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Abstract: The key challenge in the practical application of electrochromic energy storage devices
(EESDs) is the fabrication of high-performance electrode materials. Herein, we deposited K7[La(H2O)x

(α2-P2W17O61)] (P2W17La) onto TiO2 nanowires (NW) to construct an NW–P2W17La nanocomposite
using a layer-by-layer self-assembly method. In contrast to the pure P2W17La films, the nanocompos-
ite exhibits enhanced electrochromic and electrochemical performance owing to the 3D sea-cucumber-
like microstructure. An EESD using the NW–P2W17La film as the cathode exhibited outstanding
electrochromic and energy storage properties, with high optical modulation (48.6% at 605 nm),
high switching speeds (tcoloring = 15 s, tbleaching = 4 s), and high area capacitance (5.72 mF cm−2

at 0.15 mA cm−2). The device can reversibly switch between transparent and dark blue during
the charge/discharge process, indicating that electrochromic contrast can be used as a quantitative
indicator of the energy storage status.

Keywords: electrochromism; energy storage; polyoxometalate; nanostructures; EESD

1. Introduction

Amidst increasing environmental pollution and the gradual exhaustion of non-renewable
energy resources, the development of controllable devices for energy storage, conversion,
and protection, such as smart windows [1–3], micro-supercapacitors [4,5], lithium-ion
batteries [6,7], electrochemical capacitors [8,9], and solar cells [10,11], has become a global
priority. Electrochromic (EC) devices and batteries/pseudocapacitors have similar electrode
materials, device structures, and faradaic reactions [12]. Integrating electrochromic and
energy storage properties into a single platform to construct electrochromic energy storage
devices (EESDs) enables versatile use of energy and significantly reduces the cost of energy
storage [13–16]. EESDs change color in real time based on the level of stored energy and
have the potential to be used in new smart electronic products [17], smart clothing [18],
and military equipment [19].

A challenge in the development of EESDs is the fabrication of high-performance elec-
trode materials. Recently, bifunctional electrode materials, such as WO3 [20], V2O5 [21],
NiO [22], and Prussian white [23], have attracted significant attention. Deng et al. [24] fabri-
cated MnO2/WO3 EC electrodes with ultra-long stability and excellent optical modulation,
and assembled all-solid-state zinc-ion supercapacitors with high coloration efficiency and
cycling stability. Zhang et al. [25] constructed asymmetric electrochromic supercapacitors
based on a new conjugated polymer (PETC) and V2O5 ion-storage material, which out-
performed other conjugated polymer-based electrochromic supercapacitors in terms of
electrochemical performance. Polyoxometalates (POMs) are ideal EC and electrochemical
storage materials. Owing to their unique multi-electron storage capacity and rich redox
properties, POMs have been extensively studied for use in EC and energy-related technolo-
gies [26–29]. Fan et al. [30] prepared a self-supporting composite based on H3PMo12O40
heterogeneous blue-modified reduced graphite oxide (PAHB/RGO), which had a specific
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capacitance of 395 F g−1 at 1 A g−1. The symmetrical solid-state supercapacitor assembled
with PAHB/RGO electrodes had excellent specific energy and power. Zhang et al. [31]
prepared flexible amorphous isopolytungstate electrochromic devices using inkjet printing
technology and observed quantitative color changes in response to different voltages.

There is currently a dearth of research on POM-based EESDs. Recently, our research
group investigated several high-performance electrochromic energy storage bifunctional
composites containing saturated [32], lacunary [33], and substituted-type [34] POMs. In
this study, we further developed a POM-based EESD and studied its EC and energy stor-
age performance. We deposited K7[La(H2O)x(α2-P2W17O61)] (abbreviated as P2W17La)
nanoparticles onto TiO2 nanowires (TiO2 NW) to obtain an electrochromic energy storage bi-
functional nanocomposite (NW–P2W17La) via a combined hydrothermal and layer-by-layer
(LbL) self-assembly method. The 3D sea-cucumber-like microstructure of NW–P2W17La
enhanced the coverage of the surface, exposed more reactive sites, and shortened the
electron/ion diffusion pathways, resulting in rapid reaction kinetics and enhanced elec-
trochemical performance. The optical and electrochemical properties of the NW–P2W17La
nanocomposite were investigated and compared to those of a densely packed structure. An
asymmetric EESD was fabricated using an NW–P2W17La film as the cathode and a TiO2
nanowire film as the anode.

2. Results and Discussion
2.1. Characterizations of Nanocomposites

Figure 1 depicts the fabrication process of the NW–P2W17La nanocomposite film.
UV/Vis spectroscopy was used to track the growth of the composite film. The deposition
of each layer of P2W17La was accompanied by a linear increase in absorbance, confirming
that the growth of the multilayer film obtained via electrostatic self-assembly was uniform
and orderly, and that the convenient LbL method can achieve controlled thin-film growth
(Figure S1).
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Figure 1. Fabrication process of the NW–P2W17La nanocomposite film.

For comparison, a pure POM film was fabricated on a fluorine-doped tin oxide (FTO)
substrate using the same method (denoted as FTO–P2W17La). Scanning electron microscopy
(SEM) images of the FTO–P2W17La film and NW–P2W17La film are shown in Figure 2a,b.
The FTO–P2W17La film exhibits a tightly packed microstructure; the FTO surface is densely
covered with aggregates of P2W17La and polyetherimide (PEI), forming a cobblestone-like
morphology. Figure S2 shows the vertically grown TiO2 nanowires obtained via hydrother-
mal synthesis. Compared with the pure TiO2 NW film, the nanowires in the NW–P2W17La
film are thicker and denser because of the encapsulation of P2W17La nanoparticles and PEI,
forming a 3D sea-cucumber-like microstructure. The TiO2 nanowires act as a skeleton on
which the POM nanoparticles are deposited, thereby avoiding aggregation and exposing
more reactive sites. The cross-sectional image shows that the NW–P2W17La composite film
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can reach a thickness of 620 nm, whereas the FTO–P2W17La film is approximately 110 nm
thick. This demonstrated that the 3D sea-cucumber-like microstructure of NW–P2W17La
enhanced the coverage of the surface and provided more electron/ion diffusion pathways.
Additionally, as shown in Figure S3, W, P, La, and Ti are homogenously dispersed in
the energy-dispersive X-ray spectroscopy (EDS) maps of the NW–P2W17La composite,
confirming that the P2W17La nanoparticles are uniformly attached to the TiO2 nanowires.
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sectional images). (c) Two-dimensional (2D) and (d) 3D AFM images of the NW–P2W17La compos-
ite film.

The surface topographic features and roughness of the films were examined using
atomic force microscopy (AFM) (Figures 2c,d and S4. The thicknesses of the NW–P2W17La
composite film and FTO–P2W17La measured by AFM were 618 nm and 164.1 nm, respec-
tively, which agree well with the features observed in the SEM images. The root-mean-
square roughness of the NW–P2W17La and FTO–P2W17La films were calculated to be
108.1 nm and 26.4 nm (with an area of 5 × 5 µm2), respectively. The 3D sea-cucumber-
like microstructure increases the roughness of the material, thereby increasing the active
reaction surface area.

The transmission electron micrograph (TEM) of unmodified TiO2 nanowires scraped
from the FTO substrate (Figure 3a) clearly shows the morphology and size of the nanowires.
Figure 3b shows the microstructure of the NW–P2W17La film and the further characteriza-
tion of the area between the TiO2 NW and P2W17La nanoparticles. After the self-assembly
step, the surfaces of the nanowires were coated with P2W17La nanoparticles (Figure 3b).
The TEM-EDS element maps of the NW–P2W17La film are shown in Figures 3c and S5. The
TEM images and corresponding EDS maps confirm that W, P, Ti, and La are uniformly
distributed, indicating that the P2W17La particles enclose the TiO2 nanowires to form a
core-shell-like structure.

The chemical composition and element valence states of the NW–P2W17La film were
further studied using high-resolution X-ray photoelectron spectroscopy (XPS) (Figure 3d–f).
In the deconvoluted XPS spectrum shown in Figure 3d, the strong doublet peaks at 455.8 eV
and 461.7 eV are observed, corresponding to Ti 2p3/2 and Ti 2p1/2, respectively, indicating
that TiO2 was successfully constructed on the FTO substrate [35,36]. As shown in Figure 3e,
the strong doublet peaks at 35.1 and 37.2 eV are associated with the binding energies of
electrons in the W 4f7/2 and W 4f5/2 orbitals, respectively, indicating that all of the W
atoms in the composite film are in the +6 valence state [37]. The WVI atoms can be reduced
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to the +5 valence state, creating reduced-state POMs. Furthermore, the P 2p peak at 133.0 eV
can be ascribed to P2W17La (Figure 3f).
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2.2. Electrochromic Performance of Electrodes

The EC characteristics of the NW–P2W17La film were examined using an electrochem-
ical workstation in conjunction with a UV/Vis spectrometer, and contrasted with those of
the FTO–P2W17La film. Figure 4a shows the visible transmittance spectra (400−800 nm)
of the NW–P2W17La composite film in the bleached and colored states at 0 V and −1.3 V,
respectively. Digital photographs of the electrodes show that, when the applied potential is
0 V, the NW–P2W17La film appears transparent. After applying the −1.3 V negative poten-
tial, the film exhibits a deep blue color owing to the reduction of P2W17La and TiO2 (insets,
Figure 4a). The maximum optical contrast occurs at 591 nm. The redox reactions and color
change of P2W17La and TiO2 are summarized in Equations (1) and (2), respectively [38,39]:

[P2W17O61La]7− + x Li+ + x e− 
 [LixP2W(17−x)
VIWx

VO61La]7− (1)

colorless dark blue

TiO2 + x Li+ + x e− 
 LixTiO2 (2)

colorless ligth blue

Under a negative voltage, Li+ ions are inserted into the framework of the NW–P2W17La
film, WVI is simultaneously reduced to WV, and the film changes color. When a positive
voltage is applied, Li+ ions are extracted from the film, WV is oxidized to WVI, and the
film bleaches. TiO2 can also act as a cathode EC material and the redox process causes
a reversible color transformation from colorless to light blue. But the main role of TiO2
in the composite material is to provide a nanowire skeleton base, and its contribution to
optical modulation ability is very small. Quantitative EC response analysis was performed
using chronoamperometry (CA) and the corresponding in situ transmittance test. Figure 4b
shows the in situ transmittance curves of the FTO–P2W17La and NW–P2W17La films at
591 nm during subsequent double-potential steps (−1 V and +1 V). The optical contrast
of the NW–P2W17La film (45.6%) is significantly higher than that of the FTO–P2W17La
film (27.2%). The switching times were calculated when the transmittance modulation at
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591 nm reached 90%. The NW–P2W17La composite film exhibits a coloring time of 12 s and
a bleaching time of 4 s, whereas the FTO–P2W17La film requires 10 s and 2 s, respectively.
Coloration efficiency (CE) measures the correlation between the optical change and the
charge consumption [40]. Figure 4c illustrates the variation in the optical density versus
the charge density from the electrolyte to the film. The CE value of the NW–P2W17La film
(91.7 cm2 C−1) is higher than that of the FTO–P2W17La film (46.6 cm2 C−1), indicating
that a large transmittance modulation can be achieved with a small charge input. The
electrochemical cyclic stability of the NW–P2W17La film was evaluated over 1000 cycles of
double-potential steps at 591 nm. The NW–P2W17La film retained an optical contrast of
approximately 96.9% of its initial value (Figure 4d), whereas the FTO–P2W17La film retained
approximately 82.9% of its initial value (Figure S6). As shown in Figures S7 and S8, the
morphology of NW–P2W17La did not change noticeably after 1000 cycles. The experimental
results show that the sea-cucumber-like nanostructure conferred improved EC properties
compared with the densely packed FTO–P2W17La structure.
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Figure 4. (a) Visible transmittance spectra of the NW–P2W17La composite film in the bleached and
colored states at 0 V and −1.3 V (insets: digital photographs). (b) In situ transmittance curves of the
FTO–P2W17La and NW–P2W17La films at 591 nm during pulse voltages (−1 V and +1 V). (c) Plot of
optical contrast versus charge density for NW–P2W17La and FTO–P2W17La films. (d) Cycle stability
of NW–P2W17La film at 591 nm under pulse voltages of −1 V and +1 V.

2.3. Capacitive Performance of Electrodes

The electrochemical properties of as-prepared films were measured using cyclic
voltammetry (CV) and galvanostatic charge/discharge (GCD) tests. The three pairs of
redox peaks on the NW–P2W17La film CV curve are attributed to the redox reaction be-
tween WVI and WV and represent typical faradaic behavior during ion insertion/extraction
(Figure 5a) [41]. When the scan rate is increased from 10 to 100 mV s−1, the shapes of the
curves remain largely unchanged, except that the peak potential exhibits a minor shift. The
anodic peaks shift toward positive potentials and cathodic peaks shift toward negative
potentials, which can be attributed to a reversible but nonideal redox process [42]. To reveal
the electrochemical kinetic process, the relationship between the oxidation/reduction peak
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current and the scan rate was studied. The peak current density i and the corresponding
scan rate v follow the mathematical relationship i = avb, where a is an adjustable parameter
and b is the slope of the linear log i versus log v curve. The magnitude of the slope can
be used to characterize the ion storage mechanism during charging and discharging [43].
When b = 0.5, the electrochemical reaction process is governed by the diffusion-controlled
process, whereas b = 1 indicates that the process is primarily controlled by the surface
reaction, resulting in a capacitance-controlled process. The linear relationship between
log i and log v is shown in Figure 5b and the b-values of peaks I and II are 0.68 and 0.60,
respectively. This shows that the kinetic process taking place in the NW–P2W17La film is
controlled by ion diffusion and capacitive effects.
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Figures S9 and 5c show CV curves of the NW–P2W17La, FTO–P2W17La, and TiO2
NW films obtained at the same scan rate in 1 Mol L−1 LiClO4/propylene carbonate (PC).
The NW–P2W17La film shows the largest peak current value, demonstrating its high
conductivity and low internal resistance characteristics. According to the results presented
in Figure 5c, at the scan rate of 20 mV s−1, the surface coverage of NW–P2W17La was
determined to be 1.74 × 10−6 mol cm−2, which is higher than that of the tightly packed
FTO–P2W17La film (3.61 × 10−7 mol cm−2) [44]. Diffusion coefficients (D) of Li+ ions
were calculated using the Randles–Sevick equation [45]. The D value obtained for the
NW–P2W17La film is 1.28 × 10−12 cm s−1, and that computed for the FTO–P2W17La film is
1.10 × 10−14 cm s−1. The higher Li-ion diffusion rate obtained for NW–P2W17La confirms
the excellent electrical conductivity of this material.

The GCD measurements of the NW–P2W17La film are shown in Figure 5d. The shapes
of the GCD profiles under different current densities were similar, showing the superior
charge/discharge reversibility of the material. Notably, there are three plateaus in the
GCD curves and their positions are consistent with those in the CV curves, indicating
sound pseudocapacitive behavior. Figure 5e illustrates the volumetric capacitances as
a function of the current densities for the FTO–P2W17La and NW–P2W17La films. The
volumetric capacitance of both films gradually decreases with the increasing current density,
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which may be due to insufficient ion diffusion during the charge/discharge process at
higher current densities. The NW–P2W17La film achieves a high volumetric capacitance of
190.8 F cm−3 at 0.08 mA cm−2, whereas that of the FTO–P2W17La film is significantly lower,
reaching 68.9 F cm−3 at 0.08 mA cm−2. The excellent energy storage performance of the
NW–P2W17La film is primarily due to its 3D sea-cucumber-like microstructure, which is
conductive to rapid reaction kinetics.

Figure 5f shows the GCD curve of the NW–P2W17La film at 0.16 mA cm−2, overlaid
with the in situ absorbance curve at 591 nm. During the charging process, the NW–
P2W17La film exhibits a noticeable increase in absorbance, whereas during discharging,
the absorbance reversibly decreases. There is a clear relationship between absorbance and
charge storage; therefore, the storage state of charge can be quantitatively monitored using
the absorbance value.

For comparison, some recently reported EC energy storage materials based on POMs
and inorganic metal oxides are listed in Table S1, and our current system exhibits compa-
rable or superior performance. In addition, the transmittance modulation and coloration
efficiency of the lacunary and substituted Dawson structures are higher than that of the sat-
urated structure, indicating that the structure and composition of POMs strongly influence
their optoelectric properties [46]; therefore, multifunctional properties can be easily ad-
justed by changing the POM type. In future works, our group will explore the fluorescence
regulation ability of the NW–P2W17La film and POMs with similar structures containing
other lanthanides, and develop multifunctional materials based on POMs with multi-band
regulation in the visible and fluorescence regions.

2.4. Configuration and Performance of EESD

The schematic diagram in Figure 6a shows the configuration of an NW–P2W17La film
electrode-based electrochromic energy storage device. The asymmetric EESD was assem-
bled using an NW–P2W17La film as the cathode, a TiO2 NW film as the anode, and 0.5 M
LiI/PC as the electrolyte. TiO2 has a high transparency and exhibits only an imperceptible
light blue color in the reduced state. In addition, it is widely used in EC and lithium-ion
batteries [47] because of its fast insertion/extraction and good stability; therefore, the TiO2
NW film was chosen as the anode of the device. Figure 6b shows digital photographs
of the EESD under different voltages. The color of the device undergoes a considerable
change from transparent to dark blue, which confirms that the EESD exhibits excellent
EC properties and can be applied to visualize and quantify the energy storage state. The
optical contrast of the EESD reaches 48.6% at 605 nm (Figure 6c), which complies with the
requirement for practical applications. To determine the energy state of the device, the
change in light transmittance of the EESD was recorded at different voltages. As shown
in Figure S10, as the applied potential increases, the EESD gradually changes from trans-
parent to dark blue, and the transmittance value exhibits a clear correspondence to the
applied voltage. This shows that the energy storage level of the device can be visualized
and quantified. In addition, high switching speeds of 15 s and 4 s are achieved for the
coloring and bleaching processes of the EESD, respectively (Figure 6d), and the CE reaches
47.6 cm2 C−1 (Figure 6e). The cyclic charge/discharge curve exhibits a maximum areal
capacitance of 5.72 mF cm−2 at 0.15 mA cm−2 (Figure 6f,g). Furthermore, the color-
ing/bleaching process of the EESD is highly synchronized with the charge/discharge
process (Figure 6h). Figure 6i shows an LED powered by the EESD. The good performance
of the EESD is attributed to the high-performance NW–P2W17La cathode and the good
charge balance and storage capability of the TiO2 NW anode in the device.
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3. Materials and Methods
3.1. Chemicals

All chemicals were of analytical grade. Fluorine-doped tin oxide (FTO)-coated glass sub-
strates (<10 ohm/sq) were purchased from Pilkington (Toledo, OH, USA). (3-Aminopropyl)
trimethoxysilane (APS) and polyetherimide (PEI) were purchased from Aladdin Bio-Chem
Technology Co., Ltd.(Shanghai, China) and used without further treatment. K7[La(H2O)x(α2-
P2W17O61)] (P2W17La) was prepared according to the literature [48–50]. The structure is
shown in Figure S11 and characterized using infrared (IR) spectroscopy (Figure S12) and
ultraviolet/visible (UV/Vis) absorption spectroscopy (Figure S13).

3.2. Fabrication of Composite Films

The TiO2 nanowire substrate was synthesized via a hydrothermal synthesis technique
according to our previously reported procedure [33]. The multiple-layer film was assem-
bled via the LbL self-assembly method. FTO glass coated with the nanowire substrate was
soaked in APS for 12 h, soaked in HCl (pH = 2.0) for 20 min, rinsed with distilled water to
remove any HCl attached to the surface, and dried under a nitrogen stream. The nanowire-
modified FTO glass was soaked in an aqueous P2W17La solution (5 × 10−3 mol L−1) for
7 min, washed with distilled water, and dried under a nitrogen stream. The FTO glass
was then immersed in PEI (5 × 10−3 mol L−1, pH = 4) for 7 min. The POMs and PEI have



Molecules 2023, 28, 2634 9 of 12

opposite charges and are alternately deposited on the substrate via electrostatic attrac-
tion. This procedure was repeated 30 times to obtain the NW–P2W17La film comprising
30 layers of P2W17La. For comparison, a pure P2W17La film (denoted as FTO–P2W17La),
which comprised 30 layers of P2W17La, was fabricated on unmodified FTO glass using the
same method.

3.3. Assembly of Asymmetric EESD

An asymmetric bifunctional EESD was assembled using an NW–P2W17La film as the
cathode, a TiO2 NW film as the anode, and 0.5 M LiI in PC as the liquid electrolyte. First,
the two electrodes were sandwiched together with 1 mm double-sided tape. The electrolyte
was then injected into the space with a syringe to fabricate the prototype electrochromic
energy storage device. The effective area of the device was 1 cm2.

3.4. Materials Characterizations

FTIR spectroscopy was conducted using a GangDong FTIR-650 spectrometer (Tian-
jin, China) between 400 and 4000 cm−1. SEM images were measured on FEI Verious
460 L scanning electron microscope (Hillsboro, OH, USA). AFM images were investigated
by Icon Bruker microscope (Ettlingen, Germany). TEM images were measured on a FEI
Tecnai G2F20 S-TWIN microscope equipped with an energy-dispersive spectrometer (EDS)
(Hillsboro, OH, USA). The TEM sample was prepared by scraping a small amount of the
film (0.005 mg) off the FTO substate and dispersing the powder in 1 mL of an ethanol
solution by ultrasonication for 40 min. XPS analysis were measured on a Thermo ESCALAB
250 spectrometer (Shanghai, China).

3.5. Electrochromic and Energy Storage Performance Measurements

The UV/Vis spectra were obtaining using a PERSEE TU-1901 spectrometer (Beijing,
China). The CV and galvanostatic charge/discharge (GCD) measurements were per-
formed using an CHI660B Chenhua electrochemical workstation (Shanghai, China) in a
three-electrode configuration, where the as-prepared film served as the working electrode,
Ag/AgCl (3 M KCl) as the counter electrode, Pt wire/Pt plate as the reference electrode,
and LiClO4/PC (1 Mol L−1) as the electrolyte. The electrochromic and capacitive properties
were studied using in situ TU-T9S PERSEE UV/Vis spectrometry (Beijing, China) with
an CHI660B Chenhua electrochemical workstation (Shanghai, China). The EESD was
characterized using a two-electrode system.

4. Conclusions

We synthesized a bifunctional nanocomposite film comprising POMs and TiO2 nanowires
and constructed an EESD by assembling the film with a TiO2 nanowire-film cathode.
Compared with a densely packed structure, the loose 3D sea-cucumber-like microstructure
provides a larger active surface area and shortens the electron/ion diffusion pathways,
leading to uniform and fast redox reaction kinetics and simultaneously enhancing the
EC and electrochemical performance of the composite. The designed EESD exhibits large
optical contrast (48.6% at 605 nm), high switching speeds (tc = 15 s, tb = 4 s), and high
areal capacitance (5.72 mF cm−2 at 0.15 mA cm−2). The developed device can power an
LED bulb and function as a smart energy storage device where the level of stored energy
can be visually and quantitatively monitored using rapid and reversible color variation.
This work provides a novel paradigm for POM-based EESDs for optical-electrochemical
energy applications.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28062634/s1, Figure S1. UV–vis absorption spec-
tra of NW–P2W17La film (number of cycles: 0–30). Inset: plots of the absorbance values at 198 and
280 nm. Figure S2. The SEM image of TiO2 NW. Figure S3. SEM-EDS mapping of NW–P2W17La
for P, W, Ti and La. respectively. Figure S4. The 2D (a) and 3D (b) AFM images of FTO–P2W17La.
Figure S5. TEM-EDS elemental mapping patterns of P. Figure S6. Cycle stability of FTO–P2W17La film
at 591 nm under square wave potentials of −1V and +1V. Figure S7. The AFM of NW–P2W17La film
after cycle stability test. Figure S8. The SEM of NW–P2W17La film after cycle stability test. Figure S9.
CV curve of TiO2 NW film at a scan rate of 20 mV/s with LiClO4/PC as the electrolyte. Figure S10.
The transmittance changes of the EESD under different potentials. Figure S11. Polyhedral representa-
tion of [LaIII(H2O)x(α2-P2W17O61)]7−. Figure S12. The IR spectra of K7[La(H2O)x(α2-P2W17O61)].
Figure S13. UV–vis absorption spectra of K7[La(H2O)x(α2-P2W17O61)]. Table S1 Comparison of
electrochromic and energy storage performance in this work and previous works about POMs-based
and inorganic metal oxides electrodes. References [16,21,32,33,51–56] are cited in the Supplemen-
tary Materials.
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