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Abstract: TiO2 has attracted significant research interest, principally due to its nontoxicity, high
stability, and abundance. Carbon-doped TiO2 can improve light absorption efficiency. In order to
prepare high-efficiency photocatalysts, carbon-doped composites were prepared by hydrothermal
reaction in a high-pressure reactor, and then TiO2/CNT mesoporous composites were prepared by
the sol–gel method in an ultrasonic environment. Characterized by SEM and TEM, the composite
materials contained TiO2 nanoparticles as well as CNT. After phase analysis, it was the anatase-
doped phase. The following infrared light absorption performance and Escherichia coli bactericidal
performance tests showed that it had better infrared and visible light absorption performance than
pure TiO2. The TiO2/CNT mesoporous nanomaterials synthesized in this work are possible for clean
industrial productions.

Keywords: carbon nanotubes; TiO2; mesoporous composite; bactericidal properties

1. Introduction

With the advent of the steam engine revolution, electrical revolution, and information
technology revolution, human beings have advanced by leaps and bounds in intelligent
manufacturing, life sciences, and information technology [1–5]. However, with the devel-
opment of science and technology, human beings also consume a lot of natural resources.
In particular, the depletion of fossil non-renewable energy and environmental pollution
poses new challenges to the development of science and technology [6–11].

Global climate change has prompted researchers from across the world to work
together to search for new technologies for producing clean and renewable energy [12–15].
Photocatalytic reactions on semiconductive TiO2 are widely used and investigated for
(1) water splitting in view of H2 production and (2) the destruction of environmental
pollutants from water and air [16]. Starting from a point of practical engineering application,
energy-efficient photocatalysts are highly demanded to effectively utilize the visible light
that constitutes 43% of the total sunlight [17]. Hence, it is important to develop a visible
light-responsive photo-catalyst, and some efforts have been devoted to developing “second-
generation” TiO2 and other narrow band-gap semiconductors that can absorb visible
light [18].

Numerous scientists have made gratifying achievements in the field of semiconductor
materials. In particular, the large-scale and low-cost production of titanium dioxide P25
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has the advantage of integrating various excellent properties in terms of material activity,
specific surface area, and photoelectric performance [19–23]. The discovery of graphene is
a gratifying achievement for mankind. The excellent properties of graphene have attracted
research by scientists in various fields around the world and have made considerable
achievements. However, the manufacturing cost of graphene has always been the bot-
tleneck limiting its development. Therefore, many scientists have conducted research on
carbon materials. From diamond and graphite, to fullerenes, carbon nanotubes, etc., carbon
materials are full of magic. The development of 3D carbon-based nanocomposite multi-
functional membranes has attracted researchers all over the world. The understanding
of cavity quantum effect diffusions, reaction/inter-reaction, surface-area-to-volume ratio,
and reaction kinetics is still at a preliminary level. Although we are able to produce a 3D
nanotube filtration membrane at a thickness of around 200 nm, the further reduction in the
thickness of this membrane for the fabrication of the membrane still remains a challenge.
Therefore, it is important to search for new materials to fabricate the membrane. It has been
reported in the literature that the combination of carbon materials and titanium dioxide
can prepare excellent nanocomposite functional materials and exhibit various excellent
properties. Especially in the fields of energy and environment, human beings urgently need
to find sustainable energy materials and environmental governance materials [18,24–26].
However, the interfacial bonding performance of composite materials has always been a
key factor affecting their development, and the composite interface of titanium dioxide and
carbon materials in particular has always attracted the research of scientists.

In this paper, the preparation of titanium dioxide nanoparticles coupled with carbon
nanotube composites by the high-pressure hydrothermal reaction was studied. Nano-
mesoporous thin-film materials with a high specific surface area were prepared by the
sol–gel method in the environment of ultrasonic radiation. The photoelectric properties and
bactericidal properties of the composites were tested. The interface structure of the material
was characterized by STEM in order to clarify the interfacial recombination mechanism of
titanium dioxide and carbon nanotubes.

2. Experimental Procedure
2.1. Materials and Methods

First, commercial P25 TiO2 particles (InnoCHEM, average particle size = 25 nm) were
blended with 5 wt.% multi-wall carbon nanotube (Shanghai, average particle size = 10–20 nm).
The carbon-doped composites were prepared by hydrothermal reaction in an autoclave
(150 ◦C, 6 h) using ethanol as solvent. After filtration, the obtained carbon-doped composite
was dried in a vacuum drying oven (Jinghong, 80 ◦C, 2 h).

Tetra-n-butylorthotitanate [Ti(O-i-C4H9) 4] (TB) and ethanol absolute (EtOH) were
used to prepare the Ti-bases sol. The addition of HCl was added to facilitate the hydrolysis
rate of the mixture. The mole ratio of the ingredients was optimized at TB/EtOH = 1:50
with respect to the size of the nanoparticle produced by the sol.

The carbon-doped composite was dispersed into the Ti-based sol at 0.2 g/mL under
vigorous magnetic stirring and subsequently placed in the ultrasonic bath for 5 h. The
temperature was maintained at 80 ◦C. The sonicated mixture was then dried overnight at
80 ◦C and then calcined in an argon furnace (450 ◦C, 6 h) for converting the amorphous
TiO2 into the anatase phase.

The schematic diagram for material preparation is shown in Scheme 1.
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Scheme 1. Schematic illustration of the formation of mesoporous TiO2/CNT nanomaterials mem-
brane by sol–gel ultrasonic irradiation method.

2.2. Performance and Characterization

Escherichia coli was selected for bactericidal performance. An amount of 10 mg of the
sample was added to 10 mL of deionized water (18.2 M Ohm) and sterilized in an automatic
high-temperature sterilizer. After 1.15 g/L of the bacterial solution was diluted to 0.01%,
100 µL was added to TiO2 sterilization solution and irradiated under 34.4 klux sunlight
for 1 h to prepare solid medium (trypsin 10 g, yeast powder 5 g, NaCl 10 g, agar 20 g and
deionized water to prepare 1 L solution). Then, the sterilizing solution after illumination
was applied to the medium, and the sterilization results were observed after 8 h.

A scanning electron microscope (SEM, JSM-7800F, JEOL, Tokyo, Japan) equipped with
an electron backscattered diffraction system was employed for surface characterization.
A transmission electron microscope (TEM, JEOL-2100F, Tokyo, Japan) was used for the
structural analysis of TiO2. Phase analysis was carried out on X-ray diffraction (XRD,
XPERT-PRO, Hawaii, HI, USA).

3. Results and Discussion

SEM images of the TiO2 and TiO2 + CNT mesoporous composite are presented in
Figure 1. The TiO2 prepared by the sol–gel method under ultrasonic irradiation was a
mesoporous material (Figure 1a). Carbon nanotubes were rolled sheets of carbon atoms that
form cylinders. After adding CNTs, TiO2 aggregated grow on the surface of carbon fibers
and TiO2 nanoparticles were bonded around CNTs to form nanocomposites (Figure 1b).
Moreover, the CNTs were exposed, confirming their successful incorporation into the
CNTs. According to the energy dispersive spectroscopy (EDS) mapping in Figure 2. The
results confirmed the presence and distribution of C, O, and Ti. The aggregated particles
consisted of TiO2, and the strip structures consisted of CNTs. The green (O)- and yellow
(Ti)-colored particles represented the TiO2 nanoparticles; the red (C)-colored structure
represented CNTs. TiO2 nanoparticles were uniformly distributed on carbon nanotubes,
which indicated the bonding between TiO2 nanoparticles and CNTs. It can be concluded
that the one-dimensional CNTs were interlaced to form nanoporous structures, and zero-
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dimensional TiO2 particles were adhered to one-dimensional CNTs through gelation and
sintering to form mesoporous composites. The agglomeration of the mesoporous materials
was reduced by the ultrasonic process.
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The microstructure of TiO2 on CNTs was examined by TEM, which revealed different
crystal planes of the composite (Figure 3a). After magnifying the red-circle area in Figure 3a,
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more detailed information is presented in Figure 3b. The (101) interplanar spacing was
0.375 nm (Figure 3b), indicating that TiO2 was an anatase phase [27,28], and the TiO2 semi-
conductor composite on CNT improved the light absorption efficiency of the semiconductor
composite [29].
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Figure 3. TEM (a) and high-resolution TEM (b) images of the TiO2/CNT mesoporous nanomaterials.

According to the XRD results of the TiO2/CNTs mesoporous composite (Figure 4a),
the XRD PDF cards of TiO2 and C were added for comparison. The TiO2/CNT mesoporous
composite was an obvious anatase phase and C phase, which was conducive to improving
the photoelectric properties of the material [30–32]. This result corresponds with the
observation in SEM and TEM. As shown in Figure 4b, the BET specific surface area of
TiO2/CNTs materials was 47.9 cm3/g, indicating the mesoporous structure. The high
specific surface area was due to less agglomeration. When the relative pressure P/P0 is
between 0.4 and 1.0, there is a hysteretic loop due to mesoporous adsorption, but the
latter part of the curve bulged again, which corresponds to the porous adsorption system.
Therefore, the dispersibility of TiO2 on CNTs is good.
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Figure 4. XRD pattern (a) and nitrogen adsorption–desorption isotherms (b) of the TiO2/CNT
mesoporous composite.

FT-IR was employed to analyze the functional groups on the film. The FTIR spectra in
Figure 5 showed characteristic bands at 3400 cm−1 and 1630 cm−1 correspond to the surface
water and hydroxyl group [33,34]. TiO2 anatase has stable ultraviolet light absorption per-
formance, but it has low light absorption efficiency in visible light and infrared light [35–37].
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In order to improve the light absorption efficiency, carbon-doped TiO2 nanomaterials were
prepared [38,39]. It can be seen from Figure 5 that the infrared absorption efficiency of
TiO2/CNT mesoporous composite was higher than that of pure TiO2, especially in the
600–800 nm band. Therefore, the carbon-doped TiO2 nanomaterials behaved with a better
light adsorption efficiency than the sample without carbon-doped TiO2 nanomaterials.
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spectra (d) of the TiO2 + CNT mesoporous nanomaterials.

Biofouling including organic fouling on the conventional membrane surface is in-
evitable, which is caused by the nature of biological system, where microorganisms and
bioparticles are the main components. The literature revealed that the structure/matrix of
biofouling layer (biofilm) was highly related to the extracellular polymeric substances (EPS)
compound. EPS is considered as the key component that determines the structural and
functional integrity of microbial aggregates. It forms a three-dimensional, gel-like, highly
hydrated and locally charged biofouling layer matrix, in which the microorganisms are
more or less immobilized. In addition, EPS has also been reported to be the most significant
foulant toward the conventional membrane fouling problems. Research has helped to
address the problem, but it is still unclear what the major mechanism flaw is that causes
biofouling, particularly on conventional membrane surfaces during the water treatment
process. Currently, the industry practice to get rid of the biofilm is to take out the fouled
membrane from the system and then soak it in chemicals such as sodium hypochlorite
(NaOCl) and citric acid. This process causes three major problems: the generation of waste
water, which requires further treatment; the interruption of the membrane treatment system,
which reduces the production rate significantly; the reduction in membrane lifespan, which
in turn increases the total cost of clean water production. The sterilization experiment em-
bodies the photoelectric effect charge separation experiment. In order to test the visible light
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absorption and bactericidal performance of TiO2/CNT mesoporous composite, a mixture of
Escherichia coli and different composites was made [40,41]. The mixture was spread on the
agar medium after simulating sunlight irradiation, and the bactericidal results are shown in
Figure 6. Figure 6(1) shows the blank group, and Figure 6(2) shows the bactericidal effect of
TiO2 mesoporous material. TiO2 mesoporous material had a certain bactericidal effect, but
TiO2/CNT mesoporous nanomaterials (Figure 6(3)) had a stronger bactericidal effect. The
main reason was that the absorption efficiency of visible light was improved after doping
CNT, and the stable composite interface is prepared under a high-pressure hydrothermal
environment. Therefore, according to the results of bactericidal experiments, the TiO2/CNT
mesoporous nanomaterials behaved with an excellent bactericidal performance, which is
possible for clean industrial productions.
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4. Conclusions

Preparation and stabilization of TiO2/CNT nanocomposites at the composite interface
by a high-pressure hydrothermal method. TiO2/CNT mesoporous composite was prepared
by the sol–gel method under an ultrasonic environment. Characterized under SEM and
TEM, the composite materials contained TiO2 nanoparticles as well as CNT. After phase
analysis, it was the anatase-doped phase. Infrared absorption performance and Escherichia
coli bactericidal performance tests under visible light showed that TiO2/CNT mesoporous
composite had better infrared and visible light absorption performance than pure TiO2.
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