cm−1, indicating a low amount of SiOx species.

The results augment the observations from EDX measurements. Samples with a low
silicon content in EDX measurements (SCP-VSil 3, DOPO-VSil 4) also have a low intensity
for Si-O vibrations in IR spectroscopy.



Molecules 2023, 28, 1804 10 of 18
Molecules 2023, 27, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 4. IR spectra of residues of phosphasilazanes in RTM 6 matrix after irradiation in cone 
calorimeter (500 s, 35 kW m−2). 

2.6. Decomposition of Flame Retardants by Mass Spectroscopy 
For further characterization of the flame-retardant mechanism, DIP-MS 

measurements of the flame retardants were carried out. The samples were heated up to 
350 °C, which corresponds to the first degradation step of RTM 6 resin and the 
phosphasilazanes [34]. In this degradation step, flame retardants act and charring begins 
[51,52]. For samples containing PO(OPh)x-modified silazanes 1-2, DIP-MS measurements 
resulted in the formation of phosphoramidic acid diphenyl ester (PO(OPh)2-NH2, m/e = 
249, 248, 170, 94, 77, Figures 5 and 6) as the main component. SCP-containing samples 3 
confirmed the formation of salicylamide (m/e = 137, 120, 92), and DOPO derivatives 
indicated typical signals for DOPO-H fragments (m/e = 215, 168, 47). These evolved 
components may act as flame retardants in the gaseous phase. 

 
Figure 5. Exemplary total ion current (left) of PO(OPh)2-VSil 1 and DIP-MS spectrum at 3.7 min 
(right) of phosphoramidic acid diphenyl ester (red) with reference spectrum from database (blue). 

Figure 4. IR spectra of residues of phosphasilazanes in RTM 6 matrix after irradiation in cone
calorimeter (500 s, 35 kW m−2).

2.6. Decomposition of Flame Retardants by Mass Spectroscopy

For further characterization of the flame-retardant mechanism, DIP-MS measurements
of the flame retardants were carried out. The samples were heated up to 350 ◦C, which
corresponds to the first degradation step of RTM 6 resin and the phosphasilazanes [34].
In this degradation step, flame retardants act and charring begins [51,52]. For samples
containing PO(OPh)x-modified silazanes 1-2, DIP-MS measurements resulted in the for-
mation of phosphoramidic acid diphenyl ester (PO(OPh)2-NH2, m/e = 249, 248, 170, 94,
77, Figures 5 and 6) as the main component. SCP-containing samples 3 confirmed the
formation of salicylamide (m/e = 137, 120, 92), and DOPO derivatives indicated typical
signals for DOPO-H fragments (m/e = 215, 168, 47). These evolved components may act as
flame retardants in the gaseous phase.
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Additionally, SCP-VSil 3, Spiro-VSil2 5, and especially DOPO-VSil 4 showed the
formation of 1,1,3,3-tetramethyl-1,3-divinyldisiloxane (TMDVS, m/e = 171, 159, 143, 117,
59) as a minor component. This leads to the conclusion that, under heating, a scission
of the silazane bond followed by oxidation of the silane moiety occur. Rearrangement
and oxidization reactions from silazanes to corresponding siloxanes are known in the
literature [53–55].

Interestingly, for PO(OPh)x-containing compounds 1–2, neither TMDVS nor other
silicon-containing species are detected. Therefore, residual silicon compounds remain
inside the sample holder and are not detected by mass spectroscopy. The silicon compounds
also remain in the residue during a burning event, as shown by an increase in SiOx species
in the ATR-FTIR spectra or silicon content in EDX measurements for PO(OPh)x-containing
compounds 1–2 after irradiation.

Therefore, the used methods describe different phenomena. The mechanism in the
condensed phase is described better by ATR-FTIR and EDX, whereas the action in the
gaseous phase is observed via mass spectroscopy.

2.7. Interlaminar Shear Strength (ILSS)

The composite samples containing PO(OPh)2-VSil 1 and POOPh-VSil2 2 show low
interlaminar shear strengths (ILSSs) between 32 and 37% compared to the sample without
a flame retardant due to an irregular surface resulting from the hand lamination process.
Hence, the measurements are not comparable to the others. The samples containing
SCP-VSil 3, DOPO-VSil 4, and Spiro-VSil2 5 show ILSSs of around 50 N mm−2, which is
compared to the pure RTM 6 composite between 74% and 77% (Table 5). Such a decrease is
also caused by other pre-ceramic materials [26], but the investigated phosphasilazanes have
the advantage of being used in bulk. Hence, they can be combined with other structures,
such as additional flame retardants or cross linkers, that may decrease the ILSS to a lesser
extent.

Table 5. Relative interlaminar shear strength (ILSSrel) correlated with pure RTM6 + CF.

ILSS/N mm−2 ILSSrel/%

RTM 6 + CF 66.8 ± 4.4 100
+PO(OPh)2-VSil 1 (a) (25.0 ± 5.4) (37)
+POOPh-VSil2 2 (a) (21.2 ± 8.2) (32)
+SCP-VSil 3 51.2 ± 4.6 77
+DOPO-VSil 4 51.2 ± 3.3 77
+Spiro-VSil2 5 49.4 ± 2.7 74

(a) Samples have an irregular surface and are not comparable.

3. Discussion
3.1. Influence of Chemical Structure of the Phosphasilazane on Flame-Retardant Mode of Action

The investigated phosphasilazanes generate two major silicon-containing structures
during decomposition. TMDVS is released in the gaseous phase, as determined by mass
spectroscopy. It is generated by a scission of the silicon–nitrogen bond, followed by a partial
oxidation of the silane moiety, occurring for the phosphasilazanes SCP-VSil 3, DOPO-VSil
4, and Spiro-VSil2 5 (Figure 7b). Flame-retardant properties are observable in the gaseous
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phase (Table 6) via fragments of salicylamide for SCP-VSil 3 or DOPO-H for DOPO-VSil
4. Still, these properties are not sufficient in the UL94 burning test and cone calorimetry,
since flammable TMDVS is evolving into the gaseous phase. Consequently, for SCP-VSil
3 and DOPO-VSil 4, high amounts of phosphorus relative to silicon are observed in the
residues after irradiation. Therefore, the generated particles tend to agglomerate and the
fiber-protective properties are limited.
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Table 6. Comparison of mode of action and flame-retardancy performance of phosphasilazanes
from cone calorimetry for neat resin samples [34] and carbon fiber composites compared to samples
without flame retardants. - = deteriorated, o = no influence, + = increased, ++ = greatly increased.

Neat Resin Composite

Main Mode of Action Flame Retardant
Performance Main Mode of Action Flame Retardant

Performance

PO(OPh)2-VSil 1 Charring ++ Condensed phase ++
POOPh-VSil2 2 Increased burning - Condensed phase +

SCP-VSil 3 Intumescence ++ Condensed and
gaseous phase o

DOPO-VSil 4 Increased burning - Condensed and
gaseous phase +

Spiro-VSil2 5 ambiguous o ambiguous o

On the other hand, SiOx structures are generated in the condensed phase predom-
inantly for the phosphasilazanes PO(OPh)2-VSil 1 and POOPh-VSil2 2, as shown in IR
and EDX measurements. Both structures show increased flame-retardant properties in
the condensed phase in cone calorimetry and PO(OPh)2-VSil 1 in the UL94 burning test.
The inorganic SiOx structures do not agglomerate and increase fiber protection. They are
produced via complete oxidation of the silazane moiety. The reaction may be induced by
an intramolecular rearrangement via an electrophilic attack by silicon on the electron-rich
P=O functionality, driven by the high energy of the formed Si-O bond (Figure 7a) [53,54].
This isomerization reaction is favored for structures with free rotation of the substituents at
the phosphorus atom, as for PO(OPh)2-VSil 1 and POOPh-VSil2 2. It is hindered for bulky,
rigid substituents at the phosphorus atom, like for ring systems in SCP-VSil 3, DOPO-VSil
4, and Spiro-VSil2 5, as the ring structure does not favor electron delocalization over the
N-P-O group. Hence, the scission of the silicon–nitrogen bond and generation of TMDVS
are favored for these molecules 3, 4, and 5 (Figure 7b).

The interlaminar shear strength is decreased by all phosphasilazanes. Since this param-
eter is the same for SCP-VSil 3, DOPO-VSil 4, and Spiro-VSil2 5, the chemical environment
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of the phosphorus atom has a neglectable influence on this value. This is known to other
phosphorus-containing flame retardants as well [29,30].

Overall, the flame-retardant mode of action in the condensed phase via SiOx species
and fiber-protective properties can be achieved with structures without ring strain, acting
mainly in the condensed phase. A decreased amount of phosphorus in the char improves
fiber-protective properties via continuous barriers on the carbon fibers. The mode of action
in the gaseous phase is influenced by the organic moieties at the phosphorus atom.

3.2. Comparison of Mode of Action in Neat Resin and in Composite

The various structures of the investigated phosphasilazanes influence flame retardancy
in both neat epoxy resin samples and composites thereof, but slightly differently. Resin
samples are homogeneous, containing the solved phosphasilazanes [34]. The additional
carbon fibers in the composites mainly interfere physically in the burning process. They
dilute the combustible material, can act as barriers, especially during delamination pro-
cesses, conduct heat into the bulk material, and may increase the surface for better oxygen
access [56].

It is found that for the composite samples, the investigated phosphasilazanes tend
more to a mode of action in the condensed phase compared to the neat resin samples.
This is because, for example, transport processes of volatiles such as gas-phase-active
flame retardants are hindered by the carbon fiber plies. The flame-retardant properties of
PO(OPh)2-VSil 1, which acts via charring in neat resin, do not significantly change in the
composite (Table 6). However, since the condensed phase mechanism is more pronounced
in the composite, phosphasilazanes that accelerate burning in neat resin (POOPh-VSil2
2, DOPO-VSil 4) gain flame-retardant properties in the composites. Even if DOPO-VSil 4
additionally acts in the gaseous phase via phosphorus moieties (DOPO-H), it is still not as
efficient as PO(OPh)2-VSil 1, as gas-phase-active phosphasilazane flame retardants are less
effective in the composite.

SCP-VSil 3 shows greatly increased flame-retardant performance via intumescence
in neat resin samples. However, SCP-VSil 3 is not as efficient in the composite, since
carbon fiber plies negatively affect the generation of intumescent barriers. Even if flame-
retardant salicylamide (as well as flammable TMDVS) evolves into the gaseous phase, no
influence on the flame-retardant performance occurs compared to the composite without
phosphasilazanes.

The aromatic moieties of phosphasilazanes in 1 to 4 typically support the flame-
retardant performance, especially by a mode of action in the condensed phase. On the
contrary, a structure with a cyclo-aliphatic backbone, such as Spiro-VSil2 5, does not increase
the flame-retardant performance, neither in neat epoxy resin nor in the composite. Apart
from that, the mode of action in the condensed phase may also be deteriorated.

4. Materials and Methods
4.1. Materials

All materials were obtained from commercial sources: High-performance epoxy resin
RTM 6 and woven carbon fiber fabric G0939 (both Hexcel® Corp; Stamford, CT, USA) were
obtained from Lange + Ritter GmbH. (Gerlingen, Germany).

In this work, the influence of the novel phosphasilazane flame retardants from our
previous work [34] on fiber protection and flame retardancy in carbon fiber compos-
ites is discussed. All molecules 1–5 (Figure 8 share the active center of a phosphasi-
lazane. The examined phosphasilazanes are synthesized via metathesis reaction according
to [34,57,58]: PO(OPh)2-VSil (N-Dimethylvinylsilylamidophosphorus diphenylester, 1),
POOPh-VSil2 (N,N′-bis(dimethylvinylsilyl)diamidophosphorus phenylester, 2), SCP-VSil
(2-N-dimethylvinylsilylamido-4H-1,3,2-benzodioxaphosphorine-4-one-2-oxide, 3), DOPO-
VSil (10-N-dimethylvinylsilylamido-9-hydro-9-oxa-10-phosphaphenanthrene-10-oxide, 4)
and Spiro-VSil2 (3,9-bis(dimethylvinylsilyl)diamido-2,4,8,10-tetraoxa-3,9-diphosphaspiro
[5.5]undecane-3,9-dioxide, 5).
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4.2. Methods

Vertical UL94 burning tests (Dr.-Ing. Georg Wazau Mess- + Prüfsysteme GmbH,
Berlin, Germany) were carried out analogous to DIN EN 60695-11-10 [59]. Samples with
dimensions 65 mm × 13 mm × 2 mm were treated twice with a 50 kW Bunsen burner
flame at a distance of 10 mm in a 20◦ angle for 10 s.

Cone calorimetry tests (Cone Calorimeter Pro, Dr.-Ing. Georg Wazau Mess- + Prüf-
systeme GmbH, Berlin, Germany) were performed according to DIN EN ISO 5660-1 [60].
Samples were irradiated for 300–1200 s at 60 kW m−2 since fiber degradation is not ob-
served for lower heat fluxes, as described in the literature [11,61]. Data were analyzed
automatically using the program Cone Cal by the same supplier. The following parameters
are compared after 300 s. The abbreviations of parameters are as follows: TTI = time to
ignition, TTF = time to flameout, pHRR = peak heat release rate, THR = total heat released,
MARHE = maximum of average rate of heat emitted, TSR = total smoke released, mR =
residual mass, and X = resin content. Samples were cut out of the residues with a scalpel
for further analysis.

Confocal microscopy (Olympus BX50, Olympus Europa SE & Co KG, Hamburg,
Germany) was carried out at 50x magnification. Scanning electron microscopy/energy-
dispersive X-ray spectroscopy (SEM-EDX, EVO HD25, Carl Zeiss Microscopy GmbH, Jena,
Germany) is performed with a cathode voltage of 1 kV. The used detectors are an in-lens
detector or a secondary electron multiplier.

Infrared spectra (IR, Tensor 27, Bruker, Germany) were recorded with 32 scans achiev-
ing a resolution of 2 cm−1 in attenuated total reflectance mode on a silicon crystal. Samples
were cut from the top layer of char with a scalpel after cone calorimetry.

Mass spectroscopy (MS) was performed using a direct inlet probe (DIP) from Scientific
Instruments Manufacturer GmbH (Oberhausen, Germany) in combination with Inert XL
Mass Selective Detector (MSD) 5975 from Agilent Technologies Inc. (Santa Clara, CA, USA).
Samples were heated from 30 ◦C to 350 ◦C with 0.3 ◦C s−1, stabilizing the temperature
isothermally at 30 ◦C, 150 ◦C, 250 ◦C, and 350 ◦C for 1 min each. Resulting mass spectra
were analyzed using NIST MS Search by Adaptas Solutions (Palmer, MA, USA).

Interlaminar shear strength (ILSS) was tested according to DIN EN2563 [62] in a short
beam shear test with a universal testing machine Z020 by ZwickRoell GmbH & Co KG
(Ulm, Germany).

4.3. Processing of Carbon-Fiber-Reinforced Samples

Carbon-fiber-reinforced samples were produced via hand lamination of 8 fabric plies
G0939 with 0◦ orientation, according to the literature [63]. Epoxy resin RTM 6 was heated
to 120 ◦C and the soluble flame retardants were stirred into the resin manually, leading to a
flame-retardant load of 10 wt.%. The resulting 2 mm-thick samples were cured in a closed
mold at 5 bar at 160 ◦C for 1 h and at 180 ◦C for 2 h, according to the literature [11,29]. The
cured carbon-fiber-reinforced composites were cut into the dimensions for the different
testing methods with a water-cooled diamond saw. The samples were dried in an air-
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circulated oven overnight at 80 ◦C. The matrix content X is calculated by the subtraction of
the ratio between the mass of carbon fibers and composite sample mass after curing from 1.

5. Conclusions

All investigated phosphasilazanes act as inhibitors of carbon fiber degradation in
burning events of composites. The fiber diameter is less decreased in a fire and above
the WHO limit of 3 µm compared to the composite without a flame retardant, indicating
the inhibition of the generation of respirable fiber dust. The phosphasilazanes form Si-O
and P-O species that bind with char, forming a flexible residue in neat resin and particles
on carbon fibers in composite samples. Additionally to prohibiting fiber degradation,
phosphasilazanes and especially PO(OPh)2-VSil 1 exhibit flame-retardant properties. They
predominantly act in the condensed phase as well as in the gaseous phase, generating
different phosphorus moieties. Structures with ring systems at the phosphorus atom lead
to worse flame-retardant properties. They induce scission and oxidation of the silazane
moiety, decreasing the silicon content in the residue and generating the flammable structure
TMDVS. The generation of TMDVS does not occur for phosphasilazanes bearing less bulky
and non-rigid moieties at the phosphorus moiety. The flame-retardant properties may also
be increased with a synergist formulation with other flame retardants.

The flame-retardant properties are partially comparable between neat resin and com-
posites. However, flame-retarding mechanisms are influenced by the fiber plies in the
composites. A basic approach was found for neat resin samples: O-R groups bonded to
the P=O group of the phosphasilazane, favor mode of action in the condensed phase and
improve flame retardancy, and are not always applicable to the corresponding composite
samples. Neat resin samples showing intumescence led to worse results compared to
composites due to barrier effects of the carbon fiber plies, impeding intumescence and
providing a high surface area for enhanced oxygen access. On the other hand, neat resin
samples containing phosphasilazanes acting weakly by combined mechanisms in con-
densed and gaseous phases achieved improved flame-retardant properties as composites,
in which especially the flame retardant mode of action in the condensed phase is enhanced
by the carbon fiber plies.

Interlaminar shear strength of the investigated composites is weakened by the con-
tained phosphasilazanes but comparable to other pre-ceramic modified samples. Since
the phosphasilazanes are incorporated into the matrix, the loading may be decreased or
alternatively combined with other materials, such as cross linkers, increasing the ILSS.

Overall, phosphasilazanes show high potential as a class of flame retardants that
also hinder fiber degradation of carbon-fiber-reinforced polymers during burning. Their
efficiency may be improved through investigation of newly synthesized structural variants,
or via polymerization of the vinyl group. Additionally, their concentration may be varied
or they could be used in formulations as synergistic flame retardants or by concentration
variation.
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