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Abstract: Previous studies have provided evidence that genistein exerts a therapeutic effect on differ-
ent tumor cells. However, the mechanism of action of genistein against cervical cancer cells remains
largely unknown. The aim of this study was to comprehensively decipher the anti-metastatic effect
and molecular mechanism of genistein action on cervical cancer cells. We developed an integrated
strategy from genotype to phenotype, combining network pharmacology and a transcriptome screen-
ing approach, to elucidate the underlying mechanism of action of genistein against human cervical
cancer cells. In silico studies predicted that the focal adhesion pathway may be an important signaling
cascade targeted by genistein treatment. Using RNA sequencing analysis, representative genes of the
focal adhesion pathway were demonstrated to be significantly downregulated. Phenotypic studies
revealed that genistein demonstrated strong anti-proliferative and anti-metastatic activity in HeLa
cells. Moreover, genistein modulated this activity in a concentration-dependent manner. Genistein
also inhibited both the activation and gene expression of FAK (Focal Adhesion Kinase) and paxillin.
In addition, vimentin and β-catenin protein expression, and Snail and Twist gene expression, were
strongly inhibited by genistein. Our findings provide strong evidence for a pleiotropic effect of
genistein on cervical cancer cells, mediated through the focal adhesion pathway.

Keywords: genistein; cervical cancer; metastasis; network pharmacology; RNA expression profiling

1. Introduction

Cervical cancer is known to be the fourth most common malignancy, leading to a
substantial burden and threatening women’s health worldwide [1]. A persistent infection
by human papilloma virus (HPV), especially HPV16 and 18, is critical for cervical cancer
initiation and progression [2,3]. The implementation of HPV vaccines, HPV testing, and
cervical cytology has notably decreased the incidence of early-stage cervical cancer [2,4,5].
However, patients with advanced cervical cancer still have unfavorable outcomes due
to the high incidence of metastasis, which is still one of the main factors influencing the
prognosis of patients. Moreover, the clinical application of immunotherapy or adjuvant
chemotherapy approaches in advanced cervical cancer has not been as effective as once
expected [6,7]. Therefore, there is an urgent need for novel therapeutic approaches.

Cervical cancer is a complicated disease involving the disruption of normal complex
biological networks in the human body [8]. Upon HPV infection, several key molecu-
lar events are involved in the initiation and progression of cervical cancer, including the
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Toll-like receptor (TLR) pathway, the nuclear factor-kappa B (NF-κB) pathway, the Notch
signal pathway, the Hippo-Yes-associated protein (YAP1) pathway [9–11], and the focal
adhesion pathway [12]. However, drugs that act on single-molecular targets usually exert
an unsuccessful effect or show strong toxic side effects in clinical practice. Considering
the complexity of the pathogenesis of cancers, attention has switched from focusing on
single drug targets towards a more systemic view of drug targets [13]. Network pharma-
cology is considered a powerful tool in deciphering the complexity of biological systems
and provides a new concept for understanding the interplay of molecular networks of
compounds [14]. This approach is now widely used in the study of the pharmacological
effects of compounds, where it promotes new directions for efficient drug discovery.

Genistein is a well-studied natural flavone compound with a wide range of biological
effects, including tyrosine kinase inhibitory, anti-inflammatory, phytoestrogen, and anti-
cancer effects [15–20]. Several studies have already been published concerning genistein
treatment during cervical cancer development, and the reported activities of genistein
include inducing cell cycle G2-M phase arrest and apoptosis, inhibiting the action of
histone deacetylases and DNA methyltransferases, and synergizing the radiation effect by
cell cycle G2-M phase arrest and AKT (Protein Kinase B) activation [21–26]. Considering
the range of activities identified in the above-mentioned studies, the precise molecular
action of genistein against cervical cancer remains largely unknown. Therefore, in order to
investigate the molecular action of genistein against cervical cancer more comprehensively,
this study employed an integrated strategy that combined the network pharmacology
approach and RNA-seq analysis to identify critical targets related to the genistein treatment
of cervical cancer.

2. Results
2.1. Identification of Potential Genistein Targets against Human Cervical Cancer

The targets of genistein and human cervical cancer were downloaded from the Com-
parative Toxicogenomics Database (CTD). In total, 28,150 protein-coding genes were related
to the progression of human cervical cancer, and 2647 protein-coding genes were confirmed
as the effective targets of genistein. A total of 2647 genes were identified in a Venn plot
(Figure 1). Since a large number of genes were identified, we performed secondary screen-
ing using an Interaction Count (human cervical cancer target > 50; genistein target > 2).
Finally, 371 genes were selected as the core targets involved in the action of genistein (data
not shown), and the following analysis is based on these genes.
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Figure 1. Venn plot of genes potentially involved in genistein’s action against human cervical cancer.
The purple color represents the targets of genistein, and the yellow color represents the genes related
to the progression of human cervical cancer.

2.2. PPI Network Construction and Identification of Hub Genes

The 371 core targets were introduced into the STRING database to build the PPI
(Protein-Protein Interaction) network of genistein’s action against human cervical cancer. A
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confidence score of protein and protein interaction of >0.9 was set, and data were collected
and visualized using Cytoscape. As shown in Figure 2, the network contained 317 nodes
and 1754 edges; the cluster coefficient was 0.33, and the network centralization value was
0.170. The top 10 hub genes in this network were subsequently identified by MCC (Maximal
Clique Centrality) algometrical analysis: FN1, TIMP1, GAS6, IL6, C3, IGFBP3, IGFBP4,
IGFBP1, CST3 and SPP1. The increasing significance of genes in the network is represented
by the color change (yellow to red) (Figure 3).
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2.3. GO Enrichment Analyses of Core Targets

The predicted core targets were further analyzed by GO (Gene Ontology) and KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway enrichment in the DAVID database.
The top 20 biological processes of predicted core targets were identified (Figure 4A); the
core targets are mainly involved in the response to organic substances, regulation of
programmed cell death, regulation of cell death, regulation of apoptosis, response to
endogenous stimulus, regulation of cell proliferation, response to hormone stimulus, and
response to extracellular stimulus. The enriched KEGG pathways (Figure 4B) included the
following: pathways in cancer; the p53 signaling pathway; the cell cycle; apoptosis; the
MAPK (Mitogen Activated Protein Kinase) signaling pathway; the TLR (Toll Like Recepter)
signaling pathway; and focal adhesion. From the hub gene analysis, FN1 was selected
as the most significant hub gene in genistein’s action against the cervical cancer network.
Therefore, we predicted that the focal adhesion pathway is a novel pathway targeted by
genistein in the treatment of cervical cancer. To gain a deeper insight, all the predicted
genes in this pathway potentially regulated by genistein are highlighted in red (Figure 5).
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2.4. Genistein Attenuates Cell Viability and Growth in HeLa Cells

According to in silico studies, genistein showed multiple effects on cervical cancer.
Next, we experimentally validated these effects using human cervical cancer cells in vitro.
The high−risk HPV 16 and 18 are highly associated with the pathogenesis of cervical cancer.
Moreover, according to the literature, HeLa cells are more sensitive to genistein treatment.
Therefore, in this study, we used HeLa cells for the following experiments [27]. As shown
in Figure 6A, genistein significantly inhibited cell growth in a time- and dose-dependent
manner after 24 h and 48 h of treatment by CCK−8 (Cell Counting Kit−8) assay. Moreover,
5-fluorouracil (5−FU), clinically used as an anti-tumor drug, was used as a positive control.
The concentration of 5−FU was chosen based on the literature [28]. The result showed that
80 µM of 5−FU inhibited the viability of HeLa cells compared with the DMSO (Dimethyl
sulfoxide) control. The results indicate that genistein exerted the same inhibitory effect on
the human cervical cancer cells as the anti-cancer drug 5−FU. Moreover, we further tested
the effects of genistein on cell growth by using cell number counting. The results indicate a
prominent effect of genistein on cell growth; the cell number was significantly decreased
after genistein (12.5–100 µM) treatment for 24–48 h (Figure 6B). Furthermore, genistein strongly
inhibited the colony formation ability of cervical cells (Figure 6C). While cervical cells formed
large colonies in the control group, this colony-forming ability was significantly decreased
after genistein treatment, indicating that genistein (12.5–100 µM) strongly inhibited HeLa cells’
proliferation. Overall, these results demonstrate that 12.5–100 µM genistein strongly inhibited
HeLa cells’ viability and proliferation.
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Figure 6. (A). Effects of genistein treatment on the proliferation of HeLa cells for 24–48 h were detected
by CCK−8 assay. (B). Effects of genistein treatment on cell growth were counted by hemocytometer
after 24–48 h. (C). Representative images of HeLa cell colony formation after genistein treatment
(0–100 µM). The data shown are the average of three replicates; the experiments were performed
three times independently. *** p < 0.001, ** p < 0.01, * p < 0.05 compared with solvent control. Scale
bar: 200 µm.
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2.5. Genistein Inhibits HeLa Cell Adhesion

Since adhesion is the first critical step in cancer metastasis, we initially investigated the
influence of genistein on HeLa cells’ adhesion. The data demonstrate that genistein dose-
dependently inhibited cell adhesion in cervical cancer cells (Figure 7A,B). Compared to the
control, 92%, 82%, 81%, and 71% inhibition of adhesion was observed with 12.5 µM, 25 µM,
50 µM, and 100 µM of genistein, respectively. Thus, HeLa cell adhesion was significantly
inhibited after genistein (25–100 µM) treatment (p < 0.01; p < 0.05) (Figure 7A).
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Figure 7. Effects of genistein on HeLa cell adhesion. Cells were grown in the presence of different
doses of genistein for 24 h, and reseeded for 3 h. Adherent cells were then fixed by PFA (Paraformalde-
hyde) and stained with crystal violet solution. Absorbance readings were detected at OD570 nm by
microplate reader. (A). Percentage of adhesion was then calculated based on the OD value of the
adhered cells in the genistein-treated group (compared to control values (100%)). The experiment
was performed three times independently, and data shown are the average of all three replicates.
(B). Representative images from the three independent experiments. ** p < 0.01 vs. DMSO control;
* p < 0.05 vs. DMSO control. Scale bar: 200 µm.
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2.6. Genistein’s Inhibition of Cell Migration in the Wound−Healing Assay

We also assessed cell migration activities using a wound-healing assay. As shown in
Figure 8A,B, the continuous migration of HeLa cells was observed in the control group
after 8 h and 24 h. HeLa cell migration was significantly reduced in the presence of
12.5–100 µM genistein. The results indicate that genistein strongly inhibits cell migration
in a concentration-dependent manner (p < 0.01; p < 0.05).
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Figure 8. Effect of genistein on the mobility of HeLa cells. (A) Representative images of wound-
healing assay. (B) Cell migration was calculated by measuring the distances from the wound edges in
each treatment group using Image J software. Cell migration activity (as a percentage) was calculated
from the migration distances in the genistein treatment group (compared to the control (100%)). The
experiment was repeated three times. ** p < 0.01 vs. DMSO control. * p < 0.05 vs. DMSO control;
Scale bar: 200 µm.

2.7. Genistein Inhibited Cell Migration and Invasion of HeLa Cells in Transwell® Assays

The inhibition of cell migration by genistein was verified using the Transwell assay. A
remarkable decrease in cell migration activity was observed with increasing concentrations
of genistein; 12.5 µM–100 µM of genistein decreased cell migration activity by 81%, 85%,
50%, and 36% compared with the solvent control, respectively (Figure 9A–C). As shown
in Figure 9B–D, genistein (12.5–100 µM) also significantly inhibited cell-invasive activity;
12.5 µM, 25 µM, 50 µM, and 100 µM of genistein decreased cell invasion activity compared
with the solvent control by 36%, 39%, 30%, and 27%, respectively. Compared with the
inhibition of cell migration activity, genistein exerted a stronger inhibitory effect on cell
invasion activity. Moreover, compared with the cell viability results, the inhibition of cell
migration and invasion was not entirely due to the inhibition of cell viability.
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Figure 9. Effect of genistein on the migration and invasion activities of HeLa cells. Cells were seeded
on membranes and co-cultured with different doses of genistein for 24 h. (A) Cells that migrated to
the lower surface of the filter were fixed and stained with crystal violet, and then photographed by an
inverted microscope at ×100. (B) Cell invasion was assessed by following cell movement through the
Matrigel to the lower surface of the filter. Invading cells were fixed, stained with crystal violet, and
photographed under an inverted microscope at ×100. (C) Cell migration was quantified from at least
three images randomly using Image J software. (D) Cell invasion was quantified from at least three
images randomly using the Image J software. The experiment was repeated three times. ** p < 0.01
vs. DMSO control. * p < 0.05 vs. DMSO control; scale bar: 200 µm.

2.8. Identification of Differentially Expressed Genes (DEGs) Associated with Genistein Treatment

To further decipher the mechanism of genistein’s action on cervical cancer cells, we
analyzed global gene expression profiles in genistein- and DMSO-treated cells by using
RNA sequencing. Approximately 59–67 million (M) clean reads from six samples (three
for genistein treatment; three for control) were obtained after deletion of the low-quality
and adaptor sequences; Q30 bases ranged from 92.72% to 93.32% (data not shown). These
results demonstrate that the samples were of good quality, and that the coverage of the
cervical cancer cell genome was high.

We previously observed significant changes in the proliferation and metastasis of
cervical cancer cells after genistein treatment. The transcriptome screening results provide
strong evidence that these changes were accompanied by significant differences in gene
expression. A total list of expressed genes was determined using RNA-Seq data (Figure 10).
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Among these, genes that were upregulated (orange) and downregulated (blue) following
genistein treatment (compared with control) were identified (p < 0.05; |log2FoldChange| > 1).
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Figure 10. (A) Volcano plot of DEGs identified following genistein treatment (compared with
control). Grey dots, genes with no significant difference in expression; blue dots, downregulated
genes; and orange dots, upregulated genes. Fold-change was calculated using gene-normalized
expression of the genistein group/gene-normalized expression of the control group. Differences in
expression with a p value < 0.05 and a Log2 (fold change) > 1 were considered statistically significant.
(B,C) Gene ontology enrichment of up- and downregulated DEGs after genistein treatment. (D) KEGG
enrichment of upregulated DEGs after genistein treatment.

Gene ontology of the DEGs was analyzed by GESA (Gene Set Enrichment Analy-
sis), and the upregulated and downregulated DEGs were enriched for biological process
analysis. The upregulated DEGs are involved in morphological processes, including
cilium organization, strand displacement, and cilium morphogenesis. In contrast, the
downregulated DEGs are associated with ribosomal subunits, the ribosome, the multi-
organism metabolic process, and mitochondrial translation. GESA analysis revealed that
the gene clusters involved in the regulation of mitochondrion organization, substrate
adhesion-dependent cell spreading, and focal adhesion were significantly downregulated
(Figures 10B,C and 11A,B,E,F). Moreover, the top KEGG pathways are listed in Figure 10D.
The downregulated DEGs are involved in the spliceosome, ribosome, GAP junction, protea-
some, cell cycle, purine metabolism, glycolysis metabolism, and oxidative phosphorylation.
Previously, we predicted that the focal adhesion pathway was a promising target for genis-
tein treatment in silico (Figures 3 and 4). The RNA sequencing results validated these
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predictions, and numerous genes in the focal adhesion pathway were downregulated after
genistein treatment, including FAK, PAK, Src, Shc, Actinin, Talin, and ILK. Moreover, mito-
chondrion function was also significantly inhibited by genistein, while adhesion-related
pathways involving adherent junctions were also downregulated (Figure 11C,D,G,H). Inter-
estingly, our data provide evidence that genistein mainly exerted a downregulation effect
on cervical cancer cells.
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2.9. Genistein Inhibits Activation of the FAK–Paxillin Pathway

To investigate whether genistein inhibited cell migration and invasion through inhi-
bition of the FAK−paxillin pathway, we performed Western blot analyses to detect the
expression of the relevant proteins. As shown in Figure 12, genistein treatment strongly
decreased the phosphorylation of paxillin and FAK. In addition, the expression of β-
catenin and vimentin was inhibited by genistein. The results suggest that the molecular
mechanism of genistein on cell proliferation and metastasis involves inactivation of the
FAK−paxillin pathway.
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Figure 12. Effect of genistein on the focal adhesion protein expression in HeLa cells. (A) Cells
were grown with or without different doses of genistein for 30 min. The expression levels of
specific proteins were detected by Western blot analysis. GAPDH was used as a control. All first
antibodies were used at a dilution of 1:1000. Secondary antibodies were used at a concentration
of 1:3000. (B–E) Integrated optical intensity of the bands was determined by Image J software
(https://imagej.net, accessed on 3 January 2023). The experiment was repeated three times. ** p < 0.01
vs. DMSO control.

2.10. Genistein Inhibits Gene Expression of FAK, Paxillin, Snail, and Twist

After confirming that genistein inhibits the activation of the focal adhesion pathway,
we next investigated whether genistein inhibits FAK and paxillin gene expression levels.
qRT-PCR results indicated that 50–100 µM genistein strongly downregulated paxillin and
FAK mRNA expression. In addition, we analyzed the expression of other genes of interest.
Snail is a transcription factor that regulates the expression of E-cadherin. Twist is closely
associated with cervical cancer progression [29–31]. Our results showed that high doses of
genistein (50–100 µM) inhibited Snail and Twist expression (p < 0.01; p < 0.05) (Figure 13).
These results confirmed that genistein inhibits migration and invasion via Snail- and
Twist-mediated EMT (Epithelial Mesenchymal Transition).
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Figure 13. Effect of genistein on specific gene expression in HeLa cells. (A) Genistein inhibited FAK
and paxillin, and (B) Snail and Twist mRNA expression in HeLa cells. Gene expression was analyzed
by qRT-PCR. mRNA relative expression levels were evaluated using the 2−44Ct method. GAPDH
was used as an internal control. The experiment was repeated three times. ** p < 0.01 vs. DMSO
control; * p < 0.05 vs. DMSO control.
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3. Discussion

The effects of genistein (alone or in combination with anti-cancer drugs) on growth
regulation, angiogenesis, and metastasis have been extensively investigated in several dif-
ferent tumors [32–34]. Multiple molecular mechanisms have been implicated in its actions,
including inhibition of the NF-κB, Wingless, and integration 1 beta-catenin (Wnt/beta-
catenin); mitogen-activated protein kinase (MAPK); and phosphoinositide 3 kinase/Akt
(PI3K/Akt) signaling pathways [35]. However, evidence regarding the effects of genistein
on cervical cancer is limited. Therefore, the underlying mechanism of genistein’s action
against human cervical cancer, especially its anti-metastatic potential, remains unknown.
The present study was designed to elucidate the mechanism of genistein’s action against
cervical cancer.

We first used a network pharmacological approach to predict potential targets of
genistein’s action against human cervical cancer in silico. We identified 10 hub targets of
genistein treatment: FN1; TIMP1, GAS6, IL6, C3, IGFBP3, IGFBP4, IGFBP1, CST3, and
SPP1. FN1 encodes fibronectin, which monitors proliferation and metastasis by regulating
the FAK signaling pathway in cervical cancer cells [12]. Previous in silico studies have
identified the focal adhesion pathway as a key pathway in cervical cancer [36]. Moreover,
the focal adhesion pathway is already considered a potential target in the treatment of
highly invasive cancers [37–39]. Focal adhesion kinase (FAK) is an intracellular tyrosine
kinase and plays an important role in the regulation of ECM integrin signaling [40–43].
Evidence is accumulating that demonstrates that FAK promotes tumorigenesis through a
wide range of cellular processes, including proliferation, survival, metastasis, angiogenesis,
epithelial–mesenchymal transition (EMT), cancer stem cell activities, and the metabolism
of glucose, lipids, and glutamine [12,44,45]. In our in silico study, focal adhesion was
identified using KEGG pathway enrichment analysis as one of the targeted pathways that
regulate the anti-cancer effects of genistein (Figures 4 and 11). Considering all the evidence,
the FAK pathway was selected as the main pathway for experimental validation.

Phenotypic studies revealed that genistein decreased the proliferation of HeLa cells.
This observation is consistent with a previous study indicating that genistein demonstrates
cytotoxic properties in numerous different cell types [17,20]. Moreover, genistein is reported
to inhibit the proliferation of HeLa, CaSki, and C33 cell lines, and HeLa cells are more
sensitive to genistein [27]; therefore, we used the HeLa cell line for our mechanism study.
According to our results, genistein also dose-dependently inhibited the HeLa cells’ adhesion
and metastasis. The inhibition of adhesion is consistent with genistein’s inhibition of
focal adhesion pathway activation and genistein’s inhibition of vimentin and β-catenin
expression. Thus, our results provide evidence that genistein suppresses cervical cancer cell
metastasis by regulating the FAK/paxillin pathway. Genistein has previously been shown
to influence cervical cancer by altering epigenetic modulatory signatures and inducing
apoptosis [21,23]. Our results provide strong evidence that genistein inhibits both the
activation of the FAK/paxillin pathway and FAK and paxillin gene expression in cervical
cancer cells. These results are consistent with the published data and our previously
obtained data [17]. We showed that genistein inhibited p-FAK after only 10 min treatment
and had a stable inhibitory effect after 24 h treatment in melanoma cells. In human cervical
cells, genistein exerts the same behavior. Furthermore, we have previously reported that
high concentrations of genistein strongly decrease Snail expression in melanoma cells [17].
Snail is an important transcription factor regulating the process of EMT; the overexpression
of Snail in several tumor tissues is associated with metastasis and recurrence [46]. Here, we
show that genistein also inhibits Snail expression in human cervical cancer cells.

The role of genistein in cervical cancer was also explored by RNA expression profiling.
Thus, the influence of genistein on the regulation of RNA transcription, processing, and
splicing in cervical cancer cells was elucidated. The top KEGG pathways enriched using
the downregulated DEGs included the spliceosome, ribosome, cell cycle, RNA transport,
ribosome biogenesis in eukaryotes, ubiquitin-mediated proteolysis, RNA polymerase,
steroid biosynthesis, viral carcinogenesis, central carbon metabolism in cancer, microRNAs
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in cancer, focal adhesion, cellular senescence, and thyroid hormone signaling pathways.
Using RNA sequencing analysis, we were able to confirm our in silico predictions that
focal adhesion was a target pathway. In addition to inhibiting focal adhesion, genistein
downregulated the expression of PKC, Src, Shc, Pak, Actinin, Talin, and ILK (Figure 11).
Protein kinase C (PKC) is a serine-threonine kinase found in most cell types, where it exerts
a strong influence on signal transduction events. Elevated expression of PKC has been
highly associated with several human cancers, and inhibition of PKC signaling retards
the growth and invasion of cervical cells [47]. The proto-oncogene tyrosine-protein kinase
Src (Src) is involved in cell growth, differentiation, migration, and survival. FAK and Src
are recruited upon integrin activation to form the FAK–Src complex, and this complex
phosphorylates downstream adaptor proteins such as paxillin. The activated FAK–Src
complex has an essential role in controlling cell shape and cell motility [48,49].

Our RNA profiling analysis revealed that the downregulated DEGs are involved
in the regulation of the cell cycle. This result is consistent with our earlier published
data. We previously found that genistein could block the cell cycle arrest of macrophages
in the G2/M phase [50]. In addition, genistein strongly downregulated mitochondrial
organization and disrupted several metabolic pathways, including the glucose catabolic
process, ATP (Adenosinetriphosphate) generation from ADP (Adenosinediphosphate), and
multi-organism metabolic processes. According to previous reports, genistein can trigger
anti-cancer activity against several cancer cells involved in mitochondrial apoptosis [51–53].
However, in cervical cancer, genistein’s action on mitochondrial function has not yet been
reported. Therefore, this result may herald a new direction in cervical cancer research.

In conclusion, our study provides evidence that the mode of action of genistein against
cervical cancer is comprehensive, from genotype to phenotype. Our results reveal that
genistein exerts its anti-proliferation and anti-metastatic activities against cervical cancer by
interacting with several key pathways. Genistein inhibits the FAK/paxillin pathway and
strongly regulates Twist/Snail-mediated EMT, two pathways related to the progression of
cervical cancer. Differing from the dual function of genistein in regulating the metastasis
of melanoma cells [17], the predominant inhibitory effects of genistein on cervical cancer
cells were identified based on RNA expression profiling and phenotypic studies. The
novel mechanisms of action of genistein against cervical cancer identified in this study
should prove useful in future research and in clinical applications. Overall, our study
provides strong evidence that genistein is a promising chemotherapeutic agent against
cervical cancer.

4. Materials and Methods
4.1. Prediction of Genistein’s Anti-Human Cervical Cancer Targets

All verified targets of genistein and human cervical cancer were screened in the Compara-
tive Toxicogenomics Database (CTD) (http://ctdbase.org/) (accessed on 13 June 2018) [54–57].
CTD is a unique tool in which three types of core data can be obtained, including chemical–
gene (and protein) interactions, chemical–disease relationships, and gene–disease relation-
ships. It offers the basis for testable hypotheses about the mechanisms underlying the
etiology of environmental diseases [54]. The selected genes were further selected according
to the interaction count value, compound targets≥ 2, disease targets≥ 50. Finally, potential
targets of genistein against human cervical carcinomas were obtained by overlapping the
compound targets and disease targets.

4.2. PPI Network Analysis and Identification of Hub Genes

The STRING database [58] was applied to build the PPI network. The confidence score
for protein–protein interactions was selected as >0.9. The PPI network for genistein against
human cervical carcinoma was visualized using Cytoscape (v3.7.1). The hub genes in the
PPI network were calculated using the CytoHubba plugin based on the MCC algorithm [59].

http://ctdbase.org/
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4.3. GO and KEGG Pathway Enrichment Analyses of Core Targets

The Database for Annotation, Visualization, and Integrated Discovery (DAVID)
(https://david.ncifcrf.gov/) (accessed on 17 September 2018) was used for Gene Ontology
and KEGG pathway enrichment analysis of core targets. Bubble charts of BP and KEGG
pathways were produced by ggplot2, implemented in the R platform.

4.4. Experimental Verification
4.4.1. Reagent Source

Fetal bovine serum (FBS), 100× penicillin, streptomycin, and Dulbecco’s modified
Eagle’s medium (DMEM) were purchased from Lonza (Verviers, Belgium). Genistein was
obtained from Selleck (Shanghai, China). Genistein was dissolved in DMSO with a stock
solution of 100 mM and diluted in culture medium to final concentrations (12.5–100 µM).
Phosphatase and protease inhibitor cocktail set I and WST-8 buffer were purchased from
Biotool (Shanghai, China). Enhanced chemiluminescence (ECL) detection buffer was pur-
chased from Beyotime Biotechnology (Shanghai, China). Antibodies used in this study were
purchased from Cell Signaling Technology (Danvers, MA, USA), and are listed in Table 1.

Table 1. List of antibodies used in the experiments.

Name Source ID

1 Paxillin Rabbit, pAb #2542 Cell signaling
2 Anti-rabbit IgG, HRP-linked antibody Goat #7074 Cell signaling
3 Phospho-Paxillin (Tyr118) Rabbit, pAb #2541 Cell signaling
4 FAK Rabbit, pAb #13430 Cell signaling
5 Phospho-FAK (Tyr925) Rabbit, pAb #9330 Cell signaling
6 Vimentin (D21H3) Rabbit, mAb #9782 Cell signaling
7 β-Catenin (D10A8) Rabbit, mAb #9782 Cell signaling
8 GAPDH-HRP Mouse mAb #: ab011 Multi Science

4.4.2. Cell Culture and CCK-8 Cell Viability Test

The human cervical cancer cell line HeLa (HPV 18 positive) was purchased from the
Type Culture Collection of the Chinese Academy of Sciences (Shanghai, China). Cells were
cultured in DMEM with 10% FBS, penicillin (100 units/mL), and streptomycin (100 µg/mL),
in an incubator at 37 ◦C with 5% CO2. The CCK-8 test was performed as previously
described [17,41]. Briefly, HeLa cells (1 × 105 cells/mL) were cultured in DMEM with
different doses of genistein and solvent control for 24–48 h. CCK-8 was then added to the
culture medium and was incubated for 1 h. The absorbance was measured at a wavelength
of 450 nm (OD450 nm) in a microtiter plate reader (BioRad, Hercules, CA, USA).

4.4.3. Colony Formation Assay

Cells (1 × 103 cells/well) were initially grown in DMEM with or without different
concentrations of genistein and solvent control. After 7–10 days, the cells were fixed with
PFA and stained with crystal violet. Images of five randomly selected fields were captured
under an inverted microscope (Nikon, Tochigi, Japan).

4.4.4. Adhesion Assay

This assay was performed according to previous protocols [60,61]. Cells (1× 105 cells/mL)
were grown for 2 h and then cultured with or without genistein (0–100 µM) for another
24 h in a 12-well plate. Cells were collected and reseeded with the concentration of
1 × 105 cells/mL in a 96-well plate for 3 h. Afterwards, cells were washed, fixed with
PFA, and finally stained with crystal violet. Adhesion was assessed at OD570 nm using a
microplate reader. Images of five randomly selected fields were captured under an inverted
microscope. The percentage of adherent cells was calculated from the OD values of the
genistein-treated group (relative to the OD values of the control group).

https://david.ncifcrf.gov/
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4.4.5. Wound-Healing Mobility Assay

This assay was performed according to previous protocols [17]. Briefly, cells
(1 × 105 cells/well) were grown in a 6-well plate for 24 h to achieve 90% confluency.
The medium was discarded and cell monolayers were scratched with a sterile P200 mi-
cropipette tip. After the debris was washed away, cells were allowed to grow in serum-free
medium with different doses of genistein and solvent control for 24 h. Images of the wound
areas were captured at 0 h, 8 h, and 24 h. Cell migration was calculated by measuring cell
distances from the wound edges in each treatment group. Cell migration (as a percentage)
was calculated based on the migration distances in the genistein-treated group (relative to
those of the control group).

4.4.6. Transwell Assay

The assay was performed according to previous protocols [17]. Cells were cultured
in a Transwell® cell culture chamber (8 mm pore size; Corning, Lowell, MA, USA) at a
density of 2 × 104/well. For a 24-h invasion assay, the chambers were first coated with
MatrigelTM. A cell suspension in serum-free DMEM was cultured in the upper chamber
of the Transwell® insert with or without different doses of genistein and solvent control.
The lower part was filled with DMEM containing 20% FBS as a chemoattractant. After
24 h, cells that migrated or invaded into the lower surface of the membrane were fixed
with 4% PFA and stained with crystal violet solution. Images of five random fields were
captured by an inverted microscope. Cell migration/invasion was subsequently assessed
using Image J software. Cell migration/invasion was calculated (as a percentage) from the
relative numbers of cells in the genistein-treated and control groups.

4.4.7. Western Blotting Assay

The assay was carried out according to previous protocols [17]. Briefly, cells were
grown with or without different concentrations of genistein (12.5–100 µM) and solvent
control for 30 min. Cells were then harvested and lysed in ice-cold cell lysis buffer. After
protein extraction, the total protein concentration was quantified using standard protocols.
Total protein (20 µg of protein/lane) was then separated on a 10% SDS-PAGE gel by
electrophoresis. Separated proteins were transferred onto PVDF (Polyvinylidene Fluoride)
membranes (BioRad, USA) and subsequently probed with the respective primary antibody
followed by an HRP (Horse Radish peroxidase) -conjugated secondary antibody. Finally,
the blots were developed by ECL (Electrochemiluminescence).

4.4.8. RNA Sequencing

RNA sequencing was carried out as previously reported [62,63]. Cells were grown
with DMSO and genistein (50 µM) for 5 h. Total RNA was isolated using the RNeasy Plus
Mini Kit, following the manufacturer’s instructions (Qiagen, Germantown, MD, USA).
The quality of the RNA was first confirmed, and then the RNA was sequenced using the
Illumina Hiseq X ten platform in GeneChem. Data from the sequencer were first subjected
to quality control using FastQC and trimmed using trimgalore. Data processing included
(i) trimming the Illumina adapter sequence and low-quality bases (phred score < 20) at
the 3′ end; (ii) discarding the reads with a length shorter than 20 (the paired reads were
removed if any of the two reads did not meet the minimum length). Duplicates were then
removed using Picard. For each sample, we counted the reads of individual transcripts
using htseq-count. Differential analysis between treatments (genistein) and the control
was performed using a count-based method, limma, implemented in R, and voom for
normalization [64,65]. Significantly expressed genes were first screened for BH-adjusted
p values less than 0.05 [66] and further filtered using a 2-fold-change minimum boundary
(up- and downregulated genes labeled in the volcano plot). In parallel, we used GSEA v3.0
(Broad Institute, PreRanked mode) for enrichment analysis. To ensure consistency in our
method for identifying significant genes, we used the t-statistic output from the limma as
a metric for ranking. Here, 1000 gene set permutations were set as default, and gene sets
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were obtained by collecting pathways from KEGG and biological processes from GO. A
gene set with an FDR q value less than 0.05 was considered significantly enriched. For the
heatmap, log2 transformed FPKM values (fragments per kilobase of transcript per million
mapped reads) of the significant genes were used as input for heatmap generation.

4.4.9. Quantitative Real-Time RT-PCR

Cells were grown with or without different doses of genistein and solvent control for
5 h. Total RNA was isolated using the RNeasy Plus Mini Kit. The cDNA was synthesized
using a reverse transcription reagent kit (Selleck, Shanghai, China). Target genes were
amplified with the following specific primers in the Light Cycler® 96 Real-Time PCR System
(Roche, Indianapolis, IN, USA):

GAPDH: 5′-GGAGCGAGATCCCTCCAAAAT-3′ (forward) and
5′-GGCTGTTGTCATACTTCTCATGG-3′ (reverse);
FAK: 5′-TGGTGCAATGGAGCGAGTATT-3′(forward) and
5′-CAGTGAACCTCCTCTGACCG-3′(reverse);
Paxillin: 5′-CTGCTGGAACTGAACGCTGTA-3′ (forward) and
5′-GGGGCTGTTAGTCTCTGGGA-3′ (reverse);
Snail: 5′-TCGGAAGCCTAACTACAGCGA-3′ (forward) and
5′-AGATGAGCATTGGCAGCGAG-3′ (reverse);
Twist: 5′-GTCCGCAGTCTTACGAGGAG-3′ (forward) and
5′-GCTTGAGGGTCTGAATCTTGCT-3′ (reverse).
GAPDH was used as a normalization control. Each treatment was tested in triplicate.

The relative expression levels of genes were normalized using the 2−∆∆Ct method.

4.5. Statistical Analyses

Data are reported as the mean ± S.D. from at least three independent experiments. A
p < 0.05 was used to measure statistical significance. Student’s t-tests were used to compare
statistical significance between the treated groups.
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