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Abstract: Cerebrospinal fluid (CSF) proteins are very important because they can serve as biomarkers
for central nervous system diseases. Although many CSF proteins have been identified with wet
experiments, the identification of CSF proteins is still a challenge. In this paper, we propose a
novel method to predict proteins in CSF based on protein features. A two-stage feature-selection
method is employed to remove irrelevant features and redundant features. The deep neural network
and bagging method are used to construct the model for the prediction of CSF proteins. The
experiment results on the independent testing dataset demonstrate that our method performs better
than other methods in the prediction of CSF proteins. Furthermore, our method is also applied to
the identification of glioma biomarkers. A differentially expressed gene analysis is performed on
the glioma data. After combining the analysis results with the prediction results of our model, the
biomarkers of glioma are identified successfully.
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1. Introduction

The cerebrospinal fluid (CSF) is a body fluid that surrounds the brain and spinal
cord, which makes it a perfect body fluid to reflect the pathophysiological changes in the
brain [1]. Central nervous system (CNS) diseases usually are hard to detect and invasive,
and biomarkers in body fluids can overcome these issues. Compared with traditional
body fluids such as plasma, urine, and saliva, CSF biomarkers are more accurate for the
early diagnosis of CNS diseases because of their natural advantages. Recently, many
CSF biomarkers have been identified for diagnostic or therapeutic purposes of various
CNS diseases, including Alzheimer’s disease, Parkinson’s disease, iron deficiency anemia,
and glioma cancers [2–6]. CSF proteins are very important because they are promising
biomarkers for CNS diseases. Although the biomarkers of certain CNS diseases have
reached the clinical stage, more efficient biomarkers still need to be studied [7]. The de-
tection of CSF proteins is still a challenge due to the high cost of biological experiments.
Therefore, the prediction of CSF proteins plays a very important role in the identification of
biomarkers in CSF.

Many computational methods have been proposed to predict proteins in body fluids [8–16].
Among these computational methods, the most successful one is based on the support vector
machine (SVM) [8]. The SVM-based method was originally proposed to predict the proteins in
plasma and later applied to the detection of proteins in other body fluids, including urine and
saliva [9,12,13]. Although SVM-based methods have been successfully applied in multiple
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body fluids, this method is based on a manual negative dataset, which causes the disadvantage
of limited prediction performance. Subsequently, the ranking-based computational method
was proposed to overcome this issue. The ranking-based method transforms the protein-
classification problem into a ranking problem [11]. This method uses a positive dataset and a
background dataset to sort the data in the background set and selects proteins with a higher
probability from the background set. The disadvantage of this method is that it can only sort
proteins but not classify them directly. Another computational method for proteins in body
fluids is based on the protein–protein interaction network [10]. Instead of directly classifying
proteins in body fluids, this method aims to rank multiple body fluids and select the most
likely body fluid for each protein. Similar to the ranking-based method, this method cannot
directly predict the protein for a specific body fluid. Another effective method is based on
deep neural networks (DNN) [14]. Compared with other methods, the DNN-based methods
can usually learn more complex features to increase the representative ability and obtain a
better performance. However, DNN-based methods always require a large amount of data.
The performance of DNN-based methods may suffer from overfitting because the proteins in
human body fluids are limited. Therefore, to obtain a more accurate method and improve
the application to disease biomarker identification, an effective approach urgently needs to
be presented. Although many computational methods have been proposed, these methods
mainly focus on traditional body fluids, such as plasma, urine, and saliva. On the other
hand, more and more CSF proteins have been identified using wet experiments. Due to
the specificity of CSF for CNS diseases, the prediction method for CSF proteins needs to
be studied urgently. Positive-unlabeled (PU) learning is a machine learning method that
aims to perform binary classification with a small number of positive samples and a large
number of unlabeled samples [17]. PU learning has been applied to many domains, including
drug–target interaction and prediction of pupylation sites, and achieved some success [18–21].

In this paper, we propose a novel method based on the DNN and bagging method to
predict CSF proteins based on protein features. Furthermore, we also apply this method
to glioma biomarker identification. In the CSF protein prediction, four kinds of features
are collected to represent each protein, and a two-stage feature-selection method is used
to select the most important features. The DNN and bagging are adopted to build a
computational method based on the selected protein features. This method is trained
on a training dataset of CSF proteins, and the benchmarks in the independent dataset
demonstrate that our method can predict CSF proteins with a relatively accurate probability.
In addition, we also apply our novel method to the identification of glioma biomarkers.
The rank-sum test and fold-change method are used to identify differentially expressed
genes, and our novel method is used to predict potential CSF proteins. The combined
results for differential genes and potential CSF biomarkers of glioma suggest that the
biomarkers are successfully identified.

2. Results
2.1. Result of the Two-Stage Feature Selection

For the better prediction of CSF proteins, the two-stage feature-selection method
was used to select the most important features from the protein feature vectors with
1610 dimensions. In the first stage, the p-value for each dimension of the features was
computed based on the rank-sum test. After that, the FDR was used to calculate the q-value
for each dimension based on the p-value. A q-value = 0.05 was used as the cutoff to remove
the irrelevant features. As a result, the features of 354 dimensions were removed. In the
second stage, the RFE method was applied to remove the redundant features after the
previous stage. The prediction of CSF proteins was used as the base model to perform the
RFE-based feature selection, and the q-value of each dimension was used as the feature
importance in RFE. At each iteration in the second stage, the prediction model was trained
based on some features and evaluated on the validation dataset. In this stage, the features
of 1256 dimensions were used to remove the redundant features, and the features of
20 dimensions were removed at each iteration.
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Figure 1 shows the performances of the computational method on the validation
dataset at each iteration of the second stage. As is shown in this figure, both the F1 and
AUC scores increased with the number of features and became stable when the number
of features exceeded 260. This demonstrates that these features of 260 dimensions keep
the most important information of the CSF proteins, and the other features retain a small
amount of extra information. Therefore, these features of 260 dimensions were the final
features for the protein classification. Finally, our two-stage feature-selection method
successfully removed the irrelevant or redundant features and selected 260 protein features
of 260 dimensions for the prediction of CSF proteins.
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Figure 1. The performances on the validation dataset with different numbers of features in the second
stage of the feature-selection method. (a) The AUC scores on the validation dataset of CSF proteins.
(b) The F1 scores on the validation dataset of CSF proteins.
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2.2. Comparison with other Prediction Methods

The implementation of the method proposed in this paper was based on the Python
packages PyTorch, and Scikit-Learn [22,23]. Firstly, 16 sub-datasets were generated from
the CSF protein dataset, and each of them contained 747 positive samples and 747 negative
samples. Then, these 16 sub-datasets were used to train 16 DNN models, respectively.
These DNN models had the same network architecture, and they were trained with the
same hyperparameters. The input layer of each DNN had 260 units that corresponded to
the number of selected features. Each DNN contained three hidden layers, and each hidden
layer contained 128 neurons. A dropout probability of 0.1 was used at each hidden layer.
The batch size used for each DNN was 32. The loss of each DNN for the protein classification
was optimized using the Adam optimizer with a learning rate of 0.001, and each DNN was
trained for 20 epochs [24]. Finally, these DNNs together composed our prediction method,
and the prediction of our method was made by averaging their prediction probabilities.

The SVM, decision tree (DT), and DNN were trained to compare their performances
with the proposed method [8,14]. All these methods were trained on the training dataset
based on the selected features of 260 dimensions, and the hyperparameters of these methods
were tuned based on the performances on the validation dataset. The performances of
these methods on the independent testing dataset were reported as their benchmarks and
used to compare with our method.

Table 1 shows the comparative benchmarks of these methods on the independent
testing dataset. As shown in this table, our novel method reaches 0.7260, 0.7229, 0.7330,
0.7279, 0.4521, and 0.8041 in ACC, PR, RE, F1, MCC, and AUC, respectively. This table also
shows that our novel method achieves much better performances than other prediction
methods. In particular, our method performs much better than the other methods in the F1
and MCC metrics. Compared with DNN, our method improves by 16.09% and 5.68% in F1
and AUC. This is because our novel method can balance the positive and negative samples
well. The comparative benchmarks on the independent testing dataset demonstrate that
our method can predict the CSF proteins more accurately than other methods.

Table 1. The comparative benchmarks on the independent testing datasets of CSF.

Methods ACC PR RE F1 MCC AUC

SVM 0.6158 0.9003 0.2605 0.4040 0.3293 0.7891
DT 0.6140 0.6923 0.4102 0.5152 0.2496 0.6140
DNN 0.6726 0.8367 0.4288 0.5670 0.3953 0.7697
Our method 0.7260 0.7229 0.7330 0.7279 0.4521 0.8041

The best results are in bold.

2.3. Application to Glioma Biomarker Identification

As is shown in Figure 2, the identification of glioma biomarkers consists of two parts,
including the discovery of potential CSF proteins and the identification of differentially
expressed proteins in gliomas. To discover the potential CSF proteins, the prediction
method was retrained on the whole dataset and then used to predict the CSF probability
of unknown proteins. The probability of a CSF protein was calculated by averaging the
probabilities of the DNNs for which the training datasets do not contain this protein. If the
probability of an unknown protein is more than 0.5, this protein was considered a potential
CSF protein. Finally, our method discovered 2005 potential CSF proteins that have not been
reported before. The details of the potential CSF proteins can be found in Supplementary
Table S1.
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Figure 2. The flowchart of glioma biomarker identification.

To identify the differentially expressed genes in gliomas, q-value = 0.05 and fc = 2
were used as the cutoff values of the rank-sum test and fold change method, respectively.
The glioma data from the TCGA database were used as the case group, and the normal
data from the GTEx database were used as the control group. As a result, 4396 differen-
tially expressed genes (2170 up-regulated genes and 2226 down-regulated genes) were
identified. After the differentially expressed genes were found, they were mapped to the
proteins in CSF. These differentially expressed genes encoded a total of 4226 human proteins
(2175 up-regulated proteins and 2051 down-regulated proteins). Our novel method was
used to predict the CSF proteins, and the proteins that were both differentially expressed
and predicted CSF proteins were considered the potential glioma biomarkers. Figure 3
shows the Venn diagram of the potential CSF proteins and differentially expressed proteins
of gliomas. As is shown in this figure, among the 4226 differentially expressed proteins for
gliomas, 1683 proteins were verified as CSF proteins in wet experiments and 416 proteins
were predicted as CSF proteins using our novel method. Finally, 416 potential CSF biomark-
ers were identified using our method, and they were not reported to be secreted in CSF
before. Among these potential biomarkers for gliomas, 207 were up-regulated and 209 were
down-regulated. To compare the verified proteins and the predicted candidates, the t-SNE
method was used to visualize these two groups of proteins using 260 features [25]. Figure 4
shows the distribution of the verified proteins and the predicted candidates. As is shown in
this figure, the predicted candidates are covered by the verified proteins. This demonstrates
that the predicted candidates are very close to the verified proteins. In addition, most of
the predicted proteins are distributed in the upper right region. The proteins in this region
are long and heavy, while the proteins in other regions are relatively short and light. This
is related to the difficulty of mass spectrometry techniques for long and heavy proteins.
With the development of mass spectrometry for large proteins, the predicted proteins will
provide valuable references for further experimental verification [26]. Table 2 reports the
potential CSF biomarkers with a predictive probability of more than 90%. The details of all
these biomarkers for gliomas can be found in Supplementary Table S2.
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Figure 3. The flowchart of glioma biomarker identification.
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Figure 4. T-SNE visualization of verified proteins and predicted candidates using 260 features.

Table 2. The potential glioma biomarkers identified using our method.

Id Accession FC Probability q-Value Type

1 Q9H4X1 3.19 92.66% 0.0218 up
2 P28370 3.18 92.15% 0.0007 up
3 P49368 2.38 93.18% 0.0073 up
4 O14497 2.29 90.60% 0.0094 up
5 Q9P2E5 2.21 90.93% 0.0065 up
6 Q9UPP2 0.14 90.21% 0.0105 down
7 Q12955 0.14 96.78% 0.0053 down
8 Q14643 0.24 91.32% 0.0207 down
9 O15020 0.32 91.48% 0.0224 down

10 Q70CQ2 0.36 95.00% 0.0040 down
11 Q96M86 0.47 93.95% 0.0109 down
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3. Materials and Methods
3.1. Data Collection

We collected two types of data, including CSF protein data and glioma cancer data.
The CSF protein data contain the protein data in CSF that will be used to train our com-
putational method. The glioma cancer data contain the gene expression data for glioma
cancers, which will be used to identify the glioma biomarkers.

3.1.1. The CSF Protein Data

The CSF protein data are collected from the HBFP (Human Body Fluid Proteome)
database, which is a publicly available database that has collected 11,827 experimentally
validated secreted proteins for human body fluids [27]. From this database, 6269 CSF
proteins that have been verified in wet experiments are retrieved for further processing.
Among these proteins, 5376 proteins that have been studied by more than one study
are used as the positive dataset. The remaining proteins that have not been verified
by any experiments are used as the unlabeled dataset. After that, the positive dataset
and unlabeled dataset are merged to form the CSF protein dataset. The dataset is then
randomly divided into training, validation, and testing datasets. In detail, the training
dataset contains 3226 positive samples and 11954 unlabeled samples for the training of
CSF protein-prediction methods. The validation dataset contains 1075 positive samples
and 1075 unlabeled samples for the search for hyperparameters. The testing dataset
also contains 1075 positive samples and 1075 unlabeled samples for the evaluation of
computational methods.

3.1.2. The Glioma Gene Expression Data

The fragments per kilobase of transcript per million mapped reads (FPKM) data of the
gliomas are downloaded from the UCSC Xena browser, including GTEx (the Genotype-
Tissue Expression project) data and TCGA (The Cancer Genome Atlas) data [28]. Further-
more, 500 glioma tissues are obtained as the tumor group from the TCGA Lower Grade
Gliomas (LGG) dataset. From the GTEx database [29], 443 normal tissues are collected as
the control group, including the cortex, frontal cortex, anterior cingulate cortex, hippocam-
pus, and amygdala. Then, the RNA-Seq data are merged and transformed with log2(x+1).
After that, the R package “limma” is used to normalize the gene expression data of the
gliomas [30].

3.2. Prediction of Proteins in CSF

The prediction of proteins in CSF is a special case of protein classification where the
goal is to predict whether a protein could be secreted into the CSF. Here, we propose a
prediction method to predict CSF proteins from protein features. This method is based on
the DNN and bagging method. As shown in Figure 5, this computational method consists
of three parts: feature construction, feature selection, and protein classification.

3.2.1. Feature Construction

Feature construction collects four types of features for each protein, including general
sequence features, physicochemical properties, domain/motif properties, and structural
properties. The general sequence features contain 11 features directly calculated based on
the amino acid sequences, such as the amino acid composition and dipeptide composition.
The physicochemical properties include 24 features related to the physical or chemical
properties of proteins, such as hydrophobicity and polarity. The domain/motif properties
contain 11 properties related to transmembrane or motif, such as transmembrane domains
and signal peptides. The structural properties include 6 features based on the protein
structure, such as the secondary structure and unfoldability. All these features are com-
puted based on the amino acid sequences with computational tools and websites [31,32].
As shown in Table 3, a total of 52 features is collected and represented as a vector of length
1610. For each dimension of these protein features, the empty values are filled with the
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median of the corresponding feature vectors. Then, the protein features are standardized
by subtracting the mean and dividing by the standard deviation.

Table 3. The four types of features collected for the prediction of CSF proteins.

Type Feature Name Length

General sequence properties

Sequence length 1
Mass 1
Amino acid composition 20
Dipeptides composition 400
Normalized Moreau–Broto autocorrelation descriptors 90
Moran autocorrelation 90
Geary autocorrelation descriptors 90
Quasi-sequence-order descriptors 160
Pseudo-amino acid composition 150
Amphiphilic pseudo-amino acid composition 80
Total amino acid property 3

Physicochemical properties

Hydrophobicity 21
Normalized Van der Waals volumes 21
Polarity 21
Polarizability 21
Charge 21
Solvent accessibility 21
Surface tension 21
Molecular weight 21
Solubility in water 21
No. of hydrogen bond donors in side chain 21
No. of hydrogen bond acceptors in side chain 21
CLogP 21
Amino acid flexibility index 21
Protein–protein Interface hotspot propensity—Bogan 21
Protein–protein Interface (PPI) propensity—Ma 21
Protein–DNA Interface propensity—Schneider 21
Protein–DNA Interface propensity—Ahmad 21
Protein–RNA Interface propensity—Kim 21
Protein–RNA Interface propensity—Ellis 21
Protein–RNA Interface propensity—Phipps 21
Protein–ligand binding site propensity—Khazanov 21
Protein–ligand valid binding site propen—Khazanov 21
Propensity for protein–ligand polar and atom–Imai 21
Isoelectric point 1

Domains/motifs properties

Twin-arginine signal peptide 1
Transmembrane domains 1
Signal peptide 1
Number of glycosylation sites 1
Glycosylation presence 1
Phosphorylation sites 1
Cleavage site 3
Subcellular location 3
Percentage of coil content 1
Number of predicted motif sites 1
Transmembrane helices 1

Structural properties

Secondary structure 21
Unfoldability 1
Fldbin charge 1
Number of disordered regions 1
Longest disordered regions 1
Number of disordered residues 1
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Figure 5. The framework to predict proteins in CSF. (a) Feature construction collects four groups
of features for each protein; (b) feature selection selects the important and effective features for the
protein classification; (c) protein classification models and predicts the proteins in CSF based on DNN
and bagging methods.

3.2.2. Feature Selection

The feature construction has collected many protein features that could contain irrele-
vant features and redundant features. Irrelevant features and redundant features usually
cannot improve the performance of the computational method but will affect the generaliza-
tion performance. Therefore, irrelevant features and redundant features need to be removed
for better prediction of CSF proteins. A two-stage feature-selection method is adopted here
to remove the irrelevant features and redundant features. This feature-selection method is
based on the rank-sum test, false discovery rate (FDR), and recursive feature elimination
(RFE) [14,33]. In the first stage, the rank-sum test and FDR are used to remove the irrelevant
features. For each dimension of the feature vectors, the p-value is computed based on the
CSF label with the rank-sum test. Then, the q-value is calculated based on the p-value and
FDR method. If the p-value is more than the q-value, this dimension would be considered
an irrelevant feature. After comparing all the p-values and q-values, the irrelevant features
would be removed from these selected protein features. In the second stage, the RFE
method is used to remove redundant features from the result of the first stage. The p-values
calculated in the first stage are used as the feature importance in the RFE method. At this
stage, a small number of features is removed at each iteration recursively. At each iteration,
the features with the least feature importance are removed and the classifier are retrained
and evaluated. After the features are removed, the optimal feature subset is selected
based on the performance on the validation dataset. These features are the final features
selected using the two-stage feature-selection method and will be used to train the protein
classification model.

3.2.3. Protein Classification

Protein classification aims to build the classifier for CSF proteins based on the selected
protein features. As is shown in Figure 5, protein classification is based on the DNN and
bagging methods [34,35]. Protein classification only requires CSF proteins and unlabeled
proteins, and it is trained with the following steps. Firstly, the CSF proteins constitute
the dataset P, and the unknown proteins constitute the dataset U. Secondly, dataset U is
divided into T unlabeled sub-datasets of the same size {U1, U2, . . . , UT}. Then, T positive
sub-datasets are generated from the P dataset using random sampling, and these positive
sub-datasets have the same number of samples as the unlabeled sub-datasets. After that,
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T positive sub-datasets and T unlabeled sub-datasets are merged into T different binary
classification datasets. T DNNs are trained based on these T binary classification datasets
individually. The final prediction of a protein is made by averaging the probabilities of
these DNNs of which the training dataset does not contain this protein.

All these DNNs have the same network architecture, and each of them is composed of
one input layer, multiple hidden layers, and one output layer. The input layer corresponds
to the number of features selected during feature selection. Each hidden layer has multiple
neurons to transform its input into complex features [34]. Each neuron is connected with
all the input features and computed with the linear transformation of these input features.
The input of the first hidden layer is the selected features, and the input of the others is
the output of the last hidden layer. For each neuron, its output value is computed as a
weighted sum of all the input values and then processed through a non-linear activation
function. These hidden layers adopt the ReLU as the nonlinear activation function, and the
computation of the hidden layer is defined as follows:

hl+1
i = max(0, wl+1

i · hl + bl+1
i ), (1)

where hl+1
i is the output value of the i-th neuron, wl+1

i and bl+1
i are the weight and bias,

respectively, of the i-th neuron, and hl is the input of this layer. The output layer contains
two neurons, representing positive and negative. The computation of the output layer is
the linear transformation of the input features that are the output of the last hidden layer.
The output value of i-th neuron in the output layer is defined as follows:

oi = h · αi + βi, (2)

where oi is the output value of i-th neuron, αi and βi represent the weight and bias, re-
spectively, of the i-th neuron, and h is the output value of the last hidden layer. Then,
the softmax function is used to transform the output values into the predictive probability
p, which is defined as follows:

p =
exp o2

exp o1 + exp o2
. (3)

For a protein, if the predictive probability p is more than 0.5, this protein would be
considered a CSF protein. Cross entropy is adopted as the loss function of the binary
classification task, which is defined as follows:

L = − 1
N

N

∑
i=1

(
yi log pi + (1− yi) log (1− pi)

)
, (4)

where yi and pi are the CSF label and probability, respectively, of the i-th protein and N is
the number of proteins.

3.3. Identification of Differentially Expressed Genes

The rank-sum test, FDR, and fold change are applied to identify differentially ex-
pressed genes in gliomas. Firstly, the rank-sum test is used to calculate the p-value for
each gene. Then, the FDR is employed to estimate the statistical significance based on the
p-value and calculate the q-value. The fold change is adopted to measure the difference
between each gene in cancer and normal tissue, and it is defined as follows:

FCi =
c̄i
n̄i

=
∑ cij

∑ nij
, (5)

where cij is the expression value of gene i in cancer tissues from patient j and nij is th
expression value of gene i in normal tissue from patient j.
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These two measures are often used to identify differentially expressed genes. The cut-
off of the q-value used in this work is 0.05. The genes with FC more than 2 are con-
sidered over-expressed genes, while those with FC less than 0.5 are considered under-
expressed genes.

3.4. Evaluation

To evaluate the performances of the CSF protein-prediction model, the accuracy (ACC),
precision (PR), recall (RE), F1 score (F1), Matthew’s correlation coefficient (MCC), and Area
under the ROC Curve (AUC) are employed. Higher values demonstrate better classification
performances for all these metrics. The ACC, PR, RE, F1, and MCC metrics are defined
as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (6)

PR =
TP

TP + FP
, (7)

RE =
TP

TP + FN
, (8)

F1 =
2TP

2TP + FP + FN
, (9)

MCC =
TP× TN − FN × FP√

(TP + FN)× (TP + FP)× (TN + FP)× (TN + FN)
, (10)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false
positives, and false negatives, respectively.

4. Discussion

In this work, a computational method is proposed to predict the proteins in CSF based
on protein features. A two-stage feature selection is employed to select the most important
features for the prediction. To detect the proteins in CSF, DNN and bagging are adopted
to build classifiers for the prediction of proteins in CSF. Our novel method also can be
used to detect proteins in CSF from unknown proteins. Compared with the SVM-based
method, our method does not need the generation of a manual negative dataset. This
would improve the prediction performances of potential CSF proteins because no artificial
knowledge is introduced. Although the ranking-based method and our method do not
require a manual negative dataset during construction, our method is still superior to the
ranking-based method. This is because the ranking-based method can only sort unknown
proteins, but our method can predict whether a protein is secreted into the CSF. In terms
of evaluation performances, our method is much better than other methods mainly in
the F1 and MCC indicators. This demonstrates that our method balances positive and
negative samples well. These improvements also affirm the effectiveness of our method.
The bagging-based strategy can not only improve the prediction effect but also balance the
positive and negative samples well. All these advantages would improve the accuracy of
the potential CSF proteins predicted by our method and the application of the prediction
results. Although our computational method has achieved a good performance, there are
still some efforts that can be made to improve the prediction of CSF proteins. The protein
features collected in this study are limited, and more features could be collected in the
future to increase the expressive ability of the computational method. In addition, more
advanced feature-selection methods should also be considered to improve the performance.

The potential CSF proteins are also applied to identify biomarkers for gliomas. First,
the rank-sum test and fold change method were adopted to identify the differentially
expressed genes. After that, the analysis results were combined with the potential CSF
proteins to identify the biomarkers of gliomas, and the glioma biomarkers were found
successfully. The application of our prediction method to glioma biomarker identification
provides a new idea for the identification of biomarkers in CNS diseases. There are too
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many glioma biomarkers obtained in this study, and they have not been verified in any
experiments. To improve the early diagnosis of CNS diseases, the biomarkers identified
in our study still need to be verified with experiments in the future. Furthermore, the
biomarkers can also be combined with machine learning methods to build early diagnosis
models for CNS diseases [36,37].

5. Conclusions

In this study, we propose a novel method to predict CSF proteins and apply it to
identify glioma biomarkers. In this prediction method, feature vectors of dimension
1610 are constructed, and 260 features are selected from them based on a two-stage feature-
selection method. After that, DNN and bagging are used to model CSF proteins based on
these selected features. Furthermore, our computational method is also used to predict
potential CSF proteins. The differentially expressed genes are identified with the rank-sum
test and fold change method, and correspondingly, 4226 differentially expressed proteins
are identified. By fusing these two experimental results, 416 proteins are found to be
differentially expressed and predicted to be secreted into the CSF.

In the future, we would like to further improve the performance of the prediction
method through a more effective network architecture and apply the prediction method to
find biomarkers for other CNS diseases.
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