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Abstract: Saponins are extracted from different parts of plants such as seeds, roots, stems, and leaves
and have a variety of biological activities including immunomodulatory, anti-inflammatory effects,
and hypoglycemic properties. They demonstrate inherent low immunogenicity and possess the
capacity to effectively regulate both the innate and adaptive immune responses. Plant saponins can
promote the growth and development of the body’s immune organs through a variety of signaling
pathways, regulate the activity of a variety of immune cells, and increase the secretion of immune-
related cytokines and antigen-specific antibodies, thereby exerting the role of immune activity.
However, the chemical structure of plant saponins determines its certain hemolytic and cytotoxicity.
With the development of science and technology, these disadvantages can be avoided or reduced by
certain technical means. In recent years, there has been a significant surge in interest surrounding the
investigation of plant saponins as immunomodulators. Consequently, the objective of this review
is to thoroughly examine the immunomodulatory properties of plant saponins and elucidate their
potential mechanisms, with the intention of offering a valuable point of reference for subsequent
research and advancement within this domain.

Keywords: plant saponins; phytochemicals; immunity; immunomodulators

1. Introduction

The immune system assumes a crucial function in identifying and eradicating no-
self constituents of antigen foreign entities, while also governing and upholding internal
environmental equilibrium [1]. Moreover, it is a complex network, mainly comprising
immune organs (spleen, thymus) and immune cells (lymphocytes, monocytes, neutrophils,
and macrophages) and it produces specific immune substances (antibodies, cytokines, and
chemokines) to provide protection and resistance to various infections and diseases [2,3].
The immune response, while characterized by specificity and efficiency, can give rise to a
range of diseases, including autoimmune diseases, hypersensitivity reactions, and immuno-
suppressive disorders, when its equilibrium is disrupted [4,5]. Currently, according to
epidemiological data, there is a notable surge in the prevalence of immune diseases, thereby
fostering the advancement of immunomodulators [6]. Immunomodulators encompass a
category of both synthetic and natural molecules that possess the capacity to regulate the
immune system’s innate and adaptive responses [3]. Pentoxifylline, levamisole, thalido-
mide, and isoprinosine are extensively utilized synthetic immunomodulators that exert
potent regulatory effects on the immune system of organisms [7]. Despite the numerous
advantages associated with traditional immunomodulators, they also exhibit a plethora
of unforeseen adverse reactions and detrimental effects on the human body [8]. The oc-
currence of severe adverse drug reactions significantly curtails the sustained utilization of
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these compounds, thereby necessitating the development of novel approaches that surpass
the efficacy and safety of conventional immunomodulators. The utilization of natural plant
compounds, including saponins, polysaccharides, and brass, along with their active deriva-
tives, holds significant potential in the modulation of immune responses. In contemporary
times, the exploration of plant extracts has garnered substantial attention owing to their
diverse pharmacological properties, encompassing immune regulation and antioxidant ef-
ficacy [9]. As an innovative form of immunomodulator, plant extracts containing saponins
are becoming increasingly popular in clinical practice due to their rich sources, low toxicity,
and immunomodulatory properties. In recent years, studies have shown that SARS-CoV-2
S1-Fc candidate vaccine and saponin microemulsion adjuvant have produced high titers of
S1 (recombinant protein) specific neutralizing antibodies in cynomolgus monkeys [10], and
the effectiveness of Quillaja brasiliensis saponins has also been confirmed in experimental
vaccines against bovine herpesvirus [11], human poliovirus [12], rabies in mice [13], etc.

Saponin is a unique compound extracted from natural plants, and its amphiphilic
properties are derived from its structure, which contains an isoprenoid-derived aglycone
(a sapogenin) and is linked to one or more sugar chains by ether or ester linkage [14].
Based on its aglycone skeleton, it can be divided into two categories: triterpenoid saponins
and steroid saponins [15]. Both of them are extracted from oxidized polymers containing
30 carbon atoms, but the difference is that triterpenoid saponins still retain 30 carbon atoms,
while steroidal saponins remove three methyl groups [16]. Among them, triterpenoid
saponins are widely distributed in dicotyledons and have four main skeletons: pentacyclic
oleanane, ursane, lupane, and tetracyclic dammarane. Steroid saponins are mainly derived
from monocotyledons, including four major skeletons of tetracyclic cholestane, hexacyclic
spirostane, pentacyclic furostane, and lactone-bearing cardenolide (Figure 1) [14]. Accord-
ing to the number of sugar residues, aglycones are divided into monodesmosidic (one
sugar residue), bidesmosidic (two sugar residues), and polydesmosidic saponins (three or
more sugar residues) [17].
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Plant saponins have a variety of biological activities, including immune regulation,
anti-inflammatory, and hypoglycemic effects [18]. The potential immunomodulatory ef-
fects of saponins have attracted great attention since their discovery in 1925 as enhancers
of the body’s immune response to diphtheria or tetanus [19]. Since 1964, the saponin
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Quillaja saponaria extracted from the bark of South America has become the main focus of
saponin research focusing on immunoregulation activity [20]. However, the availability
of Quillaja saponaria resources is severely limited, and the potent hemolysis exhibited by
Quillaja saponins and its isolates, coupled with their instability caused by the presence
of ester-bonded structures, has hindered their utilization as immunomodulators. Several
plant saponins, including Panax ginseng [21–27], Panax notoginseng [28–33], and Astragalus
membranaceus [34–40], have been shown to have good immunomodulatory activity (Table 1,
Figure 2). These saponins are capable of stimulating the mammalian immune system
by activating the innate immune response and promoting the generation of cytotoxic T
lymphocytes (CTLs) that target exogenous antigens, among other effects [41]. Saponins are
widely used alone, and mixed with aluminum salts, liposomes or amphiphilic proteins and
lipids to form detergent/lipid/saponin complexes, known as immune-stimulating com-
plexes (ISCOMs) [42]. The majority of research conducted on plant saponins has primarily
concentrated on their immune-enhancing properties or their effects on model antigens,
lacking a comprehensive synthesis of the immunomodulatory activities exhibited by their
active compounds. This paper presents a thorough examination of the immunomodulatory
properties exhibited by plant saponins in isolation, along with an initial exploration of
the underlying mechanisms involved. The aim is to provide theoretical references for the
research, development, and utilization of saponin-based immunomodulators.

This review used a predefined search strategy to incorporate the research results
on the immunomodulatory activity of saponins in articles and reviews published up
to 2023. Public databases (PubMed and Web of Science) were used for the literature
search. The following keywords were used as search terms in the database: plant saponins,
phytochemicals, traditional Chinese herbal medicine, natural products, immune regulation,
immunomodulators, immunity, vaccine, immune adjuvant, and immune system.
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Table 1. Immunomodulatory activity of some saponins.

Saponin Sources Saponin Name Immunoreaction

Panax ginseng

Ginsenoside Rg1 (1)
Ginsenoside Rd (2)
Ginsenoside Rh2 (3)

(24R)-Pseudo-Ginsenoside HQ (4)
(24S)-Pseudo-Ginsenoside HQ (5)

Ginsenoside Rb2 (6)
Ginsenoside 20(R)-Rg3 (7)

Ginsenoside Rg3 (8)
Ginsenoside Re (9)

Facilitating the upregulation of Th1 (IFN-γ, IL-2, T-bet, etc.) and Th2 (IL-4, IL-6, GATA3, etc.) cytokines and
transcription factors [22,23,27];

Enhancing the levels of antigen-specific antibodies enhances the body’s immune defense against antigens [23–25];
Stimulating lymphocyte proliferation [21,24–26];

Preventing atrophy of immune organs [21];
Upregulating the CD4+/CD8+ T cell ratio [21].

Panax notoginseng Notoginsenoside K (10)
Ginsenoside Rh4 (11)

Enhancing the levels of antigen-specific antibodies enhances the body’s immune defense against antigens [29–33];
Ameliorating antigen-induced oxidative stress in immune cells [28];
Improvement of monocyte and macrophage carbon scavenging [33];

Stimulating lymphocyte proliferation [30–33];
Promoting the secretion of cytokines such as TNF-α and IL-2 [33].

Astragalus
membranaceus

Macrophyllosaponin B (12)
Astragaloside VII (13)
Astragaloside IV (14)
Astragaloside II (15)

Promoting the maturation and activation of APCs such as macrophages or dendritic cells [34,35];
Enhancing the levels of antigen-specific antibodies enhances the body’s immune defense against antigens [35–37];

Stimulating lymphocyte proliferation [38,39];
Stimulating the release of cytokines (IL-1β, IL-2, IL-4, IFN-γ, TNF-α, etc.) from immune cells to balance the Th1/Th2

of the organism [38,39];
Activation of CD4+ and CD8+ T cells [34];

Inhibition of TLR2 activator-induced reduction in CXCR4 expression and neutrophil migration improves the body’s
antimicrobial immunity [40].

Quillaja saponaria QS-21 (16)
QS-7 (17)

Enhancing the levels of antigen-specific antibodies enhances the body’s immune defense against antigens [43–48];
Stimulating the production of CTLs [43,44,49,50];

Promoting the secretion of relevant cytokines and inducing a balanced Th1/Th2 response [43,44,49,50].

Platycodon
grandiflorus

Platycodin D (18)
Platycodin D2 (19)
Platycodin D3 (20)
Platycoside E (21)

Enhancing the levels of antigen-specific antibodies enhances the body’s immune defense against antigens [51–57];
Stimulating the proliferation of immune cells such as lymphocytes and monocytes [51–58];

Increasing the killing activity of NK cells and CTL [51–53];
Facilitating the upregulation of Th1 (IFN-γ, IL-2, T-bet, etc.) and Th2 (IL-4, IL-6, GATA3, etc.) cytokines and

transcription factors for a better balance of Th1/Th2 immune responses [52–56,58].
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Table 1. Cont.

Saponin Sources Saponin Name Immunoreaction

Glycine max Soyasaponin Ab (22)
Soyasaponin Bb (23)

Enhancing the levels of antigen-specific antibodies enhances the body’s immune defense against antigens [59,60];
Activating TRL4/NF-κB signaling [59];

Stimulating lymphocyte proliferation [61];
Stimulation of CD4+ and CD8+ T cells to bind to the antigen [62];

Promoting the secretion of cytokines such as TNF-α and IFN-γ [59,61];
Promoting elevated blood leukocyte, lymphocyte, and monocyte counts within the physiologic range [61].

Other

Anemoside A3 (24)
Achyranthes bidentata saponins

Albizia julibrissin saponins
Asparagus adscendens saponins
Momordica charantia saponins

Acacia concinna saponins

Enhancing the levels of antigen-specific antibodies enhances the body’s immune defense against antigens [63–66];
Stimulation of lymphocyte proliferation [63–66];

Enhancing natural killer (NK) cell killing activity [63];
Promoting the secretion of cytokines such as IL-12 [65];

Increasing CD3/CD19 expression in spleen and lymph nodes [65];
Induction of injection site cytokines (IL-12p40, IL-12p40/p70, IFN-γ, IL-1β, IL-3, IL-6, IL-9, IL-10, IL-13, TNF-α, sTNFR
I, and sTNFR III) and chemokines (eotaxin, I-TAC, MIG, MIP-1α, RA, N T-E S, TECK, fractalkine, fasL, M-CSF, and

GM-CSF) are expressed to promote immune cell recruitment at the injection site [63].
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2. Saponins Promote the Growth and Development of Immune Organs

The degree of immune organ development serves as a highly perceptible measure of
an organism’s immune status. The amplification and specialization of immune cells within
these organs contribute to their augmented mass and subsequent maturation. As two im-
portant immune organs, the spleen and thymus state of development can directly reflect the
immune function of the body [67]. Notably, the efficacy of various saponins, such as those
derived from ginseng, has been demonstrated in augmenting the mass of immune organs
and facilitating their favorable development [22]. Additionally, (24R)-pseudo-ginsenoside
HQ (4), (24S)-pseudo-ginsenoside HQ (5), and ginsenoside Rb2 (6) have been found to
restore immune organ function in individuals with compromised immune systems [21,68].
The presence of saponins such as ginsenoside Rg1 (1) in the spleen stimulates the release
of Th1 and Th2 cytokines by T lymphocytes [21,24] and macrophages [69] in the white
marrow [22,34,38,39], thereby producing an immunostimulatory impact. In addition, im-
munostimulants containing soyasaponin Ab (22) and Bb (23) can effectively improve the
immune status by stimulating the expression of spleen nuclear transcription factor κB
(NF-κB), transforming growth factor (TGF-β), and interferon-γ (IFN-γ) [70]. To summarize,
phyto-saponins can induce the aforementioned immunostimulatory effects on immune
organs, consequently augmenting the overall immune response of the organism.

3. Saponins Enhance Immune Cell Activity

The immune system depends on a diverse range of immune cells to carry out its
functions. Research has shown that saponins can augment the phagocytic activity of
macrophages and the cytotoxicity of natural killer (NK) cells, thereby modulating the
innate immune response. Furthermore, saponins can enhance the antigen-presenting
capacity of dendritic cells (DCs), activate various subsets of T lymphocytes (such as Th1,
Th2, and CTL), induce B lymphocytes to differentiate into plasma cells, and stimulate the
production of specific antibodies; these effects collectively contribute to the reinforcement
of the adaptive immune response.

3.1. Enhancement of Macrophage Activity by Saponins

Macrophages constitute the primary cellular cohort accountable for phagocytosis
within the innate immune system, possessing the specialized capacity to identify, internal-
ize, and eradicate a diverse array of bacteria, viruses, and various foreign particles that
pose potential harm to the organism [71]. They can participate in phagocytosis, antigen
processing, and antigen presentation to lymphocytes, thereby stimulating the production of
antigen-specific antibodies and related cytokines [72]. On the contrary, the production of an-
tibodies and cytokines also enhances the chemotaxis and phagocytosis of macrophages [73].
Hence, the process of macrophage phagocytosis exhibits a direct correlation with the efficacy
of the body’s immune response. Panax notoginseng saponins have been found to enhance
the phagocytosis rate of monocytes-macrophages in the presence of immunosuppression,
thereby mitigating nonspecific immune injury [33]. Furthermore, astragalosides exert a
potent influence on the phagocytic activity of macrophages towards mycobacterium tuber-
culosis, as well as the stimulation of macrophage secretion of IL-lβ, IL-6, and TNF-α [35].
Following activation, macrophages can be classified into two subtypes: pro-inflammatory
macrophages (M1) and anti-inflammatory macrophages (M2) [74]. Anemoside A3 (24)
can induce the polarization of macrophages towards the M1 phenotype, resulting in an
upregulation of their expression of major histocompatibility complex II (MHC II), and
release pro-inflammatory cytokines, including IL-6 and tumor necrosis factor-α (TNF-α), to
bolster the immune response against pathogenic microorganisms [75,76]. Consequently,
saponins could promote the biological activity of macrophages, which in turn effectively
enhances the immune response.
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3.2. Upregulation of NK Cell Killing Ability by Saponins

NK cells are cytotoxic to virally infected and cancerous cells, as well as modulate other
immune cells [77], and studies have shown that platycodin D (18) and total saponin from
the stem bark of Albizia julibrissin effectively upregulate NK cell killing capacity [51–53,63].
Whereas NK cell killing capacity depends on the balance of target cell activation and
inhibitory receptor expression, and stimulatory and inhibitory ligand expression [78], gin-
senoside 20(R)-Rg3 (7) can increase the expression of natural cytotoxic receptors including
NKp30, NKp44, and NKp46 to enhance NK cell killing capacity [79]. In addition, ginseno-
side Rg3 (8) upregulates the expression of perforin and granzyme B as well as cytolytic
molecules in NK cells to promote their cytolytic activity [79]; perforin and granzyme B
are key effector molecules in the NK cell-mediated killing pathway, whereby perforin
disrupts the outer membrane of the target cell, allowing the granzyme B to be released into
the cytoplasm of target cells, triggering an enzymatic chain reaction leading to target cell
death [80]. In conclusion, saponins can upregulate the killing ability of NK cells to enhance
the strength of the innate immune response of the body.

3.3. Promotion of Dendritic Cell Maturation by Saponins

DCs play a pivotal role as antigen-presenting cells (APCs) within the immune sys-
tem, facilitating the efficient processing and presentation of exogenous antigens [81]. In
peripheral tissues, immature DCs (iDCs) exhibit a heightened capability to phagocytose
and process antigens, effectively capturing them in response to various stimuli, including
inflammation or infection. Immature dendritic cells (iDCs) can express pattern recogni-
tion receptors (PRRs), including Toll-like receptors (TLRs), and undergo a multifaceted
process of differentiation into mature dendritic cells (mDCs) [82]. The co-administration
of astragaloside VII (13) with LPS resulted in a significant increase in IL-12 secretion by
dendritic cells, indicating their maturation [34]. Furthermore, the liposomal preparation of
QS-21 (16) with a TLR-4 agonist demonstrated enhanced expression of MHC II and CD86 in
dendritic cells derived from human monocytes [83]. These findings suggest that saponins
can directly promote the maturation of DCs, thereby enhancing the body’s immune re-
sponse to diseases such as tumors or infections. Moreover, distinct activation pathways are
present in various subsets of dendritic cells (DCs) that consume plant saponins. A recent
investigation discovered that the PERK pathway was specifically upregulated in mouse
CD11b+ MHCII+ DCs when exposed to immunomodulators containing saponins [84], but
the precise mechanism remains unknown. However, QS-21 (16) can be internalized by DCs
in a cholesterol-dependent manner and accumulated in lysosomes, exacerbating lysosomal
instability and increasing cathepsin B activity to promote antigen translocation and direct
activation in DCs [83]. Additionally, astragaloside VII (13) can augment the expression
of chemokine receptors, facilitate the conveyance of exogenous antigens to CD8+ T cells
via MHC I molecules on DCs [34], and intensify the migration of DCs. In summary, these
mechanisms of plant saponins on DCs help to enhance the processing and presentation of
antigens to enhance the body’s immune response.

3.4. Activation of T and B Lymphocytes by Saponins

Lymphocytes, being crucial immune cells within the immune system, undergo prolif-
eration and differentiation after their activation, with the extent of their proliferation and
activation being capable of reflecting the body’s level of immunity [85]. T lymphocytes play
a crucial role in cellular immunity, and the activation of CD4+ Th cells by astragaloside VII
(13) leads to the production of various cytokines [34]. This activation also facilitates the
proliferation and activation of other immune cells, thereby aiding in the development of
an effective and protective immune response [21,34]. Additionally, QS-21 (16) and QS-7
(17) activate CD8+ CTLs, enhancing their ability to destroy target cells [43,44,49,50]. B
lymphocytes can undergo differentiation into effector B cells in response to immunogenic
substances and a cascade of cytokines released by Th cells and APCs. These effector B cells
are responsible for the synthesis and secretion of immunoglobulins, actively contributing
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to the humoral immune response [86]. Saponin, including Panax notoginseng saponins, can
stimulate mature B lymphocytes to generate antigen-specific antibodies via NF-κB and
other signaling pathways. Moreover, it enhances the longevity of memory B cells and
specific plasma cells within the bone marrow, thereby enhancing the humoral immune
response of the organism [87,88]. CD4 T cells that are stimulated in the presence of plant
saponins exhibit elevated levels of IL-21, a crucial cytokine for T follicular helper cells. This
cytokine plays a significant role in promoting B lymphocyte proliferation, isotype switching,
and differentiation [89]. Conversely, the substantial early expression of IFN-α and IL-6
induced in the draining lymph nodes may contribute to the proliferation and differentiation
of B lymphocytes [90,91]. Furthermore, a separate study has demonstrated that astraga-
loside IV (14) can modulate the balance between Th17 and Treg cells, thereby effectively
preventing and alleviating immune-related damage within the body [92]. In vitro assays
demonstrated that Albizia julibrissin saponins, Achyranthes bidentata saponins, Asparagus
adscendens saponins, and the pods of Acacia concinna saponins induced a gradual transfor-
mation of lymphocytes into lymphoblastoid cells and enhanced lymphocyte sensitivity to
pertinent stimuli and cellular functionality [63–66]. In summary, saponins have the poten-
tial to augment the expression of diverse cytokines, thereby promoting the proliferation and
activation of T and B lymphocytes and optimizing the distribution of various lymphocyte
subpopulations. Consequently, this mechanism can regulate the immune status of the
organism and enhance its capacity to mount an immune response.

4. Saponins Upregulate the Expression of Immunomodulatory Molecules

Saponins can stimulate the release of cytokines and chemokines during the immune re-
sponse, regulate immune cell recruitment and intracellular signaling mechanisms, facilitate
the proliferation and differentiation of T lymphocytes into CD4+ Th cells for involvement
in diverse immune responses, and enhance the production of antigen-specific antibodies
by B lymphocytes, thereby augmenting the humoral immune response of the organism.

4.1. Regulation of Cytokine and Chemokine Expression by Saponins

The activation of T lymphocytes is contingent upon three distinct signals that occur
between the antigen-presenting cell (APC) and the T lymphocyte. These signals encompass
the stimulation of the T cell receptors (TCRs) and major histocompatibility complex II
(MHC II) on the APC by the antigen, the direct impact on the T lymphocyte through co-
stimulatory molecules present on the APC, and the regulation exerted by cytokines secreted
by the APC [93]. Upon activation, initial T lymphocytes can undergo differentiation into
various effector T cells, such as Th1, Th2, and Th17 [94]. Ginseng saponin immunomod-
ulators have been observed to stimulate the production of cytokines, including TNF-α,
by Th1 cells. This stimulation enhances the organism’s capacity to eradicate cancer cells,
inhibit viral replication in macrophages, and augment antimicrobial efficacy, among other
effects [22,23,27]. In addition, platycodin D (18) and platycodin D2 (19) can promote the
secretion of cytokines by Th2 cells, namely, IL-4, IL-5, IL-10, and IL-13, thereby stimulating
B lymphocyte proliferation and subsequent transformation into plasma cells, and promot-
ing antigen-specific antibody production. IL-4 and IL-5 also cause eosinophils and mast
cells to degranulate, making the parasite fragile and enhancing the body’s defense against
parasitic infections [52–56,58]. Astragaloside IV (14) exhibits a specific activating influence
on Th17 cells, which assume a pivotal role in the activation and recruitment of neutrophils
to immune sites, and are capable of secreting IL-6, IL-17, and IL-22 to combat extracellular
pathogens [92,95]. The chemokine family plays a crucial role in facilitating tissue-specific
migration of immune cells, enabling their movement in response to a concentration gra-
dient of chemokines, thereby promoting a heightened immune response [96]. It has been
observed that Albizia julibrissin saponins can enhance the expression of chemokines in the
thymus after immunization, including fractalkine and macrophage colony-stimulating
factor (M-CSF), recruit DCs at the immune site and activate macrophages, induce mono-
cytes to differentiate into DCs and macrophages, mediate the migration and adhesion
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of various leukocytes, stimulate granulocytes, and enhance the body’s antigen-specific
immune response [63]. In summary, the utilization of saponin demonstrates its ability to
modulate the concentrations of diverse cytokines and chemokines, thereby achieving a
more optimal equilibrium between the Th1/Th2 immune response. Additionally, these
immunomodulators facilitate the recruitment of innate immune cells to the site of injection,
thereby augmenting the overall immune response.

4.2. Promotion of Antibody Secretion by Saponins

Antibodies, referred to as immunoglobulins, are produced by B lymphocytes in re-
action to external antigenic stimulation [97]. These antibodies can be categorized into
different subtypes, such as IgG, IgA, and IgM. It is worth noting that the levels of the
IgG1 subtype are correlated with Th2 immune response, whereas the levels of IgG2a,
IgG2b, and IgG3 subtypes are associated with Th1 immune response [98]. Some of the
saponins, like astragaloside VII (13), IV (14), and II (15) can induce cytokine secretion,
which in turn regulates the expression of germline gene transcripts (GLTs) and the secretion
of corresponding immunoglobulins in B cells. Specifically, they promote the secretion
of Th1 cytokines (such as IL-2 and IFN-γ) to regulate the production of Th1-dependent
antibodies. Additionally, they upregulate Th2 cytokines (such as IL-4 and IL-10) to enhance
the production of Th2-dependent antibodies and improve the body’s immune responses,
including antitoxin, antibacterial, antiviral, and allergy modulation [35–37]. Ginseng stem
leaf saponins can also improve the activity of intestinal intraepithelial lymphocytes in
the lamina propria of duodenum, jejunum, and ileum and induce the conversion of B
lymphocytes into IgA plasmablasts, further maturing into IgA plasma cells and secreting
IgA, thereby providing an effective mucosal immune response [99]. While IgM is detectable
before antigen exposure and serves as an intrinsic defense mechanism preceding adaptive
immunity, ginseng stem leaf saponins possess the capability to augment the production
and secretion of IgM within the organism to a certain extent [100,101]. In summary, the
utilization of saponin immunomodulators has been found to enhance humoral immune
responses through the augmentation of immunoglobulin levels.

5. Saponins Modulate Immune-Related Signaling Pathways

Saponins can induce immune cell activation and cytokine release through various
immune-related signaling pathways such as TRLs, NF-κB/mitogen-activated protein kinase
(MAPK), and hippo-YAP, thereby initiating innate immune responses and promoting
antigen-specific immune responses.

TLRs are a class of transmembrane receptors responsible for recognizing exogenous
microorganisms, including bacteria and viruses, and initiating immune responses, and the
TLRs signaling pathway plays a crucial role in enabling immune cells to identify pathogens
and release immunomodulatory factors [102]. In addition to exogenous pathogens serving
as ligands, TLRs exhibit the recognition of endogenous plant-derived molecules, including
saponins, polysaccharides, flavonoids, etc., thereby initiating subsequent signaling cas-
cades [103]. Upon activation of the TLRs signaling pathway, ginseng stem leaf saponins
can augment the migratory capabilities of immune cells, increase the expression of MHC
class I and II molecules in APCs, and facilitate the capture, processing, and presenta-
tion of antigens [104,105]. Furthermore, the stimulation of TLRs signaling pathway by
ginsenoside Rg1 (1) and Re (9) has the potential to elicit an immune-protective cytokine
response, enhance the expression of costimulatory molecules CD40, CD80, CD86, and
CD70 in antigen-presenting cells, and generate immune-related cytokines (Th1 and Th2),
including IL-2, IL-6, and IL-12 [106]. The simultaneous administration of QS-21 (16) and
TLR agonists demonstrates a synergistic effect, resulting in a significant increase in the
levels of antigen-specific antibodies. Only the combined use of both components can induce
a remarkable expansion in the population of antigen-specific CD4+ Th1 cells, thereby pro-
moting a cellular immune response [107]. In conclusion, saponins can activate APCs via the
signaling pathway of TLRs, leading to enhanced antigen processing, increased secretion of
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immune-related cytokines, improved stimulation of T and B lymphocytes, and heightened
cellular and humoral immune responses, thereby demonstrating their immunomodulatory
effect. Furthermore, when combined with TLRs activators, saponins exhibit a substantial
enhancement in their immunomodulatory activity (Figure 3).
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NF-κB is an important component of the immune system [108]. MAPK can regulate
gene expression, immune response cell proliferation, and other cellular processes [109].
The mechanism by which astragalosides exert their effects involves the regulation of down-
stream immune factors within the NF-κB/MAPK signaling pathway, including IL-2, IFN-γ,
and TNF-α [110]. Astragaloside IV (14) can stimulate an increase in the expression of
p-p65/p65 proteins and facilitate the phosphorylation of p38, ERK, and JNK. This acti-
vation of the NF-κB/MAPK signaling pathway subsequently governs the modulation of
pro-inflammatory and anti-inflammatory cytokines, nitric oxide (NO), surface stimulating
factors, as well as the mRNA and protein expression associated with the cell cycle [111]. Ul-
timately, these mechanisms contribute to the enhancement of the body’s immune function.
Furthermore, the study revealed that astragaloside IV (14) exhibited a partial inhibitory
effect on the differentiation of macrophages into M2 phenotype by modulating the MAPK
signaling pathway, consequently impeding cellular invasion, migration, and angiogene-
sis [112]. Additionally, astragaloside IV (14) exerted anti-tumor immunomodulatory effects
by regulating the levels of cyclin D1, CDK4, and CDK6, stimulating the expression of cos-
timulatory molecules including CD40 and CD86, and inducing cell cycle arrest in the G2/M
phase [111]. To summarize, the activation of the NF-κB/MAPK signaling pathway by plant
saponins can effectively regulate the expression of immune molecules downstream, thereby
demonstrating promising anti-tumor properties and the potential to enhance immune
responses (Figure 4).

The constituents of the hippo-YAP/TAZ signaling pathway hold significance in im-
mune regulation, with YAP being deemed essential for the proper functioning of Treg
cells [113]. The promotion of myeloid-derived suppressor cells (MDSCs) recruitment
is facilitated by the activation of the hippo-YAP signaling pathway [114]. Ginsenoside
can activate YAP/TAZ-TEAD via glucocorticoid receptors, consequently facilitating the
proliferation and differentiation of MDSCs into fully developed granulocytes, DCs, and
macrophages. This activation also leads to an upregulation in the expression of IL-10 and
TGF-β, allowing for the infiltration of corresponding tissues and organs, ultimately exerting
a normal immune response [115]. Additionally, it has the potential to induce the differen-
tiation of myeloid-derived suppressor cells (MDSCs) into mononuclear MDSCs, thereby
augmenting the secretion of arginase-1, inducible nitric oxide synthase (iNOS), and nitric
oxide. This mechanism aims to restrain excessive immune activation and maintain immune
homeostasis within the body [115]. In conclusion, the activation of the hippo-YAP signaling
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pathway by plant saponins has been found to regulate the immune microenvironment of
MDSCs, thereby demonstrating immune regulatory properties (Figure 5).
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In conclusion, plant saponins possess immunomodulatory activity and can regulate
the immune function of the body through different pathways. In addition, to a certain
extent, plant saponins have the potential to become innovative immunomodulators.

6. Limitations of Saponins as Potential Immunomodulators

Disadvantages such as varying degrees of hemolysis, cytotoxicity, poor solubility,
and tissue irritation greatly limit the clinical use of saponins. Saponins tend to bind to
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the cholesterol (Cho) present in the erythrocyte membrane, resulting in the formation of
insoluble complexes. Consequently, the altered osmolality eventually triggers erythrocyte
swelling and rupture, ultimately leading to hemolysis [116,117]. In addition, the chemical
structure of saponins makes its solubility low, which may cause pain at the injection site.
Therefore, in the use of saponin preparations, it is best to choose oral administration to
avoid intravenous and intramuscular injection.

At present, the focus of the pharmaceutical field is to use intermolecular forces in-
cluding hydrogen bonds, hydrophobic forces, and salt bonds to convert drugs, especially
low-solubility drugs into nano-preparations to avoid some side effects of drugs [118,119].
Nanosizing, a technique for formulating drug powders into particles of nano-scale, is
recognized for its ability to enhance drug absorption and enable the intravenous adminis-
tration of insoluble drugs [120]. Nanopharmaceuticals offer a solution to the issue of drug
solubility, while also reducing toxicity and exhibiting a high drug loading capacity [121].
Although this research is still in its infancy, partial laboratory and clinical results have been
achieved to date. Through the encapsulation of Q. brasiliensis QB-80 saponin (QB-80) within
lipids, the creation of a nano-adjuvant (IMXQB-80) was achieved. Toxicity assessments
revealed that IMXQB-80 exhibited a notable reduction in cytotoxicity. Furthermore, the
nano-adjuvant IMXQB-80 demonstrated comparable efficacy to QB-80 in eliciting immune
responses, albeit with a four-fold decrease in the required saponin dosage for achieving
equipotent stimulation [122]. The utilization of a nanoparticle encapsulating panax ginseng
saponin R1 (NGR1) facilitates the accurate and targeted transportation of NGR1 to various
organs, employing a non-invasive approach. This technique exhibits enhanced functionality
and angiogenesis within the intended organ, while concurrently mitigating apoptosis [123].
In comparison to other frequently employed immunomodulators, saponin immunomodu-
lators possess both merits and demerits. To enhance the benefits or mitigate the drawbacks,
diverse approaches such as nano-preparations and alternative immunomodulator delivery
systems can be employed, thereby fostering a safer and more extensive clinical utilization
of saponins.

7. Conclusions

Phytosaponins can promote the growth and maturation of immune organs, regu-
late the function of a variety of immune cells, increase the production of immune-related
cytokines and antigen-specific antibodies, etc., through a variety of signaling pathways,
thus exerting immunomodulatory effects. Due to the special chemical structure of plant
saponins, while exerting its immune-enhancing effect, it also possesses certain hemolytic
effects and cytotoxicity, which limits its application. However, these drawbacks can be
circumvented to a certain extent through different preparation forms and delivery sys-
tems. Therefore, saponins have great potential in the development and application of
immunomodulators.
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