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Abstract: Superhydrophobic metal−organic framework (MOF)-based sponges have received in-
creasing attention in terms of treating oil−water mixtures. However, highly fluorinated substances,
commonly used as modifiers to improve the hydrophobicity of MOFs, have aroused much envi-
ronmental concern. Developing a green hydrophobic modification is crucial in order to prepare
superhydrophobic MOF-sponge composites. Herein, we report the preparation of a porous composite
sponge via a polydopamine (PDA)-assisted growth of zeolitic imidazolate frameworks (ZIF-90) and
eco-friendly hydrophobic short-chain fluorinated substances (trifluoroethylamine) on a melamine
formaldehyde (MF) sponge. The composite sponge (F-ZIF-90@PDA-MF) exhibited superhydropho-
bicity (water contact angle, 153◦) and superoleophilicity (oil contact angle, 0◦), which is likely due
to the combination of the low surface energy brought on by the grafted CF3 groups, as well as the
rough surface structures that were derived from the in situ growth of ZIF-90 nanoparticles. F-ZIF-
90@PDA-MF showed an excellent adsorption capacity of 39.4–130.4 g g−1 for the different organic
compounds. The adsorbed organic compounds were easily recovered by physical squeezing. Contin-
uous and selective separation for the different oil−water mixtures was realized by employing the
composite sponge as an absorbent or a filter. The separation efficiency and flux reached above 99.5%
and went up to 7.1 ×105 L m−2 h−1, respectively. The results illustrate that the superhydrophobic
and superoleophilic F-ZIF-90@PDA-MF sponge has potential in the field of water−oil separation,
especially for the purposes of large-scale oil recovery in a water environment.

Keywords: oil/water separation; oil collection; metal-organic frameworks; composite sponge; super-
hydrophobic; green modification

1. Introduction

The rapid increase in organic compound pollution produced by increased oil leakage
and the petrochemical industry has become one of the top environmental concerns world-
wide [1,2]. Adsorption technology, as a versatile type of technology, has been widely applied
to efficiently separate oil from water and for the purpose of organic compound recovery [3].
Improving the selective absorption and absorption capacities of adsorbents is essential. Vari-
ous oil absorption materials have been widely developed, including inorganic mineral clays
and fibers, as well as aerogel and commercial sponge-based materials [4–8]. Among them,
commercial sponge-based materials have gained considerable interest because of their out-
standing advantages, including high adsorption capacity, excellent mechanical properties,
and low cost. Recently, superhydrophobic/superoleophilic materials have been considered
suitable for selective oil−water separation [9,10]. Previous studies have demonstrated that
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superhydrophobic oil−water separation materials can be fabricated from commercial sponges
as ideal substrates [7,11,12]. Moreover, the easy functionalization of commercial sponges
can significantly improve their hydrophobicity [10,13,14]. There are two acknowledged de-
termining factors in achieving a superhydrophobic surface, which are found in a chemical
composition with low surface energy and a rough structure [12]. As porous crystalline mate-
rials, metal−organic frameworks (MOFs) have received growing attention worldwide due
to their distinctive properties, such as their rich functionalities and high internal surface ar-
eas [15,16]. MOFs and their derivative materials with unique hydrophobic properties provide
new ideas in different application fields [17–21], including in oil−water separation. Many
studies confirm that hydrophobicity is a crucial factor in the applications of MOFs [22,23].
Highly hydrophobic MOF-based sponge materials have recently been developed to efficiently
separate oil−water mixtures [24–26]. A common and effective preparation strategy involves
the collaborative design of high roughness and low surface energy [27]. However, a handful
of MOFs has been described as hydrophobic among the over 20 000 MOFs reported [19]. To
improve the hydrophobicity of MOFs, the grafting of hydrophobic molecular modifiers on
their frameworks is an effective approach. Highly fluorinated substances are one of the more
common hydrophobic modifiers that are used to reduce surface energy [28–32]. However,
the use of long-chain perfluorinated chemicals has aroused serious environmental concerns
regarding the potential adverse health effects [33–35]. Currently, fluorine-carbon molecules
with shorter chains are the most developed substituents [36,37].

Zeolitic imidazolate framework-90 (ZIF-90), one of the most typical MOFs, contains free
aldehyde groups in its frameworks and thus provides a platform for post-synthetic modifica-
tions via the reaction between aldehyde groups and amine groups. It has been demonstrated
that this strategy effectively enhances its physical and chemical properties [38,39]. Incorporation
of short fluorine-carbon chain substances that contain amine groups in ZIF-90 via a Schiff base
condensation reaction is likely a promising method to improve its hydrophobicity. The trifluo-
romethyl (CF3) group has been widely used in previous studies to increase the hydrophobicity
of materials due to its extremely low surface energy [40,41]. Thus, eco-friendly short-chain
fluorinated molecules containing NH2 groups such as 2,2,2-trifluoroethylamine should be seri-
ously considered to improve the hydrophobicity of ZIF-90. Until now, few reports have been
published regarding the preparation of superhydrophobic ZIF-90/sponge composites that were
functionalized with eco-friendly short-chain CF3 groups for the purpose of selective oil−water
separation. Additionally, certain drawbacks of intrinsic powder MOFs, such as potential sec-
ondary environmental pollution and difficulty in recovery, limit their practical application in
the adsorption and separation of organic compounds [42]. Ongoing efforts are devoted to
developing approaches for the conversion of MOFs into macroscopic materials [43,44]. One
effective method is to grow MOFs on porous substrates in situ [45–47]. It is thus desirable to
prepare superhydrophobic and superoleophilic ZIF-90/commercial sponge composites with
high adsorption capacities and separation efficiencies by using a green hydrophobic modifier.

Based on these investigations, the growth of ZIF-90 nanoparticles on porous commer-
cial sponges, as well as the subsequent modification with CF3 groups, may be workable
in order to obtain superhydrophobic sponge composite materials. The low surface energy
CF3 groups can significantly reduce surface energy. Meanwhile, the formation of ZIF-90
nanocrystals can increase the sponge surface roughness. The increased surface roughness
and the low surface energy may synergistically improve the hydrophobicity [12,13]. In
addition, the porous sponge can serve as a robust support for the ZIF nanoparticles, which
may solve the recovery issue of MOF powder particles. The polydopamine layer was
first introduced on the sponge substrate to provide rich growth sites for ZIF-90 and to
maintain the high affinity between ZIF-90 nanoparticles and the sponge substrate [45].
Herein, the F-ZIF-90/melamine formaldehyde (MF) composite sponge was fabricated by
growing ZIF-90 on the polydopamine (PDA)-coated MF sponge in situ and subsequently
modifying it with 2,2,2-trifluoroethylamine. The F-ZIF-90/PDA-MF composite sponge
exhibited superhydrophobicity, superoleophilicity, and good self-cleaning properties. A
high absorption capacity for diverse organic liquids was obtained with good reusability.
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Regardless of the relative oil−water density, continuous oil−water separation was achieved
with a separation efficiency of above 99.5% and a flux of up to 7.1 × 105 L m−2 h−1.

2. Results and Discussion
2.1. Fabrication and Characterization of F-ZIF-90@PDA-MF Sponge

Figure 1a provides a schematic representation of the preparation method for the F-ZIF-
90@PDA-MF composite. Firstly, PDA was coated on the MF surface by dopamine self-assembly
in a weak alkaline environment. Next, ZIF-90 nanoparticles were grown on the PDA-coated MF
sponge in situ, followed by post-synthetic modification via a condensation reaction between
the amine groups of TFEA and the aldehyde groups of ZIF-90 [28,39]. Previous reports have
confirmed that the coated PDA as the reactive intermediate layer can create a large number of
active sites for the subsequent in situ growth of ZIF-90 nanoparticles, and that they can improve
the bonding force between ZIF-90 particles and the substrate [45,48,49]. Wang et al. [45] reported
that polydopamine provides essential growth sites for ZIF-8 and ensures that ZIF-8 particles
adhere firmly to the melamine sponge. In addition, conventional dopamine self-polymerization,
with the help of dissolved oxygen, usually takes up to 12 h; in addition, it requires an even
longer time to obtain a good PDA coating layer [13,48]. To improve the efficiency of dopamine
self-polymerization, NaIO4 was selected as a cost-effective oxidation catalyst [50], and the rapid
self-polymerization of dopamine was achieved with a coating time of 2 h.
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Figure 1. (a) Schematic illustration for the fabrication process of F-Zeolitic imidazolate frameworks
-90/polydopamine-melamine formaldehyde (F-ZIF-90@PDA-MF). Scanning electron microscope (SEM)
images for (b,f) pristine MF, (c,g) MF-PDA (d,h) ZIF-90@PDA-MF and (e,i) F-ZIF-90@PDA-MF. (j) Ele-
ment mapping images of F-ZIF-90@PDA-MF.
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We used a scanning electron microscope (SEM) to examine the surface morphologies
of composite sponges. The pristine MF sponge shows porous structures with micrometer-
scale pores (Figure 1b) and a clean and smooth surface (Figure 1f) [45,51]. After PDA
was coated on the MF surface, there was no noticeable change in the porous network
structures (Figure 1c). From a magnified view (Figure 1g), a thin PDA layer was produced
on the smooth strut surface. In addition, many particles were attached to the surface, most
likely as a result of the self-assembly of superfluous polydopamine aggregations [45,52].
In contrast to the surface of raw MF or PDA-MF, ZIF-90@PDA-MF exhibited a highly
rough surface (Figure 1d,h). The increased surface roughness results from the in situ
growth of ZIF-90 particles. Porous structures and rough surfaces were retained after ZIF-90
modification (Figure 1e,i). SEM mapping images of F-ZIF-90@PDA-MF (Figure 1j) confirm
the homogeneous distributions of Zn and F elements. The two characteristic elements show
the uniform decoration of ZIF-90 nanoparticles and the successful modification of ZIF-90
with the low surface energy of TFEA.

Fourier-transform infrared spectroscopy (FT-IR) analysis was conducted to further
show ZIF-90 growth and its post-synthetic modification. The representative peaks of
ZIF-90 at 1675 cm−1 and 423 cm−1 in the FT-IR spectrum of ZIF-90@PDA-MF (Figure 2a)
were assigned to C=O [38] and Zn-N [39], respectively. In addition, the vibration peak
at 1675 cm−1 decreases, and a new peak at 1649 cm−1 occurs after the post-synthetic
modification of ZIF-90@PDA-MF. This new peak can be ascribed to the formation of
C=N [39,40,53,54], which confirms the successful modification via the amine condensation
reaction. The FT-IR spectra were explicitly magnified in the region ranging from 400 cm−1

to 1800 cm−1 for the purpose of clear observation (Figure 2b).
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Figure 2. (a,b) Fourier-transform infrared spectra for PDA-MF, ZIF-90@PDA-MF and F-ZIF-90@PDA-
MF composites. (c) Wide X-ray photoelectron spectroscopy (XPS) of ZIF-90@PDA-MF and F-ZIF-
90@PDA-MF composites and (d) high-resolution F 1s XPS spectra of the F-ZIF-90@PDA-MF.

The X-ray photoelectron spectroscopy (XPS) survey spectra show that C, N, O, and
Zn are the principal elements in the synthesized ZIF-90@PDA-MF and F-ZIF-90@PDA-MF
composite sponges (Figure 2c). In addition, a new peak was ascribed to F 1s signal, which
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occurred in the XPS spectrum of F-ZIF-90@PDA-MF. The F 1s high-resolution spectrum
(Figure 2d) shows that a peak at about 689.1 eV corresponds to the highly fluorinated
carbon groups [55,56], confirming the presence of CF3 groups. This observation further
lends support to the successful modification of ZIF-90. As shown in Figure 3, the X-ray
diffraction (XRD) pattern of ZIF-90@PDA-MF exhibits the main characteristic diffraction
peaks of ZIF-90 at around 7.3◦, 10.2◦, 12.6◦, and 17.9◦. The corresponding peaks are in
excellent accord with the simulated XRD pattern and literature data [57], thus powerfully
demonstrating the effective formation of ZIF-90 nanocrystals. The XRD pattern reveals that
the main characteristic peaks were observed after the post-synthetic modification of ZIF-90,
thereby suggesting the retention of crystal structures. It is noted that a slight change in the
crystallinity and particle morphology of F-ZIF-90 occurred due to the chemical modification
(Figure S1 Supplementary Material). Nevertheless, F-ZIF-90 retained the basic crystalline
structure of ZIF-90.
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2.2. Surface Wettability

Contact angle measurements were taken to assess surface wettability properties. MF
and PDA-MF sponges both exhibited high hydrophilicity, and water droplets were quickly
absorbed (Figure S2a,b); this result agrees with previous reports [58,59]. In contrast, the ZIF-
90@PDA-MF composite provides a hydrophobic surface (water contact angle, WCA = 119◦,
Figure S2c), possibly resulting from the remarkable increment of the surface roughness after
the effective formation of ZIF-90 nanocrystals on the PDA-MF substrate (Figure 1h). After
modifying ZIF-90@PDA-MF with the CF3 groups, a superhydrophobic and superoleophilic
composite sponge (i.e., F-ZIF-90@PDA-MF) was obtained with a WCA of 153◦ and an oil
contact angle of about 0◦ (Figure 4a,b).

Several simple experiments also provide evidence for a noticeable transformation in
surface wettability. As displayed in Figure 4c, the raw MF sponge quickly absorbed water
droplets that landed on its surface. In contrast, water droplets showed a spherical shape on
the composite sponge surface, demonstrating its high hydrophobicity. In addition, spherical
water droplets on the superhydrophobic composite sponge could be entirely removed using
filter paper (Figure S3). Water droplets exhibit highly spherical shapes on the cross-section
and external surface of the composite sponge (Figure 4d), thereby confirming a thorough
hydrophobic modification of the bulk sponge. A big difference emerged after the original
MF and composite sponge were put in n-hexane and water (Figure 4e). The MF sponge
quickly sank to the bottom in both n-hexane and water. However, the F-ZIF-90@PDA-MF
floated on the water surface but sank to the bottom in n-hexane. These observations agree
with the results of the contact angle tests. In addition, when an external force was used to
immerse the composite sponge in water, there were plenty of trapped air bubbles around
the sponge surface (Figure 4f). A similar phenomenon has also been widely reported in
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the literature [50,51]. The changes in the wetting property for superhydrophilic MF and
superhydrophobic F-ZIF-90@PDA-MF are schematically illustrated in Figure 4g. It can be
explained that the grafted low surface energy of the CF3 groups significantly decreases the
surface energy and that the ZIF-90 nanocrystals improve the surface roughness [40,45,46].
The hydrophobic performance of solid materials is widely accepted to be dependent on low
surface energy and high surface roughness. The synergistic effect of low surface energy
and high surface roughness leads to a huge transformation of wetting properties from
superhydrophilic to superhydrophobic. Moreover, the stability of the superhydrophobic
composite sponge was evaluated under different conditions, including physical squeezing
(20 compression-release cycles), low/high temperature (−18 ◦C and 150 ◦C for 1 h), and
seawater for 1 h. As shown in Figure S4, water drops in spherical shapes occurred on
all surfaces after the treatment of superhydrophobic F-ZIF-90@PDA-MF under different
conditions. The stability test results suggest that the superhydrophobic F-ZIF-90@PDA-
MF can maintain its highly hydrophobic property under different harsh conditions, thus
demonstrating its structural stability.
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Figure 4. (a,b) Contact angle images of a water and oil droplet (n-octane) for the F-ZIF-90@PDA-MF
composite sponge. (c) Water droplets dyed with methylene blue landed on the pristine MF and
composite sponge. (d) Photographs of dyed water droplets on different zones of the composite
sponge: surface (left) and cross-section (right). (e) Photographs for the different wettability of
the raw MF sponge and composite sponge in water and n-hexane. (f) An image of the composite
sponge soaked in water by an external force. (g) Schematic description of superhydrophobicity of the
F-ZIF-90@PDA-MF sponge.

It has been demonstrated in previous studies that many superhydrophobic materials
have self-cleaning properties [32,41]. Generally, water droplets rolling across the superhy-
drophobic surface remove impurities that adhere to the material surface. The self-cleaning
effect is essential for preventing the contamination of the substrate’s surface in applications.
A water drop rolling test was conducted to examine the possibility of self-cleaning on
a superhydrophobic F-ZIF-90@PDA-MF composite [60]. As seen in Figure 5a, a series
of video shots of a rolling water droplet on the tilted surface (angle < 10◦) of the F-ZIF-
90@PDA-MF sponge demonstrate that water droplets readily roll away from the tilted
F-ZIF-90@PDA-MF sponge. The self-cleaning ability of the superhydrophobic composite
sponge was examined by the self-cleaning performance test. White zinc oxide particles
were sprinkled on the surface of the composite sponge as grain contaminants [32]. It is
clear that due to the rolling of water droplets, the contaminants were taken away from the
composite sponge, leaving a relatively clean surface (Figure 5b). Figure 5c schematically
depicts the self-cleaning process. It is noted that the small amounts of contaminants that
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penetrated the composite sponge remained after the end of the self-cleaning test because
they could not be contacted by rolling water droplets. Nevertheless, the superhydrophobic
composite sponge exhibits promising potential for self-cleaning.
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2.3. Oil Adsorption and Oil–Water Separation

These above results reveal the superhydrophobic and superoleophilic properties of
the as-prepared F-ZIF-90@PDA-MF. Oil absorption capacity is generally regarded as one
of the more important indexes for absorbent materials to achieve in terms of oil spill
recovery [59,61]. Oil adsorption tests were conducted to determine oil absorption capacities
of the composite sponge. The adsorption capacity of the as-prepared composite sponge
ranged from 39.4 to 130.4 times its weight (Figure 6a), demonstrating that the composite
sponge has high absorption capacities for various organic liquids. The oil absorption
capacity of the F-ZIF-90@PDA-MF sponge shows relatively good recycling performance
and stability. For example, about 88% of its original absorption capacity remains for n-
octane even after 20 cycles (Figure S5). In addition, the mass-based absorption capacities
were correlated with the liquid density of organic compounds, as plotted in Figure 6b. It
was seen that the mass-based absorption capacity of the F-ZIF-90@PDA-MF sponge rose
as the liquid density of organic compounds increased. The previous literature reports a
similar phenomenon [31,62]. It can be explained that the micron-sized pores of the sponge
substrate mainly provide the pore volume for solvent storage [62]. Additionally, as seen in
Table 1, the F-ZIF-90@PDA-MF composite sponge achieves comparable or superior water
contact angles and absorption capacities of organic compounds with respect to those of
various MOF/sponge composite materials.
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Table 1. Comparison of oil absorption capacities and water contact angles of various metal−organic
frameworks (MOF)/sponge composite materials.

MOF/Sponge Sorbents Water Contact Angle/◦ Oil Absorption Capacity
/g g−1 Ref.

ZIF-8@rGO@PU 171 14–29 [63]
MF-ZIF-8 140 10–38 [45]

ZIF-POSS@PDA@PU – 19–40 [57]
ZIF-90-CF3/MF 132 40.1–108.7 [40]
SA@ZIF-8@PU 140.8 30.3–115.4 [64]

ZIF-8/MF 130 76–164 [59]
Zr-BDC-OH@CF3@MF 145 27–47 [41]
UiO-66(COOH)2/PU 161 29–56 [25]

MIL-DDT@MF 151.8 54.1–120.2 [13]
MS-CMC-HPU-13 127 66–130 [24]
F-ZIF@PDA-MF 153 39.4–130.4 This work

Due to the simultaneous superhydrophobic/superoleophilic properties and high oil
absorption capacities, it is expected that F-ZIF-90@PDA-MF will show potential use as
an absorbent or a filter for efficient oil−water separation [65]. Oil−water separation tests
were conducted using the as-prepared composite sponge (Figure 7a,b). We selected carbon
tetrachloride and n-hexane as the heavy oil underwater and floating light oil, respectively.
Oils were colored with Oil Red O for clear observation. As depicted in Figure 7a,b, the
floating n-hexane and carbon tetrachloride underwater were rapidly absorbed when the
composite sponge arrived at the oil−water interface. After removing the composite sponge,
clean bulk water was observed without red oils. These observations indicate that the
superhydrophobic composite sponge has a highly selective adsorption ability for oils from
water. For the purposes of 3D oil−water separation materials, using commercial porous
sponges as substrates, physical squeezing was a facile and low-cost strategy that could
be utilized to collect the adsorbed oil from the saturated adsorbent and to regenerate
adsorbents at a laboratory scale [31]. The oil recovery process from the oil-saturated sponge
is presented in Figure S6. The F-ZIF-90@PDA-MF still floated on water and the WCA
was around 150◦ even after 20 absorption−squeezing cyclic tests (Figure 7c). Besides, the
XRD pattern and SEM image reveal the excellent maintenance of ZIF nanoparticles on the
modified sponge (Figure S7). These results indicate the composite sponge shows good
cyclic stability under compression.

Gravity-driven separation has previously been reported to be highly efficient and
energy-saving [66,67]. To verify the viability of gravity-driven separation, the heavy
oil−water mixture system was tested in a simple separation device using the sponge
composite as a filter. As shown in Figure 7d, the superhydrophobic composite sponge
was fixed as a filter in the neck of a funnel [68]. We selected Oil Red O-stained carbon
tetrachloride as a heavy oil underwater. When the heavy oil−water mixture was poured
into the funnel, the heavy oil quickly permeated into the composite sponge and naturally
flowed into the collection container. In contrast, water was repelled and retained at the
top of the funnel. In addition, the water content of the collected carbon tetrachloride was
determined, indicating that the separation efficiency reached 99.9%. The simultaneous
superhydrophobicity and superoleophilicity of F-ZIF-90@PDA-MF guarantee a highly
selective separation. Figure 7e succinctly summarizes the bath separation for light oil/heavy
oil−water mixtures, using the F-ZIF-90@PDA-MF composite sponges as an absorbent or
a filter.
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Figure 7. Absorption of (a) floating light oil (n-hexane) on the water surface and (b) heavy oil
(carbon tetrachloride) underwater. (c) The F-ZIF-90@PDA-MF composite sponge floated on water
after physical squeezing. The inset shows the water contact angle of the composite sponge after
20 absorption-squeezing cyclic tests. (d) Heavy oil−water mixture separation by gravity. Carbon
tetrachloride and n-hexane were colored with Oil Red O for obvious observation. (e) A schematic
illustration of batch separation for oil−water mixtures.

2.4. Continuous Oil–Water Separation

Continuous oil−water separation is highly needed, especially for large-scale sep-
aration. Continuous separation experiments were carried out in designed separation
systems in order to expand the practical application in the separation of vast volumes of
the oil−water mixture (Figure 8a,e). The superhydrophobic composite sponge serves as a
filter and an absorbent in Figure 8a,e, respectively.

As discussed above, gravity makes it simple to achieve the bath separation of heavy
oil−water mixtures (Figure 7d). If water can be immediately removed from the top of
the separation device, then gravity-driven continuous separation is accomplished. As
presented in Figure 8a, a simple separation device with two outlets was designed and
applied in the continuous separation of the heavy oil−water mixture. The as-prepared
F-ZIF-90@PDA-MF sponge composite, serving as a filter, was fixed in the separation device.
When the continuous flow of heavy oil−water mixture entered the separation device and
came into contact with the superhydrophobic and superoleophilic composite sponge, the
colorless and transparent heavy oil quickly penetrated the composite sponge and smoothly
flowed to the oil collecting container at the bottom (Figure 8b). At the same time, the
dyed water was repelled and kept in the upper space and flowed into a water-collecting
container. This result demonstrates the viability of gravity-driven continuous separation in
the homemade separation device.
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Figure 8. Photographs of (a,e) the continuous oil/water separation system, (b,f) the progress of
the continuous removal of oils (carbon tetrachloride and n-hexane, respectively) from the water.
(c,g) Photographs of the collected oils. (d,h) Schematic summary of continuous separation for
oil−water mixtures.
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The majority of the reported hydrophobic sponge-based adsorbents have a high oil
absorption capacity of tens of their weight [7]. In order to use adsorbent materials for
the subsequent cycle, the absorbed oil needs to be promptly removed from the absorbent
when the absorbent is saturated [7,65]. Based on this analysis, as shown in Figure 8e,
another separation device for continuous oil−water separation was tested. The composite
sponge, as an absorbent, was fixed in the tube and connected with an external self-priming
pump. When the superhydrophobic and superoleophilic composite sponge was brought
into contact with the oil/water interface, the oil molecules easily permeated into the free
space in the composite sponge and were then locked in the sponge. In contrast, the water
molecules were strongly repelled. Once the absorbed oil in the sponge was transported
into the collector via the tube as soon as the pump was turned on, the freed-up pore space
could further absorb the additional floating oil. As a result, the continuous collection of oil
was achieved. Figure 8f shows the continuous separation process of the light oil−water
mixture. The removal and collection of oils from the water was successfully accomplished
by F-ZIF-90@PDA-MF with the aid of a pump. Furthermore, as shown in Figure 8c,g,
no water droplets in the collected oil were visible to the naked eye, thereby indicating a
highly selective separation. A schematic illustration of the two aforementioned separation
models is presented in Figure 8d,h. In brief, these experimental results demonstrate efficient
continuous separation of oil and water.

The water contents of the collected oils were quantified to further determine the
separation efficiencies of the continuous separations. Various immiscible oil−water mix-
tures (n-hexane water, n-octane water, toluene water, and carbon tetrachloride water) were
selected in order to investigate the separation efficiency and flux. Separation efficiency
values for all tested oil−water mixtures exceeded 99% (Figure 9). This result proves the
almost entire separation of oils from water and the feasibility of continuous oil−water
separation. The superhydrophobic composite sponge showed a high flux for the various
oil−water system, which is 1.55 × 105 L m−2 h−1 and more than 6.01 × 105 L m−2 h−1

for the gravity-driven continuous separation and pump-assisted absorption separation,
respectively. In addition, the flux for the continuous separation is comparable and/or
superior to those of reported MOF-based sponges and membranes (Table S1). The porous
structures of the sponge substrate and the external separation drive force provided by a
pump are credited with the high flux.
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3. Materials and Methods
3.1. Materials

Tris(hydroxymethyl)-aminomethane (Tris, 99.8%), imidazole-2-formaldehyde (98%), and
the 2,2,2-trifluoroethylamine (TFEA, 99%) were received from Aladdin Company. Zinc nitrate
hexahydrate (99%) and chloroform were purchased from Xilong Scientific Co., Ltd., Guangdong,
China. The various analytical grade solvents (methanol, n-hexane, n-octane, carbon tetrachloride,
toluene, and chlorobenzene), Oil Red O (biological stain), methylene blue (biological stain),
sodium formate (99.5%), sodium metaperiodate (99.5%), and dopamine hydrochloride (98%)
were purchased from Innochem Technology Co., Ltd., Beijing, China. All chemicals were used
as received. Both sunflower oil and melamine formaldehyde (MF) sponges were supplied as
commercial products.

3.2. Preparation of PDA-Coated MF Sponge

A polydopamine-coated MF (PDA-MF) sponge was prepared based on a previously
described process with slight modifications [50,69]. Dopamine hydrochloride (2 mg mL−1)
was mixed in a solution of 10 mM Tris-HCl (pH = 8.5) containing 2 mM of NaIO4. Subse-
quently, the pristine MF sponge was immersed in the above mixture and stirred vigorously
at an ambient temperature for 2 h. The as-prepared PDA-MF material was dried in a
vacuum at 80 ◦C after being washed with water and ethanol.

3.3. Preparation of F-ZIF-90@PDA-MF Sponge

A mixture of zinc nitrate hexahydrate (1 mmol), imidazole-2-formaldehyde (4 mmol),
and sodium formate (1 mmol) was dissolved in 30 mL of methanol by stirring and ultrasonic
treatment in order to obtain a homogeneous solution. The as-prepared PDA-MF sponge
was soaked in the solution. The mixture was transferred into a 50 mL Teflon-lined steel
autoclave and heated at 85 ◦C for 24 h. At the end of the solvothermal treatment, the
composite sponge was washed with methanol three times and dried overnight in a vacuum
at 80 ◦C. The obtained composite sponge was referred to as ZIF-90@PDA-MF. The F-ZIF-
90@PDA-MF sponge was obtained by fluorination of the ZIF-90@PDA-MF sponge via an
amine condensation reaction [28]. Typically, ZIF-90@PDA-MF was placed in a methanol
solution of TFEA (0.15 M) and refluxed for 24 h at 70 ◦C. After the reaction finished, the
sponge was taken out and thoroughly washed with fresh methanol three times to remove
the residual free TFEA molecules. Finally, the obtained F-ZIF-90@PDA-MF was dried in a
vacuum at 80 ◦C.

3.4. Characterization of Samples

The morphology and elementary chemical compositions were obtained on a scanning
electron microscope (JEOL JSM-6010LA), which was combined with energy-dispersive X-
ray microanalysis. The X-ray diffraction patterns were collected on an X-ray diffractometer
(Rigaku Ultima IV) with Cu-Kα emission. The data for X-ray photoelectron spectroscopy
were obtained using an X-ray photoelectron spectrometer with an Al Kα line source
(Thermo Scientific Escalab Xi +,Waltham, MA, United States). The binding energies were
calibrated at the C 1s signal of 284.8 eV. Fourier-transform infrared spectra were collected
on a spectrometer (Thermo Nicolet iS-10) in the range of 4000–400 cm−1, with a resolution
of 4 cm−1 and with 32 scans. The contact angle was measured with a 4 µL droplet on
a contact angle instrument (Dataphysics OCA20) under ambient conditions. The water
content was measured by using an MKC-610 Karl Fischer moisture titrator.

3.5. Oil Adsorption

Composite sponges were immersed in organic oily liquids at room temperature for 30 s.
Liquid-saturated sponges were removed and drained for a few seconds in air, followed by quick
weighing. According to the following Equation (1), the oil absorption capacity (q, g g−1) was
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determined by the mass of the absorbent both before and after oil adsorption. Each value was
averaged from three parallel experiments.

q = (m1 − m0)/m0 (1)

where m0 and m1 are the masses of the composite sponge, both before and after absorbing
oil or organic solvents.

3.6. Oil–Water Separation Experiments

The continuous separation of oil–water mixtures was tested on home-made separation
devices. The F-ZIF-90@PDA-MF, serving as an absorbent and/or the filter, was fixed in the
separation device. Various oil–water mixtures were obtained by simply mixing water and
the Oil Red O-stained oils with a volume ratio of 2.5:1. The separation efficiency (E) was
determined based on the following Equation (2) [59]:

E = (1 − Cf/C0) × 100% (2)

where C0 and Cf are the water content in the initial water–oil mixtures and the collected
oil, respectively.

4. Conclusions

In this work, a green modification method using eco-friendly short fluorine-carbon
chains was developed to prepare the superhydrophobic/superoleophilic ZIF-90/commercial
sponge composites with a high adsorption capacity and separation efficiency for continuous
oil–water separation. The superhydrophobic F-ZIF-90@PDA-MF composite was successfully
fabricated by growing ZIF-90 particles in situ on the PDA-coated MF substrate, followed
by the post-synthetic modification of ZIF-90 with trifluoroethylamine. The as-synthesized
composite sponge shows simultaneous superhydrophobicity and superoleophilicity with a
WCA of 153◦ and good self-cleaning performance. The rough surface produced by the in situ
formation of ZIF-90 particles and the low surface energy that was brought on by the grafted
trifluoroethylamine containing CF3 groups are both responsible for the superhydrophobicity.
As a result of superhydrophobicity/superoleophilicity, the composite sponge exhibits good
absorption performance with high sorption selectivity for organic compounds from water.
The high adsorption capacity ranged from 40 to 130.4 g g−1 for different organic compounds,
which is correlated with the density of organic compounds. Importantly, the adsorbed
organic compounds were quickly recovered by simple physical squeezing. Moreover, after
20 absorption−squeezing cycles, the composite sponge retains its superhydrophobicity with
a WCA of 150◦. The bath separation and continuous separation of the various oil/water
mixture systems were realized. The separation efficiency and flux can reach above 99.5%
and up to 7.1 × 105 L m−2 h−1, respectively. These results show that the superhydrophobic
and superoleophilic F-ZIF@PDA-MF composite sponge has the potential to solve large-scale
organic pollution in a water environment. This research offers a simple method to design
superhydrophobic MOF-based sponge materials using alternative short-chain fluorinated
substances for the efficient purification of wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062843/s1. Figure S1: XRD and SEM data for pure
ZIF-90 and F-ZIF-90 powder particles; Figure S2: (a–c) Water contact angle images of the pristine
MF, PDA-MF, ZIF-90@PDA-MF, respectively; Figure S3: The removal of water droplets on the
surface of F-ZIF-90@PDA-MF by using the filter paper; Figure S4: Water droplets on the surface
of the F-ZIF-90@PDA-MF sponge after exposure to different conditions; Figure S5: Recyclability
experiments for the absorption capacity of n-octane by the F-ZIF-90@PDA-MF sponge; Figure S6:
A physical squeezing method for oil recovery from the oil-saturated F-ZIF-90@PDA-MF absorbent
and absorbent regeneration; Figure S7: (a) XRD and (b) SEM for the composite sponge after the

https://www.mdpi.com/article/10.3390/molecules28062843/s1
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Molecules 2023, 28, 2843 14 of 17

cyclic experiment of oil–water separation; Table S1: Comparisons of various MOF-based materials for
oil−water separation [70–72].
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