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Abstract: Palladium-catalyzed direct (het)arylation reactions of strongly electron-withdrawing tri-
cyclic benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) and its 4,8-dibromo derivative were studied; the
conditions for the selective formation of mono- and bis-aryl derivatives were found. The reaction
of 4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) with thiophenes in the presence of palla-
dium acetate as a catalyst and potassium pivalate as a base, depending on the conditions used,
selectively gave both mono- and bis-thienylated benzo-bis-thiadiazoles in low to moderate yields;
arenes were found to be inactive in these reactions. It was discovered that direct C–H arylation of
benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole with bromo(iodo)arenes and -thiophenes in the presence of
Pd(OAc)2 and di-tert-butyl(methyl)phosphonium tetrafluoroborate salt is a powerful tool for the
selective formation of 4-mono- and 4,8-di(het)arylated benzo-bis-thiadiazoles. Oxidative double C–H
hetarylation of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole with thiophenes in the presence of Pd(OAc)2

and silver (I) oxide in DMSO was successfully employed to prepare bis-thienylbenzo-bis-thiadiazoles
in moderate yields.

Keywords: sulfur-nitrogen heterocycles; benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole); 4,8-dibromobenzo
bis([1,2,3]thiadiazole); direct (het)arylation palladium catalyzed reactions

1. Introduction

π-Conjugated organic molecules have attracted much attention in optoelectronic
devices due to their ability to optimize many physical properties, such as light absorption,
light emission, charge carrier mobility, conductivity, and others [1]. Various combinations
of electron-donating (D) and electron-withdrawing (A) groups, linked either directly or
preferably through π-conjugated bridges (π), have been used in organic chromophores to
tune band gap levels and optoelectronic properties. The selection of donor and acceptor
fragments is fundamentally important for achieving the best characteristics of organic
dyes. An essential role of electron-deficient π-conjugated building blocks is to reduce the
band gap by promoting intramolecular charge transfer (ICT) [2,3]. Although a number of
heterocyclic acceptors have been extensively studied [4], 2,1,3-benzothiadiazole and its
4,7-disubstituted derivatives are the most promising acceptor units due to their strong
electron-withdrawing properties, intense light absorption, and excellent photochemical
stability [5,6]. Nevertheless, attempts have been made to increase the electron-withdrawing
strength of the benzothiadiazole moiety by introducing fluorine atoms into positions 5
and 6 of the benzene ring [7], replacing the benzene ring with a pyridazine ring [8,9], and
heteroannelation in positions 5 and 6 with another thiadiazole ring to form a strong acceptor
building block, such as benzo[1,2-c:4,5-c′]bis[1,2,5]thiadiazole (BBT) with the lowest LUMO
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energy (Figure 1) [10]. The BBT isomer, benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (isoBBT),
has recently been found to have promising electron-accepting properties [11]. It was shown
that 4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) can successfully participate in
palladium-catalyzed Suzuki–Miyaura and Stille cross-coupling reactions with selective
formation of mono- and bis-arylated heterocycles, which can be considered as useful
building blocks for DSSC and OLED components [12].
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Although traditional methods of C–C bond formation have proved to be effective for
isoBBT derivatives [12], modern environmental safety requirements require a reduction
in the number of technological stages, as well as the abandonment of the use of toxic
(organotin) and flammable (butyllithium) reagents in these reactions. One way to eliminate
these shortcomings is palladium-activated direct (het)arylation by the reaction of some
(het)aryl derivatives with others [13]. With the help of these efficient synthetic tools, many
π-conjugated molecules have been obtained [14–16]. There are three approaches to such
a transformations of isoBBT derivatives: 1. reaction of halogen iso-BBT derivatives (i.e.,
4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)) with C–H (het)aryls; 2. reaction of
benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 with halogen (het)aryls; and 3. double oxidative
arylation of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) with C-H (het)aryl. These three routes
were investigated for 2,1,3-benzothiadiazole (BTD) derivatives (Scheme 1). The reaction of
4,7-dibromobenzo[c][1,2,5]thiadiazole with arenes and hetarenes (Scheme 1, path 1) is most
often carried out in the presence palladium (II) acetate as a palladium catalyst and potas-
sium acetate [17–19] or potassium pivalate [20–24] as bases in N,N-dimethylacetamide
(DMA). In some cases, triphenyl- [25] or tricyclohexylphosphine [26] have been used
as ligands. A combination of reagents, including Pd(OAc)2, tricyclohexylphosphine
tetrafluroborate salt (Cy3PHBF4), sodium tert-butoxide and neodecanoic acid was ef-
fective for the synthesis of 4,7-bis(5-hexyl-2-thienyl)benzo[c][1,2,5]thiadiazole [27]. tris-
(Dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) together with potassium pivalate as a
base and tris(o-methoxyphenyl)phosphine as a ligand was successfully employed for ary-
lation of 4,7-dibromobenzo[c]thiadiazole [28–31]. Thiazolyl derivatives of benzo[c][1,2,5]
thiadiazole were prepared in good yields using palladacycle Herrmann complex (trans-
di(µ-acetato)-bis[o-(di-o-tolylphosphino)-benzyl]dipalladium(II)), cesium pivalate as base
and tris(o-methoxyphenyl)phosphine as ligand [32].

Unsubstituted benzo[c][1,2,5]thiadiazole reacted with bromoarenes or hetarenes
(Scheme 1, path 2) by catalysis of palladium (II) acetate in the presence of potassium
pivalate in DMA at a high temperature 150 ◦C with successful formation of mono- and
bis-(het)aryl derivatives [33]. The use of di-tert-butyl(methyl)phosphonium tetrafluorobo-
rate salt (PBut

2Me·HBF4) in toluene made it possible to lower the reaction temperature to
120 ◦C and extend the reaction scope for 5-mono- and 5,6-difluoro(cyano)benzo[c][1,2,5]
thiadiazoles [34,35].

Selective Pd-catalyzed (Pd(OAc)2) thienylation of benzo[c][1,2,5]thiadiazoles with thio-
phenes (Scheme 1, path 3) in DMSO via double oxidative C–H functionalization was discov-
ered in 2014 by the Zhang group [36,37]. The reaction proceeds under mild reaction condi-
tions, providing a series of unsymmetrical and symmetrical BTD–thiophenes with high effi-
ciency and excellent functional group compatibility. Silver oxide acted as an oxidizing agent;
in some cases, Pd(OTf)2 gave higher yields of dithienylated benzo[c][1,2,5]thiadiazoles [37].
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There is only one example of direct C–H hetarylation of tricyclic benzo-bis-thiadiazoles:
the synthesis of 4,8-bis(5-(triisopropylsilyl)thiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]
thiadiazole) in low yield upon treatment of isoBBT 1 with palladium (II) acetate in the
presence of potassium pivalate and di-tert-butyl(methyl)phosphonium tetrafluoroborate
salt (PtBu2Me·HBF4) in toluene at 120 ◦C (Scheme 2) [11].
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To elucidate the applicability of direct C–H (het)arylation reactions of tricyclic benzo-
bis-thiadiazoles, this paper describes the study of the reaction of benzo[1,2-d:4,5-d′]bis
([1,2,3]thiadiazole) 1 and its 4,8-dibromo derivative 2 with aromatic and heterocyclic com-
pounds.

2. Results and Discussion
2.1. Palladium-Catalyzed (Het)arylation Reactions of 4,8-Dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]
thiadiazole) 2

The optimal conditions for the selective synthesis of mono-4 and bis-5 coupling prod-
ucts were calculated for the reaction of 4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)
2 with (2-ethylhexyl)thiophene 3a in the presence of various palladium catalysts and or-
ganic ligands. The results of this study are summarized in Table 1. It was found that by
using Pd(OAc)2 with potassium pivalate as a base in toluene, both mono-4a- and bis-aryl
derivatives 5a can be obtained. The nature of the solvent and ligand, the temperature
of the chemical transformation, and the excess of the reagent significantly affected the
results of the reactions (Table 1). Unexpectedly, carrying out the reaction in the frequently
used solvent DMA [17–20] resulted only in the decomposition of the starting dibromide
2 (Table 1, entry 1). Refluxing in the aromatic solvent, toluene, led to the disappearance
of the starting bicycle 2 with the formation of the target product 4a in moderate yield
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(Table 1, entry 2). An increase in the reaction temperature to 130 ◦C and an increase in
the amount of the starting thiophene to two equivalents gave bis-coupling product 5a in a
yield close to that of mono-product 4a (Table 1, entry 3). An unexpected fact was that the
use of ligands such as tri-tert-butylphosphine (But

3P), bis(diphenylphosphino)ferrocene
(dppf) or XPhos, PBut

2MeHBF4, both in toluene and in DMA, stopped the formation of
products 4a and 5a; in these cases, the starting heterocycle 2 decomposed slowly under
the reaction conditions (Table 1, entries 4–9). The optimal conditions were extended to
other thiophene derivatives 3b-d; mono- and bis-dithienylated derivatives were isolated in
moderate yields (Table 1, entries 12–17). Attempts to carry out the C–H arylation reaction
involving aromatic compounds such as toluene or xylene using various catalytic systems
were not successful; starting dibromide 2 was isolated in high yields. Thus, we have
shown that the C–H arylation reactions of dibromide 2 proceeded only with heteroaromatic
thiophene derivatives 3a-d and selectively led to the formation of mono- and bis-thienyl
derivatives in moderate yields.

Table 1. Palladium-catalyzed hetarylation reactions of 4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]
thiadiazole) 2.
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3P toluene 110 ◦C, 12 h 0 0
6 3a (1) Pd(OAc)2 PivOK (1) dppf toluene 110 ◦C, 12 h 0 0
7 3a (1) Pd(OAc)2 PivOK (1) PBut

2Me HBF4 toluene 110 ◦C, 12 h 0 0
8 3a (2) Pd(OAc)2 PivOK (2) Ph3P DMA 110 ◦C, 12 h 0 0
9 3a (2) Pd(OAc)2 PivOK (2) PBut

2Me HBF4 DMA 110 ◦C, 12 h 0 0
10 3a (2) Pd(PPh3)4 PivOCs (2) - xylene 110 ◦C, 18 h 38 0
11 3a (2) Pd(PPh3)4 PivOCs (2) - xylene 130 ◦C, 16 h 36
12 3b (1) Pd(OAc)2 PivOK (1) - toluene 110 ◦C, 30 h 33 0
13 3b (2) Pd(OAc)2 PivOK (2) - xylene 130 ◦C, 24 h 0 36
14 3c (1) Pd(OAc)2 PivOK (1) - toluene 110 ◦C, 30 h 35 0
15 3c (2) Pd(OAc)2 PivOK (2) - xylene 130 ◦C, 24 h 0 29
16 3d (1) Pd(OAc)2 PivOK (1) - toluene 110 ◦C, 30 h 31 0
17 3d (2) Pd(OAc)2 PivOK (2) - xylene 130 ◦C, 24 h 0 30

a 15 mol% catalyst. b 30 mol% ligand.

2.2. Palladium-Catalyzed (Het)arylation Reactions of Benzo[1,2-d:4,5-d′]bis([1–3]thiadiazole) 1

Palladium-catalyzed direct arylation reactions of non-halogenated aromatic electron-
withdrawing heterocycles are much less studied. The results of the reaction of tricycle
1 with 2-bromo-5-(2-ethylhexyl)thiophene 6a(Br) as a halogen-containing substrate are
summarized in Table 2. Refluxing in toluene in the presence of palladium acetate (Pd(OAc)2)
and potassium pivalate (PivOK) resulted in partial decomposition of the starting bicycle 1
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without the formation of target products 7a and 5a (Table 2, entry 1). The introduction of
such ligands as tri-tert-butylphosphine (But3P) or bis(diphenylphosphino)ferrocene (dppf)
did not activate the cross-coupling reaction (Table 2, entries 3,4), but the employing of
XPhos led to the formation of a monocoupling product 7a with a low yield (Table 2, entry 2).
The use of such palladium catalysts as tetrakis(triphenylphosphine)palladium (Pd(PPh3)4),
tris(dibenzylideneacetone)dipalladium (Pd2(dba)3), and bis(triphenylphosphine)palladium
chloride (PdCl2(PPh3)2) also did not run the cross-coupling reaction (Table 2, entries
5,6,8). The best results were shown by a catalytic system based on (Pd(OAc)2) and di-tert-
butyl(methyl)phosphonium tetrafluoroborate salt (P(But)2MeHBF4) [36]. If the reaction
of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 was carried out in refluxing toluene in the
presence of potassium pivalate, then the bis-coupling product 7a was formed (Table 2,
entry 9). Long-term reflux in toluene in the presence of Pd(OAc)2 and P(But)2MeHBF4
led to the formation of compound 7a in 45% yield (Table 2, entry 10). It was shown that
the replacement of toluene by higher boiling xylene (130 ◦C) shifted the C-H arylation
reaction towards the bis-coupling product 5a in a good yield of 55% (Table 2, entry 11).
The use of DMA or DMF as a solvent did not lead to the formation of cross-coupling
products (Table 2, entries 12,13). Treatment of tricyle 1 with one equivalent of 2-iodo-
5-(2-ethylhexyl)thiophene in the presence of Pd(OAc)2) and P(But)2MeHBF4) led to the
formation of a mixture of mono-7a and bis-5a substituted products in a ratio of 2:1 (Table 2,
entry 14). Increasing the amount of iodine derivative 6a(I) to two equivalents and replacing
toluene with xylene resulted in the selective formation of the bis-coupling product 5a in 54%
yield (Table 1, entry 15). 2-Chloro-5-(2-ethylhexyl)thiophene gave under these conditions
the mono-coupling product 7a in trace amounts of 2% (Table 2, entry 16).

Table 2. Palladium-catalyzed (het)arylation reactions of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1
with 2-halogen-5-(2-ethylhexyl)thiophene 6a.
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7a 5a

1 6a(Br) (1) Pd(OAc)2 PivOK (1) - toluene 110 ◦C, 12 h 0 0
2 6a(Br) (1) Pd(OAc)2 PivOK (1) Xphos toluene 110 ◦C, 12 h 0 0
3 6a(Br) (1) Pd(OAc)2 PivOK (1) But

3P toluene 110 ◦C, 12 h 0 0
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6 6a(Br) (1) Pd2(dba)3 PivOK (1) - toluene 110 ◦C, 12 h 0 0
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8 6a(Br) (1) PdCl2(PPh3)2 PivOK (1) - toluene 110 ◦C, 12 h 0 0
9 6a(Br) (1) Pd(OAc)2 PivOK (1) PBut

2Me HBF4 toluene 110 ◦C, 12 h 20 0
10 6a(Br) (1) Pd(OAc)2 PivOK (1) PBut

2Me HBF4 toluene 110 ◦C, 36 h 45 0
11 6a(Br) (2) Pd(OAc)2 PivOK (2) PBut

2Me HBF4 xylene 130 ◦C, 36 h 0 55
12 6a(Br) (1) Pd(OAc)2 PivOK (1) PBut

2Me HBF4 DMF 110 ◦C, 30 h 0 0
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2Me HBF4 xylene 130 ◦C, 36 h 0 54
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2Me HBF4 toluene 110 ◦C, 24 h 2 0
a 15 mol% catalyst. b 30 mol% ligand.
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The optimal conditions for the cross-coupling reaction (Pd(OAc)2 and PBut
2MeHBF4

catalytic system in refluxing toluene at 110 ◦C or in xylene at 130 ◦C) were extended to
halogenated derivatives of thiophene and benzene 6b-j. If for 2-bromothiophenes 6a-c,e(Br)
the hetarylation reactions proceeded selectively and with moderate yields of both mono-7
and bis-5 products, then for bromoarenes the chemical transformation led to a lower yield of
mono- and bis-coupling products (Table 3, entries 9,10). The replacement of bromobenzene
6f(Br) by the more reactive iodobenzene 6f(I) made it possible to significantly increase the
yield of both mono-coupling 7f and bis-coupling 5f products (Table 3, entries 11,12). It
was shown that the use of iodobenzenes 6(I) in the reaction with tricycle 1 gave the target
products 7 and 5 in moderate yields (Table 3, entries 13–20).

Table 3. Palladium-catalyzed (het)arylation reactions of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1.
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ble 3, entries 11,12). It was shown that the use of iodobenzenes 6(I) in the reaction with 
tricycle 1 gave the target products 7 and 5 in moderate yields (Table 3, entries 13–20). 
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Entry Ar-X (Equiv) Solvent Conditions Yields (%) 
7 5 

1 6a(Br) (1) toluene 110 °C, 36 h 45 0 
2 6a(Br) (2) xylene 130 °C, 36 h 0 55 

Entry Ar-X (Equiv) Solvent Conditions
Yields (%)

7 5

1 6a(Br) (1) toluene 110 ◦C, 36 h 45 0
2 6a(Br) (2) xylene 130 ◦C, 36 h 0 55
3 6b(Br) (1) toluene 110 ◦C, 36 h 30 3
4 6b(Br) (2) xylene 130 ◦C, 36 h 0 35
5 6c(Br) (1) toluene 110 ◦C, 36 h 38 4
6 6c(Br) (2) xylene 130 ◦C, 36 h 0 34
7 6e(Br) (1) toluene 110 ◦C, 36 h 29 3
8 6e(Br) (2) xylene 130 ◦C, 36 h 0 39
9 6f(Br) (1) toluene 110 ◦C, 36 h 15 0

10 6f(Br) (2) xylene 130 ◦C, 36 h 0 20
11 6f(I) (1) toluene 110 ◦C, 36 h 45 3
12 6f(I) (2) xylene 130 ◦C, 36 h 0 50
13 6g(I) (1) toluene 110 ◦C, 36 h 45 5
14 6g(I) (2) xylene 130 ◦C, 36 h 0 50
15 6h(I) (1) toluene 110 ◦C, 36 h 60 5
16 6h(I) (2) xylene 130 ◦C, 36 h 0 55
17 6i(I) (1) toluene 110 ◦C, 36 h 45 2
18 6i(I) (2) xylene 130 ◦C, 36 h 0 49
19 6j(I) (1) toluene 110 ◦C, 36 h 40 0
20 6j(I) (2) xylene 130 ◦C, 36 h 0 25

2.3. Palladium-Catalyzed Oxidative (Het)arylation Reactions of Benzo[1,2-d:4,5-d′]bis([1,2,3]
thiadiazole) 1

Oxidative hetarylation reactions of tricycle 1 with thiophene derivatives were studied
using (2-ethylhexyl)thiophene 3a, palladium trifluoroacetate and acetate as catalysts under
the action of silver (I) oxide (Ag2O) as an oxidizing agent in dimethyl sulfoxide as described
for BTD derivatives (see Scheme 1, path 3). Surprisingly, palladium trifluoroacetate did not
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catalyze this hetarylation reaction (Table 4, entry 1). The use of palladium acetate instead of
palladium trifluoroacetate led to the formation of a mixture of mono-7a and bis-5a coupling
products (Table 4, entry 2). We investigated the possibility of replacing silver oxide with
silver salts such as silver acetate (AgOAc), silver nitrate (AgNO3), silver tetrafluoroborate
(AgBF4), and silver perchlorate (AgClO4). It was shown that in the case of silver acetate,
the total yield of the mixture of products 7a and 5a was only 25%, while in the case of
silver nitrate, compound 5a was isolated in 4% yield, and the use of silver tetrafluoroborate
and silver perchlorate did not lead to the formation of thienylated products (Table 4,
entries 3–6). Reducing the amount of thiophene derivative 3a to one equivalent also gave
a mixture of mono- and bis-derivatives in low yield with a significant predominance of
mono-derivative 7a (Table 4, entry 7) and using three equivalents of 3a, together with
increasing the reaction time to 48 h, gave the highest yield of bis-product 5a, 55% (Table 4,
entry 8). These conditions were extended to other thiophene derivatives 3b,c,e, to produce
bis-coupling products 5 in moderate to low yields (Table 4, entries 10–12). Attempts to
carry out the reaction of oxidative arylation with benzene and toluene were unsuccessful;
as a result, only a gradual decomposition of the starting tricycle 1 was observed.

Table 4. Palladium-catalyzed oxidative (het)arylation reactions of benzo[1,2-d:4,5-d′]bis([1,2,3]
thiadiazole) 1.
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7 5

1 3a (2) Pd(TFA)2 Ag2O (2) 110 ◦C, 24 h 0 0
2 3a (2) Pd(OAc)2 Ag2O (2) 110 ◦C, 36 h 10 40
3 3a (2) Pd(OAc)2 AgOAc (2) 110 ◦C, 48 h 10 15
4 3a (2) Pd(OAc)2 AgBF4 (2) 110 ◦C, 24 h 0 0
5 3a (2) Pd(OAc)2 AgClO4 (2) 110 ◦C, 24 h 0 0
6 3a (2) Pd(OAc)2 AgNO3 (2) 110 ◦C, 24 h 4 0
7 3a (1) Pd(OAc)2 Ag2O (1) 90 ◦C, 36 h 30 2
8 3a (3) Pd(OAc)2 Ag2O (2) 110 ◦C, 48 h 0 55
9 3a (3) Pd(OAc)2 Ag2O (2) 120 ◦C, 48 h 0 50

10 3b (3) Pd(OAc)2 Ag2O (2) 110 ◦C, 48 h 0 29
11 3c (3) Pd(OAc)2 Ag2O (2) 110 ◦C, 48 h 0 35
12 3e (3) Pd(OAc)2 Ag2O (2) 110 ◦C, 48 h 0 40

a 15 mol% catalyst.

2.4. Comparison of Suzuki and Stille Cross-Coupling Reactions with Direct (Het)arylation
Reactions of Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 and 4,8-dibromo Derivative 2

In order to compare the results of direct (het)arylation reactions of benzo[1,2-d:4,5-
d′]bis([1,2,3]thiadiazole) 1 and its dibromo derivative 2 with classical cross-coupling reac-
tions, we analyzed the results obtained in this work using data on the Suzuki and Stille
reactions of dibromo derivative 2 described in [12]. The data are summarized in Scheme 3.
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Scheme 3. Palladium-catalyzed (het)arylation of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 and
4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 2.

We recently found that Stille coupling of 4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]
thiadiazole) 2 gave good yields of bis-arylated heterocycles 4 (55–73%, path 3), and the
Suzuki–Miyaura reaction led to the selective formation of both mono- 4 (60–72%, path 1)
and bis-(het)arylated 5 (50–67%, path 2) benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazoles) [12]. In
this paper, we have shown that direct arylation of dibromotricycle 2 is successful only for
thiophene derivatives and afforded approximately two times lower yields of mono-4Th
(31–43%, path 5) and bis-5Th products (29–40%, path 6); arenes did not react with tricycle
2 at all. Even if we take into account that the yields of boronic esters and tributylstannyl
thiophene derivatives from unsubstituted thiophenes are known to be below 100%, it seems
that this direct arylation variant (paths 5 and 6) cannot compete with the Suzuki and Stille
reactions for compound 2 (paths 1–4).

Two other variants of the direct (het)arylation reaction turned out to be more useful for
preparation of (het)arylbenzo-bis-thiadiazoles. Thus, path 7, the direct arylation reaction
of benzo-bis-thiadiazole 1 with halogenated thiophenes and arenes, makes it possible to
obtain mono-derivatives 7, which are inaccessible by other methods. Despite the fact
that the yields of bis-aryl derivatives 5 in path 8 are somewhat lower (20–55%) than in
the Suzuki and Stille reactions (paths 2 and 4), one should take into account the fact that
dibromotricycle 2 is obtained from unsubstituted tricycle 1 with a yield of 40% [12], which
practically equalizes the yields in the preparation of compounds 5 from unsubstituted
tricycle 1 by its bromination followed by Suzuki and Stille reactions (paths 2 and 4) and
direct (het)arylation with bromo(iodo)arenes and thiophenes (path 8). When comparing
these methods, it should be taken into account that in direct (het)arylation there is no need
to obtain boronic esters and trialkylstannyl derivatives, which usually require the use of
flammable butyllithium and harmful tin compounds.

Oxidative hetarylation of compound 1 may be of particular interest for the preparation
of bis-hetaryl derivatives 5Th. Readily accessible heterocycle 1 and often commercially
available thiophenes are involved in the reaction, which makes it possible to significantly
reduce the number of steps in the synthesis of bis-thienylated benzo-bis-thiadiazoles
5Th practically without reducing their yields. An important advantage of the last two
variants of direct hetarylation (paths 8 and 9) is the selectivity of these processes, which
greatly simplifies the procedure for isolating the final compounds. We found that refluxing
dibromide 2 and tricycle 1 in toluene for 24 h resulted in their partial decomposition to
a mixture of unidentifiable compounds, which, in turn, may also be the cause of low or
moderate yields of C–H arylation reaction products.
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3. Experimental Section
3.1. Materials and Reagents

The chemicals were purchased from commercial sources (Sigma-Aldrich, St. Louis,
MO, USA) and used as received. Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 [38], 4,8-
dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 2 [12], 2-(2-ethylhexyl)thiophene 6a [39],
2,2′-bithiophene 6d [40], and [2,2′-bithiophen]-5-yltrimethylsilane 6e [41] were prepared
according to the published methods and characterized by NMR spectra. All synthetic
operations were performed under a dry argon atmosphere. Toluene and xylene were
distilled over Na. DMSO was distilled over CaH2.

3.2. Analytical Instruments

The melting points were determined on a Kofler hot-stage apparatus and were un-
corrected. 1H and 13C NMR spectra were taken with a Bruker AM-300 machine (Bruker
Ltd., Moscow, Russia) with TMS as the standard. J values are given in Hz. MS spectra (EI,
70 eV) were obtained with a Finnigan MAT INCOS 50 instrument (Thermo Finnigan LLC,
San Jose, CA, USA). High-resolution MS spectra were measured on a Bruker micrOTOF II
instrument (Bruker Ltd., Moscow, Russia) using electrospray ionization (ESI). IR spectra
were measured with a Bruker “Alpha-T” instrument (Bruker, Billerica, MA, USA) in KBr
pellets, details at the Supplementary Materials.

3.3. General Procedure for the Synthesis of Mono-Substituted Products 4 from 4,8-Dibromobenzo
bis([1,2,3]thiadiazole) 2 (Procedure A)

Pd(OAc)2 (9 mg, 0.042 mmol), pivalic acid (28 mg, 0.28 mmol) and K2CO3 (38 mg,
0.28 mmol) were added to a solution of 4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)
2 (100 mg, 0.28 mmol), thiophene 3a-d (0.28 mmol) in anhydrous toluene (8 mL). The
resulting mixture was degassed by argon in a sealed vial. The resulting mixture was then
stirred at 110 ◦C for the time shown in Table 1. On completion (monitored by TLC), the
mixture was poured into water and extracted with CH2Cl2 (3 × 35 mL). The combined
organic layers were washed with brine, dried over MgSO4, filtered, and concentrated under
reduced pressure. The crude product was purified by column chromatography.

3.4. General Procedure for the Synthesis of Bis-Substituted Products 5 from 4,8-Dibromobenzo
bis([1,2,3]thiadiazole) 2 (Procedure B)

Pd(OAc)2 (9 mg, 0.042 mmol), pivalic acid (56 mg, 0.56 mmol) and K2CO3 (76 mg, 0.56
mmol) were added to a solution of 4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 2
(100 mg, 0.28 mmol), thiophene 3a-d (0.56 mmol) in anhydrous xylene (8 mL). The resulting
mixture was degassed by argon in a sealed vial. The resulting mixture was then stirred at
130 ◦C for the time shown in Table 1. On completion (monitored by TLC), the mixture was
poured into water and extracted with CH2Cl2 (3 × 35 mL). The combined organic layers
were washed with brine, dried over MgSO4, filtered, and concentrated under reduced
pressure. The crude product was purified by column chromatography.

3.5. General Procedure for the Preparation of Mono-Substituted Products 7 from
Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 (Procedure C)

Pd(OAc)2 (9 mg, 0.042 mmol), (P(But)2MeHBF4) (19 mg, 0.18 mmol), pivalic acid
(105 mg, 1.03 mmol) and K2CO3 (142 mg, 1.03 mmol) were added to a solution of benzo[1,2-
d:4,5-d′]bis([1,2,3]thiadiazole) 1 (200 mg, 1.03 mmol), bromide or iodide 6a-d,f-j(X) (1.03
mmol) in anhydrous toluene (8 mL). The resulting mixture was degassed by argon in a
sealed vial. The resulting yellow mixture was then stirred at 110 ◦C for the time shown
in Table 3. On completion (monitored by TLC), the mixture was poured into water and
extracted with CH2Cl2 (3 × 35 mL). The combined organic layers were washed with brine,
dried over MgSO4, filtered, and concentrated under reduced pressure. The crude product
was purified by column chromatography.
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3.6. General Procedure for the Preparation of Bis-Substituted Products 5 from
Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 (Procedure D)

Pd(OAc)2 (9 mg, 0.042 mmol), (P(But)2MeHBF4) (19 mg, 0.18 mmol), pivalic acid
(210 mg, 2.06 mmol) and K2CO3 (284 mg, 2.06 mmol) were added to a solution of benzo[1,2-
d:4,5-d′]bis([1,2,3]thiadiazole) 1 (200 mg, 1.03 mmol), bromide or iodide 6a-d,f-j(X) (2.06
mmol) in anhydrous xylene (8 mL). The resulting mixture was stirred and degassed by
argon in a sealed vial. The resulting yellow mixture was then stirred at 130 ◦C for the time
shown in Table 3. On completion (monitored by TLC), the mixture was poured into water
and extracted with CH2Cl2 (3 × 35 mL). The combined organic layers were washed with
brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude
product was purified by column chromatography.

3.7. General Procedure for the Preparation of Bis-Substituted Products 5 under C-H Oxidative
Coupling Conditions (Procedure E)

Ag2O (234 mg, 1.02 mmol) and Pd(OAc)2 (9 mg, 0.042 mmol) were added to a solution
of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 (100 mg, 0.51 mmol) and thiophene 3a-c,e
(1.53 mmol) in dry DMSO (5 mL). The resulting mixture was degassed by argon in a sealed
vial. The resulting yellow mixture was then stirred at 90 ◦C for the time shown in Table 4.
On completion (monitored by TLC), the mixture was poured into water and extracted with
CH2Cl2 (3 × 35 mL). The combined organic layers were washed with brine, dried over
MgSO4, filtered, and concentrated under reduced pressure. The crude product was purified
by column chromatography.

3.8. Preparation of Preparation of 4-(5-(2-Ethylhexyl)thiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]
thiadiazole) 7a under C-H Oxidative Coupling Conditions (Procedure F)

Ag2O (117 mg, 0.51 mmol) and Pd(OAc)2 (9 mg, 0.042 mmol) were added to a solution
of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 (100 mg, 0.51 mmol) and 2-(2-ethylhexyl)
thiophene 3a (0.51 mmol) in dry DMSO (5 mL). The resulting mixture was degassed by
argon in a sealed vial. The resulting yellow mixture was then stirred at 90 ◦C for the time
shown in Table 4. On completion (monitored by TLC), the mixture was poured into water
and extracted with CH2Cl2 (3 × 35 mL). The combined organic layers were washed with
brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude
product was purified by column chromatography.

4-Bromo-8-(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (4a).
Yellow solid, 56 mg (43%) (procedure A), eluent-CH2Cl2:hexane, 1:1 (v/v). Rf = 0.6

(CH2Cl2). Mp = 57–60 ◦C. (lit. mp 57–60 ◦C [12]). The data of the 1H and 13C NMR spectra
correspond to the literature data [12]. 1H NMR (300 MHz, CDCl3): δ 8.06 (d, J = 3.8, 1H),
7.01 (d, J = 3.8, 1H), 2.90 (d, J = 6.8, 2H), 1.77–1.69 (m, 1H), 1.45–1.31 (m, 8H), 0.97–0.89
(m, 6H).

4-Bromo-8-(thiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (4b).
Yellow solid, 32 mg (33%) (procedure A), eluent-CH2Cl2:hexane, 1:1 (v/v).Rf = 0.4

(CH2Cl2). Mp = 198–200 ◦C. (lit. mp 198–200 ◦C [12]). The data of the 1H and 13C NMR
spectra correspond to the literature data [12]. 1H NMR (300 MHz, CDCl3): δ 8.20 (d, J = 3.9,
1H), 7.76 (d, J = 5.2, 1H), 7.36 (t, J = 4.5, 1H).

4-Bromo-8-(4-hexylthiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (4c).
Yellow solid, 43 mg (35%) (procedure A), eluent-CH2Cl2:hexane, 1:2 (v/v). Rf = 0.6

(CH2Cl2:hexane, 1:1 (v/v)). Mp = 67–69 ◦C. (lit. mp 67–69 ◦C [12]). The data of the 1H
and 13C NMR spectra correspond to the literature data [12]. 1H NMR (300 MHz, CDCl3):
δ 8.09 (s, 1H), 7.35 (s, 1H), 2.76 (t, J = 7.7, 2H), 1.73 (p, J = 7.2, 2H), 1.42–1.31 (m, 6H), 0.91
(t, J = 6.9, 3H).

4-([2,2′-Bithiophen]-5-yl)-8-bromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (4d).
Red solid, 44 mg (31%) (procedure A), eluent-CH2Cl2:hexane, 1:1 (v/v). Rf = 0.4

(CH2Cl2:hexane, 1:1 (v/v)). Mp = 130–132 ◦C. (lit. mp 130–132 ◦C [12]). The data of the 1H
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and 13C NMR spectra correspond to the literature data [12]. 1H NMR (300 MHz, CDCl3): δ
8.09 (d, J = 4.0, 1H), 7.40–7.34 (m, 3H), 7.14–7.07 (m, 1H).

4,8-Bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (5a).
Red solid, 65 mg (40%, procedure B), or 329 mg (55%, procedure D), or 159 mg

(55%, procedure E), eluent-CH2Cl2:hexane, 1:4 (v/v). Rf = 0.7 (CH2Cl2:hexane, 1:4 (v/v)).
Mp = 78–80 ◦C. (lit. mp 78–80 ◦C [12]). The data of the 1H and 13C NMR spectra correspond
to the literature data [12]. 1H NMR (300 MHz, CDCl3): δ 8.01 (d, J = 3.8, 2H), 7.00 (d, J = 3.8,
2H), 2.90 (d, J = 6.8, 4H), 1.73 (p, J = 5.9, 2H), 1.46–1.30 (m, 16H), 0.94–0.90 (m, 12H).

4,8-Di(thiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (5b).
Red solid, 36 mg (36%, procedure B), or 129 mg (35%, procedure D), or 64 mg

(36%, procedure E), eluent-CH2Cl2:hexane, 1:2 (v/v). Rf = 0.5 (CH2Cl2:hexane, 1:1 (v/v)).
Mp > 250 ◦C (lit. mp > 250 ◦C [12]). The data of the 1H and 13C NMR spectra correspond
to the literature data [12]). 1H NMR (300 MHz, CDCl3): δ 8.20 (dd, J = 3.8, 1.2, 2H), 7.74
(dd, J = 5.1, 1.2, 2H), 7.37 (dd, J = 5.1, 3.8, 2H).

4,8-Bis(4-hexylthiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (5c).
Red solid, 42 mg (29%, procedure B), 184 mg (34%, procedure D) or 102 mg (39%,

procedure E), eluent-CH2Cl2:hexane, 1:3 (v/v). Rf = 0.7 (CH2Cl2:hexane, 1:1 (v/v)). Mp =
134–136 ◦C. (lit. mp 134–136 ◦C [12]). The data of the 1H and 13C NMR spectra correspond
to the literature data [12]). 1H NMR (300 MHz, CDCl3): δ 8.09 (d, J = 1.3, 2H), 7.32 (d, J = 1.3,
2H), 2.77 (t, J = 7.7, 4H), 1.75 (p, J = 7.6, 4H), 1.45–1.33 (m, 12H), 0.94–0.89 (m, 6H).

4,8-Di([2,2′-bithiophen]-5-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (5d).
Violet solid, 43 mg (30%, procedure B), eluent-CH2Cl2:hexane, 1:2 (v/v). Rf = 0.5

(CH2Cl2:hexane, 1:1 (v/v)). Mp > 250 ◦C. (lit. mp > 250 ◦C [12]). The data of the 1H and 13C
NMR spectra correspond to the literature data [12]). 1H NMR (300 MHz, CDCl3): δ 8.07 (d,
J = 4.1 Hz, 2H), 7.39 (d, J = 4.1 Hz, 3H), 7.37 (d, J = 5.1 Hz, 2H), 7.12–7.09 (m, 3H).

4,8-Bis(5′-(trimethylsilyl)-[2,2′-bithiophen]-5-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)
(5e).

Violet solid, 266 mg (39%, procedure D), 126 mg (38%, procedure E), eluent-CH2Cl2/
hexane, 1:2 (v/v). Rf = 0.1 (CH2Cl2:hexane, 1:1, (v/v)). Mp = 87–89 ◦C. IR νmax (KBr, cm−1):
2961, 2924, 2853, 1727, 1497, 1453, 1400, 1370, 1317, 1289, 1261, 1098, 1023, 992, 800, 752, 694,
476. 1H NMR (300 MHz, CDCl3): δ 8.10 (d, J = 4.0, 2H), 7.45 (d, J = 3.4, 2H), 7.41 (d, J = 4.0,
2H), 7.22 (d, J = 3.5, 2H), 0.38 (s, 18H). 13C NMR (100 MHz, CDCl3): δ 154.0, 142.9, 142.0,
141.3, 139.0, 136.3, 135.1, 132.2, 126.4, 124.9, 120.4, −0.03 (TMS). MS (EI, 70eV), m/z (I, %):
700 ([M + 3]+, 4), 669 ([M + 2]+, 10), 668 ([M + 1]+, 25), 667 ([M]+, 45), 666 ([M − 1]+, 100),
610 (25), 595 (6), 534 (15), 519 (3), 505 (6), 43 (3).

4,8-Diphenylbenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (5f).
Yellow solid, 178 mg (50%, procedure D), eluent-CH2Cl2:hexane, 1:2 (v/v). Rf = 0.5

(CH2Cl2:hexane, 1:1 (v/v)). Mp > 250 ◦C. (lit. mp > 250 ◦C [12]). The data of the 1H and
13C NMR spectra correspond to the literature data [12]). 1H NMR (300 MHz, CDCl3): δ 7
8.01 (d, J = 7.0, 4H), 7.69–7.58 (m, 6H).

4,8-Di-p-tolylbenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (5g).
Yellow solid, 192 mg (50%, procedure D), eluent-CH2Cl2:hexane, 1:2 (v/v). Rf = 0.4

(CH2Cl2:hexane 1:1 (v/v)). Mp > 250 ◦C. The data of the 1H and 13C NMR spectra corre-
spond to the literature data [12]). 1H NMR (300 MHz, CDCl3): δ 7.90 (d, J = 7.9, 4H), 7.90
(d, J = 7.9, 4H), 2.52 (s, 6H).

4,8-Bis(4-methoxyphenyl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (5h).
Orange solid, 230 mg (55%, procedure D), eluent-CH2Cl2:hexane, 1:1 (v/v). Rf = 0.2

(CH2Cl2:hexane, 1:1 (v/v)). Mp > 250 ◦C. (lit. mp > 250 ◦C [12]). The data of the 1H and 13C
NMR spectra correspond to the literature data [12]). 1H NMR (300 MHz, CDCl3): δ 7.97 (d,
J = 8.3, 4H), 7.17 (d, J = 8.3, 4H), 3.95 (s, 6H).

Dimethyl 4,4′-(benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4,8-diyl)dibenzoate (5i).
Yellow solid, 233 mg (49%, procedure D), eluent–CH2Cl2/hexane, 1:2 (v/v). Rf = 0.1

(CH2Cl2:hexane, 1:1, (ν/ν)). Mp > 250 ◦C. IR νmax (KBr, cm−1): 2954, 2925, 2854, 1724, 1642,
1608, 1430, 1413, 1317, 1287, 1209, 1189, 1112, 1012, 960, 860, 825, 766, 695, 646, 567. 1H NMR
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(300 MHz, CDCl3): δ 8.33 (d, J = 8.5, 4H), 8.10 (d, J = 8.5, 4H), 4.01 (s, 6H). 13C NMR (100
MHz, CDCl3): δ 166.1, 155.3, 141.7, 140.9, 131.7, 130.3, 129.6, 127.5, 52.2. HRMS (ESI-TOF),
m/z: calcd for C22H15N4O4S2 [M + H]+, 463.0529, found, 463.0521. MS (EI, 70eV), m/z (I,
%): 462 ([M]+, 10), 431 (4), 406 (12), 375 (11), 347 (60), 332 (4), 303 (7), 288 (25), 203 (8), 144
(40), 59 (100), 15 (25).

4,4′-(Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4,8-diyl)bis(N,N-diphenylaniline) (5j).
Red solid, 175 mg (25%, procedure D), eluent-CH2Cl2:hexane, 1:2 (v/v). Rf = 0.5

(CH2Cl2:hexane, 1:1 (v/v)). Mp > 250 ◦C. (lit. mp > 250 ◦C [12]). The data of the 1H and 13C
NMR spectra correspond to the literature data [12]). 1H NMR (300 MHz, CDCl3): δ 7.85 (d,
J = 8.2, 4H), 7.35–7.30 (m, 8H), 7.24–7.08 (m, 16H).

4-(5-(2-Ethylhexyl)thiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (7a).
Orange solid, 179 mg (45%, procedure C), 69 mg (30%, procedure F), eluent-CH2Cl2/

hexane, 1:2 (v/v). Rf = 0.4 (CH2Cl2:hexane, 1:1, (ν/ν)). Mp = 55–57 ◦C. IR νmax (KBr, cm−1):
2958, 2923, 2855, 1618, 1507, 1457, 1389, 1324, 1282, 1262, 1144, 1078, 1032, 881, 861, 847, 812,
786, 739, 618, 547. 1H NMR (300 MHz, CDCl3): δ 9.10 (s, 1H), 8.09 (d, J = 3.7, 1H), 7.01 (d,
J = 3.7, 1H), 2.91 (d, J = 6.8, 2H), 1.78–1.68 (m, 1H), 1.48–1.29 (m, 8H), 0.98–0.89 (m, 6H). 13C
NMR (100 MHz, CDCl3): δ 158.3, 151.1, 140.8, 136.7, 135.1, 131.8, 127.0, 126.5, 123.6, 111.1,
41.6, 34.4, 32.5, 28.9, 25.7, 23.0, 14.1, 10.9. HRMS (ESI-TOF), m/z: calcd for C18H21N4S3 [M +
H]+, 389.0923, found, 389.0921. MS (EI, 70eV), m/z (I, %): 390 ([M + 2]+, 3), 389 ([M + 1]+, 6),
388 ([M]+, 35), 360 (80), 332 (15), 261 (18), 248 (38), 233 (100), 69 (28), 57 (60), 41 (45), 29 (37).

4-(Thiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (7b).
Orange solid, 85 mg (30%, procedure C), or 50 mg (29%, procedure B), eluent–

CH2Cl2/hexane, 1:2 (v/v). Rf = 0.3 (CH2Cl2:hexane, 1:1, (v/v)). Mp = 173–175 ◦C. IR
νmax (KBr, cm−1): 1636, 1532, 1437, 1432, 1393, 1328, 1286, 1258, 1142, 858, 812, 715, 666,
544. 1H NMR (300 MHz, CDCl3): δ 9.19 (s, 1H), 8.25 (d, J = 3.7, 1H), 7.75 (d, J = 5.0, 1H),
7.43–7.32 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 158.4, 154.0, 140.9, 138.9, 137.6, 131.6,
130.5, 129.8, 128.6, 123.3, 112.1. HRMS (ESI-TOF), m/z: calcd for C10H5N4S3 [M + H]+,
276.9671, found, 276.9663. MS (EI, 70eV), m/z (I, %): 276 ([M]+, 6), 248 (75), 220 (10), 176
(11), 151 (100), 93 (25), 69 (95), 45 (12), 28 (5).

4-(4-Hexylthiophen-2-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (7c).
Yellow solid, 140 mg (38%, procedure C), eluent-CH2Cl2/hexane, 1:2 (v/v). Rf = 0.4

(CH2Cl2:hexane, 1:1, (v/v)). Mp = 65–68 ◦C. IR νmax (KBr, cm−1): 2956, 2924, 2853, 1640,
1540, 1513, 1494, 1451, 1398, 13754, 1333, 1287, 1249, 1188, 1081, 967, 854, 815, 775, 725, 661,
615, 522. 1H NMR (300 MHz, CDCl3): δ 9.16 (s, 1H), 8.14 (s, 1H), 7.34 (s, 1H), 3.18–2.61 (m,
2H), 1.79–1.70 (m, 2H), 1.40–1.30 (m, 6H), 0.91 (t, J = 8.0, 3H). 13C NMR (100 MHz, CDCl3):
δ 157.2, 152.8, 144.1, 138.9, 136.2, 136.1, 132.2, 124.3, 122.5, 110.6, 30.7, 29.6, 29.5, 28.0, 21.6,
13.1 HRMS (ESI-TOF), m/z: calcd for C16H17N4S3 [M + H]+, 361.0610, found, 361.0606. MS
(EI, 70eV), m/z (I, %): 362 ([M + 2]+, 3), 361 ([M + 1]+, 6), 360 ([M]+, 50), 332 (100), 248 (20),
235 (19), 220 (12), 165 (18), 120 (13), 69 (60), 43 (57), 29 (48).

4-(5′-(Trimethylsilyl)-[2,2′-bithiophen]-5-yl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (7e).
Red solid, 140 mg (29%, procedure C), eluent-CH2Cl2/hexane, 1:2 (v/v). Rf = 0.3

(CH2Cl2:hexane, 1:1, (v/v)). Mp = 155–157 ◦C. IR νmax (KBr, cm−1): 2958, 2924, 2853, 1724,
1641, 1494, 1464, 1364, 1279, 1263, 1187, 1081, 968, 892, 818, 725, 486. 1H NMR (300 MHz,
CDCl3): δ 9.15 (s, 1H), 8.15 (d, J = 4.0, 1H), 7.44 (d, J = 3.5, 1H), 7.40 (d, J = 4.0, 1H), 7.22
(d, J = 3.5, 1H), 0.37 (s, 9H). 13C NMR (100 MHz, CDCl3): δ 158.6, 153.6, 143.1, 142.2, 141.2,
141.05, 136.8, 135.9, 135.2, 132.6, 126.5, 124.9, 123.1, 111.7, 0.00(TMS). HRMS (ESI-TOF), m/z:
calcd for C17H15N4S4Si [M + H]+, 430.9943, found, 430.9928. MS (EI, 70eV), m/z (I, %): 432
([M + 2]+, 1), 431 ([M + 1]+, 2), 430 ([M]+, 8), 402 (7), 305 (6), 200 (10), 175 (12), 93 (45), 69
(100), 45 (30).

4-Phenylbenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (7f).
Yellow solid, 125 mg (45%, procedure C), eluent-CH2Cl2/hexane, 1:2 (v/v). Rf = 0.3

(CH2Cl2:hexane, 1:1, (ν/ν)). Mp =203–205 ◦C. IR νmax (KBr, cm−1): 1637, 1492, 1431, 1386,
1277, 1148, 1075, 893, 862, 813, 745, 696, 673, 623, 545, 523. 1H NMR (300 MHz, CDCl3): δ
9.28 (s, 1H), 7.99 (d, J = 6.7, 2H), 7.69–7.59 (m, 3H). 13C NMR (100 MHz, CDCl3): δ 157.9,
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155.6, 140.8, 140.1, 136.9, 130.3, 129.9, 129.7, 129.3, 112.7. HRMS (ESI-TOF), m/z: calcd for
C12H7N4S2 [M + H]+, 271.0107, found, 271.0109. MS (EI, 70eV), m/z (I, %): 270 ([M+]+, 3),
242 (58), 214 (26), 170 (23), 145 (90), 93 (20), 69 (100), 28 (40).

4-(p-Tolyl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (7g).
Green solid, 131 mg (45%, procedure C), eluent-CH2Cl2/hexane, 1:2 (v/v). Rf = 0.3

(CH2Cl2:hexane, 1:1, (ν/ν)). Mp = 229–232 ◦C. IR νmax (KBr, cm−1): 2925, 1639, 1609, 1507,
1427, 1379, 1331, 1317, 1291, 1275, 1192, 1147, 1120, 895, 865, 828, 804, 763, 716, 670, 609, 556,
536, 488. 1H NMR (300 MHz, CDCl3): δ 9.24 (s, 1H), 7.89 (d, J = 7.9, 2H), 7.46 (d, J = 7.9,
2H), 2.51 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 157.8, 155.5, 140.6, 140.4, 139.8, 134.0, 130.0,
129.8, 129.4, 112. 1, 21.3. HRMS (ESI-TOF), m/z: calcd for C13H8BrN4S2 [M + H]+, 285.0263,
found, 285.0266. MS (EI, 70eV), m/z (I, %): 284 ([M]+, 3), 256 (8), 227 (5), 159 (25), 139 (5), 93
(7), 69 (100), 63 (7), 51 (10), 39 (30), 28 (45), 18 (70).

4-(4-Methoxyphenyl)benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) (7h).
Orange solid, 185 mg (60%, procedure C), eluentCH2Cl2/hexane, 1:2 (v/v). Rf = 0.2

(CH2Cl2:hexane, 1:1, (ν/ν)). Mp = 198–201 ◦C. IR νmax (KBr, cm−1): 3076, 1609, 1509, 1457,
1430, 1383, 1300, 1279, 1262, 1178, 1150, 1116, 1030, 896, 863, 835, 806, 670, 540. 1H NMR
(300 MHz, CDCl3): δ 9.22 (s, 1H), 7.97 (d, J = 8.8, 2H), 7.17 (d, J = 8.8, 2H), 3.95 (s, 3H). 13C
NMR (100 MHz, CDCl3): δ 161.2, 158.0, 155.6, 140.8, 139.4, 131.2, 129.9, 129.2, 114.8, 112.0,
55.6. HRMS (ESI-TOF), m/z: calcd for C13H9N4OS2 [M + H]+, 301.0212, found, 301.0215.
MS (EI, 70eV), m/z (I, %): 302 ([M + 2]+, 3), 301 ([M + 1]+, 4), 300 ([M]+, 30), 272(50), 229
(45), 201 (25), 175 (80), 132 (65), 93 (35), 69 (100), 28 (30).

Methyl 4-(benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-yl)benzoate (7i).
Green solid, 152 mg (45%, procedure C), eluent-CH2Cl2/hexane, 1:2 (v/v). Rf = 0.1

(CH2Cl2:hexane, 1:1, (ν/ν)). Mp = 235–237 ◦C. IR νmax (KBr, cm−1): 2956, 2925, 2854, 1724,
1608, 1463, 1431, 1377, 1277, 1189, 1110, 1084, 1018, 965, 895, 867, 839, 811, 754, 702, 632.
1H NMR (300 MHz, CDCl3): δ 9.33 (s, 1H), 8.31 (d, J = 8.0, 2H), 8.07 (d, J = 8.1, 2H), 4.01
(s, 3H). 13C NMR (100 MHz, CDCl3): δ 166.4, 158.0, 155.5, 141.0, 140.8, 140.1, 131.7, 130.5,
129.8, 128.6, 113.6, 52.5. HRMS (ESI-TOF), m/z: calcd for C14H9N4O2S2 [M + H]+, 329.0161,
found, 329.0151. MS (EI, 70eV), m/z (I, %): 329 ([M + 1]+, 2), 328 ([M]+, 8), 300 (100), 256
(10), 227 (12), 213 (30), 203 (65), 144 (45), 93 (10), 69 (80), 59 (8).

4-(Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-yl)-N,N-diphenylaniline (7j).
Orange solid, 180 mg (40%, procedure C), eluent-CH2Cl2/hexane, 1:2 (v/v). Rf = 0.25

(CH2Cl2:hexane, 1:1, (ν/ν)). Mp = 213–215 ◦C. IR νmax (KBr, cm−1): 1727, 1590, 1487, 1428,
1321, 1276, 1195, 1125, 1073, 894, 865, 835, 808, 748, 696, 624, 512. 1H NMR (300 MHz,
CDCl3): δ 9.18 (s, 1H), 7.88 (d, J = 8.8, 2H), 7.35 (t, J = 7.8 Hz, 3H), 7.28–7.12 (m, 9H). 13C
NMR (100 MHz, CDCl3): δ 158.0, 155.3, 150.0, 146.9, 140.8, 139.3, 130.6, 129.8, 129.6, 129.0,
125.7, 124.3, 121.4, 111.5. HRMS (ESI-TOF), m/z: calcd for C24H15N5S2 [M]+, 437.0763,
found, 437.0757. MS (EI, 70eV), m/z (I, %): 438 ([M + 1]+, 8), 437 ([M]+, 55), 409 (6), 381 (4),
312 (12), 168 (3), 69 (15), 18 (100).

4. Conclusions

The study of direct palladium-catalyzed (het)arylation reactions of strong electron-
withdrawing benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazoles showed that this method is use-
ful for the synthesis of mono- and bis-arylated derivatives of this heterocyclic system.
Mono- and bis-thienylated benzo-bis-thiadiazoles were selectively obtained by the re-
action of 4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) with thiophenes catalyzed
by palladium acetate in the presence of potassium pivalate as a base, and no reaction
occurred for substituted arenes. The catalytic system, containing Pd(OAc)2 and di-tert-
butyl(methyl)phosphonium tetrafluoroborate salt, proved to be the best for the synthesis
of (het)arylated benzo-bis-thiadiazoles from unsubstituted benzo[1,2-d:4,5-d′]bis([1,2,3]
thiadiazole and halogen (bromine or better iodine) (het)arenes. Bis(thienyl)benzo-bis-
thiadiazoles were successfully prepared by oxidative hetarylation of benzo[1,2-d:4,5-d′]bis
([1,2,3]thiadiazole with 2-unsubstituted thiophenes, palladium (II) acetate and silver (I)
oxide in DMSO.
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