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Abstract: One of the most promising drugs recently approved for the treatment of various types
of cancer is dacomitinib, which belongs to the tyrosine kinase inhibitor class. The US Food and
Drugs Administration (FDA) has recently approved dacomitinib as a first-line treatment for patients
suffering from non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR)
mutations. The current study proposes the design of a novel spectrofluorimetric method for deter-
mining dacomitinib based on newly synthesized nitrogen-doped carbon quantum dots (N-CQDs) as
fluorescent probes. The proposed method is simple and does not require pretreatment or preliminary
procedures. Since the studied drug does not have any fluorescent properties, the importance of
the current study is magnified. When excited at 325 nm, N-CQDs exhibited native fluorescence
at 417 nm, which was quantitatively and selectively quenched by the increasing concentrations of
dacomitinib. The developed method involved the simple and green microwave-assisted synthesis
of N-CQDs, using orange juice as a carbon source and urea as a nitrogen source. The characteriza-
tion of the prepared quantum dots was performed using different spectroscopic and microscopic
techniques. The synthesized dots had consistently spherical shapes and a narrow size distribution
and demonstrated optimal characteristics, including a high stability and a high fluorescence quan-
tum yield (25.3%). When assessing the effectiveness of the proposed method, several optimization
factors were considered. The experiments demonstrated highly linear quenching behavior across
the concentration range of 1.0–20.0 µg/mL with a correlation coefficient (r) of 0.999. The recovery
percentages were found to be in the range of 98.50–100.83% and the corresponding relative standard
deviation (%RSD) was 0.984. The proposed method was shown to be highly sensitive with a limit
of detection (LOD) as low as 0.11 µg/mL. The type of mechanism by which quenching took place
was also investigated by different means and was found to be static with a complementary inner
filter effect. For quality purposes, the assessment of the validation criteria adhered to the ICHQ2(R1)
recommendations. Finally, the proposed method was applied to a pharmaceutical dosage form of the
drug (Vizimpro® Tablets) and the obtained results were satisfactory. Considering the eco-friendly
aspect of the suggested methodology, using natural materials to synthesize N-CQDs and water as a
diluting solvent added to its greenness profile.
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1. Introduction

Cancer in all its types is one of the major causes of death across the world. The
most fatal type of cancer is lung cancer, which includes the following two main types:
small-cell lung carcinoma (SC) and non-small cell lung carcinoma (NSCLC); the latter one
constitutes about 85% of lung cancer cases [1]. Many treatments have been proposed for the
management of NSCLC over the last few decades. Among the most recent drugs approved
by the United States FDA is dacomitinib (DCB). It is an anilinoquinazoline derivative that
belongs to the small-molecule kinase inhibitor (SMKI) class of HER1/EGFR, HER2, and
HER4 tyrosine kinases. It is suitable for cases with human epidermal growth factor receptor
2 (HER2) autophosphorylation and tumor growth and is generally administered orally once
per day [2]. Commercially, the only approved tablet dosage form of DCB is available under
the trade name Vizimpro® and the recommended daily dosage is 45 mg [2]. As depicted
in Figure 1, DCB has the molecular formula C24H25ClFN5O2, leading to the associated
chemical name (2E)-N-[4-[(3-Chloro-4-fluorophenyl)amino]-7-methoxyquinazolin-6-yl]-4-
(piperidin-1-yl)but-2-enamide monohydrate [1]. According to the manufacturer, in vitro
experiments that applied the Vizimpro® treatment on human tumors implanted in mice
showed that the drug is capable of inhibiting the autophosphorylation of EGFR as well
as the human epidermal growth factor receptor 2 (HER2) and limiting the growth of the
tumor. The mean bioavailability of DCB after oral administration was found to be about
80% [2].
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velop a novel DCB determination method that is simple, economical, and ecofriendly, 
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Determining drug contents is an essential part of the quality assurance and develop-
ment of drug products. To the best of the authors’ knowledge, no spectroscopic methods
have been reported for the determination of DCB, which is likely due to its novelty [3]. A
survey of the related literature indicated that few analytical methods, including liquid chro-
matography with mass spectrometry (LC-MS/MS), have been reported for its analysis [1,4].
Two studies proposed methods for the analysis of DCB through LC-MS/MS, using solvents
such as DMSO and formic acid. These methods were shown to have satisfactory sensitivity
levels. However, when the cost and environmental impact are taken into consideration,
DMSO and formic acid may not be preferred. Therefore, it is essential to develop a novel
DCB determination method that is simple, economical, and ecofriendly, which motivated
the authors to pursue the subject of this study.

Fluorescence spectroscopy is one of the most selective and sensitive techniques with a
wide linear range of responses, without affecting precision. In order to take the advantages
of the fluorescence technique to the measurement of non-fluorescent drugs, one can use an
interface fluorescent molecule, so that the analyte can quantitatively quench the intensity
of its fluorescence emission.

The quantum dot (QD) is a small nanoparticle that is a few nanometers in size made
from a semiconductor material. QDs have many attractive optical and electronic properties
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that make them of interest in the nanotechnology and pharmaceutical disciplines, among
others. QDs have been used in a variety of recent applications, such as pharmaceutical
analysis, drug delivery, diagnosis, and cell labeling [5–7]. Comprehensive details of these
fields can be found in recent reviews [8,9]. Interestingly, they were reported to have
several applications as sensors and probes in spectroscopic methods for the estimation
of different pharmaceutical and environmental samples. Spectrofluorimetry is one of the
tools used for assessment, which has been widely used with QDs [10]. These fluorescent
sensors have the benefit of demonstrating high fluorescence intensity and good selectivity.
The different routes for QD synthesis including top-down and bottom-up methods were
discussed in detail in the literature [9,10]. Recently, a new type of QD made from carbon
instead of semiconductor materials has emerged. These nanomaterials are referred to as
carbon QDs (CQDs) and have a number of advantages over standard semiconductor QDs,
including a much lower toxicity, a better environmental impact, a lower cost, and more
facile synthesis [11].

In accordance with the objectives of this study, non-metallic heteroatom-doped CQDs
(HDCQDs) were used, which have been reported to possess superior optical and electrical
characteristics, as well as distinctive fluorescence characteristics. The most common doping
elements used in CQDs include boron, fluorine, nitrogen, phosphorus, and sulfur [11].
Doping of CQDs with nitrogen can modify their electronic and chemical features. Nitrogen
is adjacent to carbon in the periodic table, and thus possesses a similar atomic radius (0.70 Å)
to carbon (0.77 Å) and greater electronegativity (χN = 3.04) than carbon (χc = 2.55), making
it easier to incorporate nitrogen into carbon networks via substitution doping. Due to the
comparable atomic size and five valence electrons available for bonding with carbon atoms,
which significantly enhance fluorescence properties, N-doping is the most popular method
for enhancing the fluorescent properties of CQDs. The nitrogen atom injects electrons
into CQDs, altering the internal electronic environment and producing CQDs with high
fluorescence, exceptional catalytic activity, good cell permeability, and minimal cytotoxicity.
Subsequently, the superior luminescence characteristic of nitrogen-doped carbon quantum
dots (N-CQDs) allows them to be used for biomedical imaging and other optoelectronic
applications [9,12].

The fluorescence emissions of CQDs take place through multiple mechanisms, in-
cluding bandgap transitions and surface defects [13]. One specific type of HDCQDs that
has attracted the attention of many researchers is N-CQDs, due to their appealing elec-
trical properties and chemical reactivity, leading to the application of CQDs in different
fields [14,15].

The current study presents the first spectrofluorimetric-based determination method
for DCB without the need for any pre-derivatization steps or high-cost instrumentation.
The proposed method is based on the quantitative and selective quenching of the native
fluorescence of the prepared N-CQDS upon increasing the concentration of DCB. In the
proposed method, N-CQDs were prepared using a rapid, facile, and green microwave-
assisted approach in less than 10 min, utilizing orange juice (a carbon source) and urea (a
nitrogen source) as economic, ecofriendly, and readily available starting materials. This,
in turn, adds an important advantage to the proposed method in terms of commercial
viability and sustainability. The proposed synthetic approach in the current study possesses
different advantages over the reported methods for the synthesis of CQDs, which may
require the utilization of expensive instrumentation, long time, or complicated chemical
interactions under drastic conditions, including boiling with concentrated sulfuric acid as is
the case in carbonizing organics [16–18]. In fact, these complicated preparatory conditions
are expensive, time-consuming and will accordingly decrease the method’s greenness.

Due to the superior features of N-CQDs, the proposed method has a multitude of
advantages over the reported LC-MS/MS, including a shorter analysis time, a lower
cost, simpler procedures, better availability, biocompatibility, and method greenness. It
is important to note that LC-MS is an expensive option, both in terms of capital and
operational costs. The instrument requires skilled personnel to set it up.
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As will be shown later, applying the proposed method to Vizimpro® tablets produced
satisfactory accuracy and precision. This makes the developed method a strong contender
for application in the routine analysis of DCB in quality control laboratories.

2. Results and Discussion

As mentioned, quantum dots (QDs) can be used as fluorescent probes and offer many
benefits and merits over their classical counterparts. They were reported to have superior
photoluminescence properties, involve simple and cost-effective synthesis procedures,
economical starting materials and high water solubility, biocompatibility, and chemical sta-
bility [10]. Nitrogen-doped carbon QDs (N-CQDs) were prepared using a rapid, green, and
simple microwave-assisted approach according to the procedure described in Section 3.3
(Scheme 1). When excited at 325 nm, they exhibited a distinct fluorescence emission at
417 nm. In the current study, quantitative quenching of the native fluorescence of N-CQDs
caused by increasing concentrations of DCB formed the basis of the proposed spectrofluori-
metric approach for the quantitative analysis of the cited drug without the need for any
pre-treatment steps or high-cost instrumentation for the first time.
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Scheme 1. Synthesis of N-CQDs and application for the determination of DCB (Created with
BioRender.com, accessed on 28 February 2023).

2.1. Characterization of N-CQDs

The prepared QDs were thoroughly characterized using various spectroscopic and
microscopic methods. The obtained optical images of the N-CQD solution under UV
and visible lights are presented in Figure S1. The solution exhibited a dark orange color
under the visible light and a strong blue fluorescence when impinged with UV light. The
fluorescence intensity of N-CQDs remained stable for more than four weeks. A scan of
the UV spectrum was performed in order to investigate the optical characteristics of the
N-CQDs, and the results are shown in Figure S2. Two characteristic bands were recorded at
λmax = 213 nm and λmax = 275 nm, which were attributed to the π-π∗ and n-π∗ transitions,

BioRender.com
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respectively [19]. As shown in Figure S3, the N-CQDs exhibited strong fluorescence
intensity at 325/417 nm with a high quantum yield of 25.3%, using quinine sulfate (QS) as a
reference. In addition, Figure 2 shows that the emission of synthesized QDs demonstrated
excitation dependency across the 310 to 380 nm range, with the optimum fluorescence
intensity recorded at the 325 nm excitation wavelength. Moreover, Figure S4 shows the
images obtained by the high-resolution transmission electron microscope (HRTEM). The
images show that N-CQDs were well separated without any apparent aggregation and
have spherical shapes with a size in the range of 2–5 nm. The elemental analysis of the
prepared N-CQDs using energy dispersive X-ray spectroscopy (EDX) was performed to
ascertain the composition of the N-CQDs and confirm the level of nitrogen doping. The
obtained results demonstrated that the N-CQDs were predominantly made up of C (59.21%),
O (24.70%) and N (16.08%), revealing that a high nitrogen doping level was achieved
(Figure S5). The Fourier transform infrared (FTIR) spectrum was also obtained to examine
the surface function groups of the N-CQDs. The spectrum depicted in Figure S6 shows the
following peaks: O-H/N-H (3500 − 3100 cm−1), C-N (2097 cm−1), C=O (1701 cm−1), C=C
(1658 cm−1), and C-H (595 cm−1).
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2.2. Investigation of the Quenching Mechanism

As shown in Figure 3, as the DCB concentration increased, the intrinsic fluorescence
of the N-CQDs quantitatively decreased, which may be attributed to the DCB’s destruction
of the dot’s surface passivation layer [20]. In order to determine the potential quenching
mechanism, the following Stern–Volmer Equation (1) was applied [21,22]:

F0

F
= 1 + Ksv[Q] = 1 + Kqτ0[Q], (1)

where

• F denotes the fluorescence intensity of the DCB and N-CQD mixture.
• F0 denotes the intrinsic fluorescence intensity of the N-CQDs.
• Ksv represents the Stern–Volmer quenching constant.
• [Q] is the DCB concentration.
• Kq denotes the quenching rate constant.
• τ0 represents the average lifetime of the fluorophore (10−8s).
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Figure 3. Fluorescence emission spectra of N-CQDs upon the addition of different concentrations of
DCB (from top to bottom: 0, 1.0, 2.0, 4.0, 8.0, 12.0, 14.0, 16.0; 20.0 µg/mL).

As shown in Figure 4, the values of Ksv at four different temperatures (298, 303, 313
and 323 K) were found to be 4.97 × 104, 4.66 × 104, 4.40 × 104, and 4.38 × 104 L·mol−1, re-
spectively. The decrease in Ksv values as the temperature increases is usually an indicator of
a static quenching process. The values of Kq for the same temperatures were also calculated,
and were found to be 4.97 × 1012, 4.66 × 1012, 4.40 × 1012, and 4.38 × 1012 L·mol−1·s−1.
Since these values were much larger than the maximum diffusion rate constant
(2.0 × 1010 L·mol−1·s−1), the existence of the static quenching mechanism was further
validated [17]. This mechanism includes the formation of N-CQD/DCB non-emissive
complexes, as evidenced by the changes observed in the N-CQD UV spectra after the
addition of DCB. When DCB was added, a new absorption peak appeared at 340 nm, indi-
cating complex formation and confirming the static quenching mechanism [23] (Figure 5).
Moreover, the inner filter effect was studied to investigate if it had a role in the quenching
process. The overlapping between the excitation spectrum of N-CQDs and the UV–visible
absorption spectrum of DCB indicated the presence of a complementary inner filter effect
mechanism (Figure 6).
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2.3. Optimization of the Experimental Parameters

According to the nature of the experiments, we decided to consider the optimization
of the following two main parameters in order to achieve the maximum possible sensitivity
of the suggested approach:

The pH of the solution: A Britton–Robinson buffer (BRB) was used to adjust the pH
level in the range of 2–12. The experiments showed that the pH had no significant effect
on the determination results. Hence, no pH adjustment was required; thus, the study was
conducted without the use of a buffer.

The incubation time: The effect of incubation time on the interaction between N-
CQDs and DCB was examined and considered from 1 to 60 min. The reaction between
DCB and the N-CQDs was found to be fast and occurs in less than 1 min. In addition, the
fluorescence readings remained stable for more than 60 min, which adds another advantage
to the proposed method.
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2.4. Validation Studies

The validation guidelines standardized by the International Council of Harmonization
(ICH) were adhered to in the validation of the proposed spectrofluorometric method [24].
Several performance criteria were evaluated, including linearity, range, limit of detection
(LOD), limit of quantitation (LOQ), accuracy, precision, robustness, and selectivity.

2.4.1. Linearity and Range

The experiments considered seven ascending DCB concentrations in the range of
1.0–20.0 µg/mL to establish a relationship between the DCB concentration and the fluo-
rescence quenching of N-CQDs (Figure 3). Linear regression was applied to the resulting
measurements, leading to the following linear regression equation:

F0 − F = 3.06C + 29.56

where F0 is the fluorescence of the synthetized QDs, F is the fluorescence reading of the
QD-DCB mixture, and C is the DCB concentration.

The corresponding correlation coefficient (r) was 0.9999, which indicated that the
proposed method was highly linear. The analytical validation results are summarized in
Table 1.

Table 1. Validation data for the determination of DCB by the proposed spectrofluorimetric method.

Parameter DCB

λex–λem 325–417 nm
Concentration range (µg/mL) 1.0–20.0

Slope 29.56
Intercept 3.06

Correlation coefficient (r) 0.9999
S.D. of residuals (Sy/x) 2.12

S.D. of intercept (Sa) 0.99
S.D. of slope (Sb) 0.11

Percentage relative standard deviation, % RSD 0.98
Percentage relative error, % Error 0.37

Limit of detection, LOD a (µg/mL) 0.11
Limit of quantitation, LOQ b (µg/mL) 0.33

a LOD = 3.3 Sa/b; b LOQ = 10 Sa/b, where Sa = standard deviation of the intercept and b = slope.

2.4.2. Limit of Detection (LOD) and Limit of Quantitation (LOQ)

The sensitivity of the method was quantified by means of two measures, the limit of
detection (LOD) and limit of quantification (LOQ), which were calculated as follows:

LOD = 3.3Sa/b,

and
LOQ = 10Sa/b,

where Sa and b denote the standard deviation of the intercept and the slope of the regression
line, respectively.

As presented in Table 1, the LOD and LOQ were 0.11 and 0.33 µg/mL, respectively,
indicating the acceptable sensitivity of the proposed procedure.

2.4.3. Accuracy and Precision

Accuracy refers to how close a measurement is to the true or accepted value, while
precision refers to how close measurements are to each other. The mean percentage
recovery was measured over the considered DCB concentration range. As listed in Table 2,
the recorded recovery percentages were relatively high (98.50–100.83%), indicating that the
proposed method is sufficiently accurate.
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Table 2. Accuracy data of the designed method for the determination of DCB in pure form.

Parameter DCB

Amount Taken (µg/mL) Amount Found (µg/mL) % Found *

1.0 0.99 98.50
2.0 1.98 99.00
4.0 3.96 98.98
8.0 8.01 100.19
12.0 12.07 100.62
16.0 16.13 100.83
20.0 19.85 99.27

Mean 99.69
± S.D. 0.98
% RSD 0.984
% Error 0.371

* Average of 3 separate determinations.

As for the method’s precision, multiple measurements were taken within the same
day and across three consecutive days. For each of the intra- and inter-day experiments,
three distinct DCB concentration levels were considered. The used concentrations were 2.0,
8.0 and 16.0 µg/mL. The obtained relative standard deviation (RSD) and error percentages
are listed in Table 3. The obtained values were sufficiently small (% RSD (less than 1.185)
and % error (less than 0.68)), indicating the satisfactory precision of the proposed method.

Table 3. Intra- and inter-day precision data for the determination of DCB by the proposed method.

DCB

Intra-Day a Inter-Day b

Conc. (µg/mL)
_
x ± S.D % RSD % Error

_
x ± S.D % RSD % Error

2.0 99.02 ± 0.73 0.737 0.42 98.71 ± 1.17 1.185 0.68
8.0 99.85 ± 0.96 0.961 0.55 100.23 ± 0.79 0.788 0.46
16.0 100.13 ± 0.88 0.878 0.51 99.84 ± 0.96 0.961 0.55

Each reading is the average of three separate determinations; a within the day; b three consecutive days.

2.4.4. Robustness

The robustness of the method was studied, where the effect of minor variations in the
volume of N-CQDs (125.0 µL ± 1) on the fluorescence sensing of DCB was investigated.
It was verified that small changes did not significantly affect the quenching of the N-
CQD fluorescence intensities by DCB, indicating the robustness of the developed method
(Table 4).

Table 4. Evaluation of the robustness of the proposed method.

Factor Variation DCB

1. Volume of N-CQDs
(125.0 µL ± 1) % Recovery * % RSD

124.0 µL 98.87 0.94
125.0 µL 99.42 0.86
126.0 µL 100.21 1.16

* Each result is the average of 3 separate determinations.

2.4.5. Selectivity

Finally, the selectivity of the proposed approach was evaluated by investigating its
ability to determine DCB in the commercial Tablets (Vizimpro® tablets) with low %RSD
(less than 1.131%) and high % recovery (98.29–101.46%), without any interference from the
existing excipients (Table 5). The possible interfering excipients, such as lactose, maltose,
mannitol, dextrin, and citric acid, were studied in detail and confirmed the high selectivity
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of the method, since they minimally affected the fluorescence intensity of the N-CQDs
(Figure 7A). Similarly, the method selectivity was proven by its ability to detect the studied
drugs in the presence of different metal ions such as Na+, K+, Ca+2, Mg+2, and Ba+2 without
any interference (Figure 7B). In addition, the proposed method was able to determine
DCB in the presence of other anticancer drugs, including larotrectinib and palbociclib. The
tolerance limit of these drugs was determined as the concentration that results in 2% or
higher relative errors [6], which was found to be 1.0 µg/mL for both drugs. Accordingly,
the developed method showed excellent selectivity for the determination of DCB without
any interference.

Table 5. Determination of DCB in Vizimpro® tablets by the proposed spectrofluorimetric method.

Parameter DCB

Vizimpro® Tablets
(30 mg DCB/Tablet)

Amount Taken
(µg/mL)

Amount Found
(µg/mL) % Found *

4.0 3.93 98.29
8.0 7.99 99.95
12.0 12.17 101.46
16.0 15.94 99.60
20.0 19.96 99.81

Mean 99.82
± S.D. 1.13
% RSD 1.131
% Error 0.505

* Each result is the average of 3 separate determinations.
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2.5. Application in Pharmaceutical Preparations

The proposed method was efficiently used to determine DCB in its commercial tablet
formulation (Vizimpro® tablets) with high selectivity and without any interference from
the existing excipients, including lactose, maltose, mannitol, dextrin, and citric acid, in
addition to the excipients present in the film coating. By analyzing different concentrations
of the tablet extract, low %RSD (less than 1.131%) and high % recovery (98.29–101.46%)
values were obtained, as detailed in Table 5.

3. Experimental Procedure
3.1. Instrumentation and Tools

The following is a list of the instruments and tools used in the current study:

• Fluorescence measurements were obtained using the Cary Eclipse Fluorescence Spec-
trophotometer from Agilent Technologies (Santa Clara, CA, USA), which operated
with a Xenon flash lamp at 750 V.

• The Jenway pH meter 3510 (Jenway, London, UK) was used to perform all the pH
measurements.

• The Nicolet iS10 Fourier transform infrared (FTIR) spectrometer from ThermoFisher
Scientific (Waltham, MA, USA) was used to obtain the required FTIR spectra. Mea-
surements were taken for 32 scans with a resolution of 4 cm−1. The device has a 4000
to 1000 cm−1 DTGS detector, along with a Ge/KBr beam splitter.

• The light absorbance of the analytes was measured by a double-beam spectrophotome-
ter (PG Instrument, Wibtoft, UK).

• Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy
(EDX) were performed using the JEM-2100 high-resolution transmission electron
microscope (HRTEM) by JEOL (Tokyo, Japan), which operated at 200 kV.

• Sigma 2-16P (Germany) benchtop cooling centrifuge.
• VM-300P vortex mixer from Gemmy Industrial Corp (Taiwan).
• Membrane filters with a pore size of 0.45 µm purchased from Phenomenex (Torrance,

CA, USA).
• S-101H ultrasonic bath from Sonicor Inc. (West Babylon, NY, USA).
• Domestic Microwave (GE614ST, 2800 W, 2450 MHz, Samsung, Kuala Lumpur, Malaysia).

3.2. Materials and Stock Solutions

All the materials and reagents used in the experimental part of this study were of
analytical grade. In addition, double distilled water was used throughout the study. The
following is a list of the most important materials and solutions used in the experiments:

• Dacomitinib (%purity 99.89) was obtained from the European division of Pfizer (Eu-
rope MA EEIG, Brussels, Belgium).

• Vizimpro® film-coated tablets (labeled to contain DCB at a concentration of 30 mg/
tablet) were also obtained from Pfizer (Europe MA EEIG, Brussels, Belgium).

• Urea was purchased from Sigma-Aldrich (St. Louis, MO, USA).
• Methanol was acquired from Tedia (Fairfield, OH, USA).
• Navel orange (species Citrus sinensis) was obtained from a local Egyptian market.
• A 100.0 µg/mL stock solution of DCB was prepared in methanol. Subsequent dilutions

were formed using double distilled water and the solution was found to be stable for
at least 14 days at 4 ◦C.

• A Britton–Robinson buffer (BRB) with a concentration of 0.2 M was prepared in
distilled water with different pH levels in the range of 2–12.

3.3. Procedure for the Synthesis of the Doped N-CQDs

The synthesis procedure of N-CQDs started by dissolving 3 gm of urea into 50 mL of
orange juice (navel orange, species Citrus sinensis). The solution was heated in a domestic
microwave for 10 min until it was completely charred. After being cooled, the product



Molecules 2023, 28, 2351 12 of 14

was diluted with distilled water to 100 mL and placed into the centrifuge for 15 min at
6000 rpm. This removed any suspended particles present in the charred mixture. The
clear supernatant lying on top of the residue was filtered and distilled water was added to
reach a volume of 200 mL to produce the N-CQD stock solution. The working solution was
then obtained by placing 10 mL of the prepared stock solution into a volumetric flask and
double distilled water was added to reach a volume of 100 mL. The solutions were stored
in the refrigerator for further use (Scheme 1).

3.4. Spectrofluorimetric Measurements

After the optimization of different parameters, 125 µL portions of the N-CQD solution
were deposited into a set of 5 mL volumetric flasks, along with the appropriate varying
aliquots of the DCB drug to yield a concentration in the range of 1.0–20.0 µg/mL. The flasks
were then completed with distilled water. After excitation at 325 nm, the spectrofluorimetric
measurements were taken at the emission wavelength of 417 nm. The calibration curve
was constructed by plotting the fluorescence quenching against the drug concentration and
linear regression analysis was carried out to analyze the curve.

3.5. Quantum Yield Measurements

The photoemissive efficiency was measured using the quantum yield (QY) percentage,
denoted by Φ. For the N-CQDs used in this study, the quantum yield was determined
using the following equation [25]:

ΦN−CQDs = ΦQS × (FN−CQDs/FQS)× (ηN−CQDs/ηQS)
2 × (AQS/AN−CQDs),

where the quantities F, η, and A denote the integrated emission intensity, the solvent
refractive index, and the absorbance, respectively. The subscript QS is an abbreviation for
quinine sulfate, which was used as the standard in the calculations. The QS was dissolved
in 0.1 M of H2SO4 and had the quantum yield ΦQS = 0.54 at 350 nm. In the aqueous
solutions, the refractive indices were equal, leading to ηN−CQDs/ηQS = 1. The absorbance
was kept below 0.1 in order to reduce the absorption effect. In the current method, AQS
and AN-CQDs were found to be 0.02 and 0.059.

3.6. Application of the Proposed Method to Vizimpro® Tablets

The proposed spectrofluorometric determination method was applied to the commer-
cial Vizimpro® tablets. In the experiments, 10 tablets were grinded and thoroughly mixed.
Then, an amount of the powder equivalent to 10 mg of DCB was deposited into a 100 mL
volumetric flask. A 50 mL portion of methanol was added to the flask and the mixture was
sonicated in the S-101H ultrasonic bath for 15 min before completing the volume of the flask
to the mark. The resulting methanolic solution was filtered and appropriate portions were
placed into 5 mL volumetric flasks, which were then filled with double distilled water. The
flask contents were subjected to the spectrofluorimetric procedure described in Section 3.4.
Percentage recoveries were calculated based on the regression equation, or directly taken
from the calibration curve.

4. Conclusions

Dacomitinib has recently been approved by the United States FDA as a first-line
treatment for patients with metastatic NSCLC. Due to the unavailability of a simple, cost-
effective, and environmentally friendly validated determination method for DCB, the
current study sought to develop the first spectrofluorimetric approach for its determination,
using an N-CQD-based fluorescent probe. The quenching of the native fluorescence of
quantum dots is a promising technique for the determination of different chemical species.
The driving force behind the choice of N-CQDs was the multitude of advantages reported
in the literature, including low toxicity, low cost, and simple synthesis procedures. N-CQDs
were synthesized through a simple, green, and rapid microwave-assisted technique in less
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than 10 min. The proposed method was based on the quantitative and selective fluorescence
quenching effect of DCB on the N-CQDs’ native fluorescence. The results showed a linearly
proportional relationship between the fluorescence quenching and the DCB concentration.
The proposed approach demonstrated sufficient sensitivity with an LOD of 0.11 µg/mL. In
addition, the quenching mechanism was investigated and the results suggested that the
quenching was of a static nature with a complementary inner filter effect. The proposed
method was also deemed to be eco-friendly because it reduced the use of organic solvents
and the synthetic approach was based on using orange juice as a natural starting material.
The proposed method was validated in accordance with ICHQ2 (R1) guidelines. It was
also applied in the analysis of the commercial tablet dosage form of the DCB with high
accuracy and repeatability. Hence, the developed method represents a good candidate for
real applications in quality control laboratories.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052351/s1, Figure S1: Optical images of the prepared
N-CQDs under (a) visible light, and (b) UV light; Figure S2: UV absorption spectrum of N-CQDs;
Figure S3: Fluorescence spectra of N-CQDs; (a) excitation and (b) emission spectra; Figure S4: The
typical HRTEM image of N-CQDs; Figure S5: TEM-EDX analysis of the prepared N-CQDs; Figure S6:
FTIR spectrum presenting the surface functionality of N-CQDs.
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