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Abstract: The critical enzyme dihydrofolate reductase-thymidylate synthase in Leishmania major
(LmDHFR-TS) serves a dual-purpose role and is essential for DNA synthesis, a cornerstone of the
parasite’s reproductive processes. Consequently, the development of inhibitors against LmDHFR-TS
is crucial for the creation of novel anti-Leishmania chemotherapies. In this study, we employed an
in-house database containing 314 secondary metabolites derived from cinnamic acid that occurred
in the Asteraceae family. We conducted a combined ligand/structure-based virtual screening to
identify potential inhibitors against LmDHFR-TS. Through consensus analysis of both approaches,
we identified three compounds, i.e., lithospermic acid (237), diarctigenin (306), and isolappaol A
(308), that exhibited a high probability of being inhibitors according to both approaches and were
consequently classified as promising hits. Subsequently, we expanded the binding mode examination
of these compounds within the active site of the test enzyme through molecular dynamics simulations,
revealing a high degree of structural stability and minimal fluctuations in its tertiary structure. The in
silico predictions were then validated through in vitro assays to examine the inhibitory capacity of
the top-ranked naturally occurring compounds against LmDHFR-TS recombinant protein. The test
compounds effectively inhibited the enzyme with IC50 values ranging from 6.1 to 10.1 µM. In contrast,
other common cinnamic acid derivatives (i.e., flavonoid glycosides) from the Asteraceae family, such
as hesperidin, isovitexin 4′-O-glucoside, and rutin, exhibited low activity against this target. The
selective index (SI) for all tested compounds was determined using HsDHFR with moderate inhibitory
effect. Among these hits, lignans 306 and 308 demonstrated the highest selectivity, displaying superior
SI values compared to methotrexate, the reference inhibitor of DHFR-TS. Therefore, continued
research into the anti-leishmanial potential of these C6C3-hybrid butyrolactone lignans may offer a
brighter outlook for combating this neglected tropical disease.

Keywords: Leishmania; Asteraceae; DHFR-TS; lignans; flavonoids; natural products; machine learning

1. Introduction

Leishmaniasis is a neglected tropical disease (NTD) caused by protozoan parasites of
the genus Leishmania, which are transmitted by the bite of infected sandflies. This disease
affects millions of people worldwide, particularly in developing countries with poor health
infrastructure. The primary clinical forms of the disease are visceral, cutaneous, and
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mucocutaneous. According to the World Health Organization (WHO), the global burden
of leishmaniasis is estimated to be around 700,000 to 1 million new cases each year, with
90% of the cases occurring in just six countries: Afghanistan, Algeria, Brazil, Colombia,
Iran, and Syria [1,2]. The sandflies that transmit leishmaniasis are most active at night
and breed in wet soil, organic matter, or animal burrows [3]. In Colombia, 10 out of the
20 species that can infect both humans and other living beings are present. The cutaneous
leishmaniasis (CL) form is the most frequent (98–99%), with the population under five
years old and immunocompromised individuals being the most affected [4,5]. The number
of CL cases reported in Colombia in 2022 was 4906, with the departments of Amazonas,
Boyacá, Caquetá, Cesar, Córdoba, Cundinamarca, Putumayo, Santander, and Sucre being
the most affected areas [6].

Since the late 1980s, Leishmania-HIV co-infection has been reported in 35 countries, and
there have also been other cases of Leishmania-Malaria co-infection, which are associated with
the worsening of the clinical condition of patients with leishmaniasis. This co-infection type
has increased the disease’s burden due to the greater difficulty of clinical treatment [7,8].
Currently, antimonial compounds are the primary treatment for leishmaniasis; however, they
present high toxicity and resistance in some endemic regions. To address these challenges,
alternative drugs have been developed, such as liposomal amphotericin B, which significantly
reduces the side effects and treatment duration associated with free amphotericin B but is
expensive [9,10]. Other drugs, such as paromomycin and miltefosine, have been associated
with high toxicity, resistance, and teratogenic and abortive effects, promoting the discovery
and development of low-cost, highly effective drugs with low toxicity [11]. Furthermore, it
is worth noting that while Leishmania is a parasitic disease mainly affecting humans, it also
affects animals such as dogs and rodents, which can serve as reservoirs for the parasite and
increase the risk of transmission to humans [12,13].

Therefore, efforts to develop effective treatments and control measures must be con-
sidered. High-throughput screening (HTS) has been used since the early 1990s to test
the activity of large numbers of molecules against different diseases and thereby identify
potential hits for drug development [14]. However, the uncertainty of success, as well as
the time and screening costs, limit the use of this technique [15]. In recent years, chemoin-
formatics tools (e.g., molecular docking, machine learning) have been utilized to conduct
in silico studies that can predict the interactions between a protein and a ligand, reducing
the number of actual laboratory experiments and accelerating the drug discovery process
more efficiently and cost-effectively [14,16]. The different research conducted in this field
has led to the development of increasingly efficient and better classifying models, which
take advantage of large compound databases, opening the possibility of studying diseases
that mainly affect poorer populations (NTD), which are not attractive to large industries
and big pharma [17].

Leishmaniasis is commonly treated with plants from the Asteraceae family in tradi-
tional medicine. Given the diversity of this family (32,913 species) and the wide range
of phytochemicals they contain, including alkaloids, coumarins, flavonoids, benzofurans,
sterols, and terpenoids, they are considered a promising source of new leishmanicidal
compounds [18]. Some secondary metabolites studied in this family have been sesquiter-
penoids [19,20], triterpenes [21], phytosterols [22], and kauranes [23]. However, although
they have shown activity to inhibit the disease, their pIC50 is not large enough, and
compounds that are effective at low concentrations and selective against the parasite are
preferred. A group of compounds that has not yet been studied, with records reporting
promising in vitro activity, is the derivatives of cinnamic acid belonging to the Asteraceae
family [24–26].

Gouri et al. report some natural inhibitors against Leishmania amastigotes, such as
luteolin (IC50 = 3.12 µM), quercetin (IC50 = 10.5 µM), chrysin (IC50 = 13 µM), apigenin,
myricetin, cinnamic acid (IC50 = 0.25 µM), and licochalcone A (IC50 = 0.9 µM), which can
play an important role in drug discovery [24]. Peixoto et al., on the other hand, evalu-
ated the biological activity of 25 cinnamic acid derivatives against Leishmania braziliensis
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amastigotes, obtaining promising results and finding that aromatic rings with oxygen as a
heteroatom had a beneficial effect in terms of activity against Leishmania [25]. Considering
that heterocyclic compounds have been of great importance for drug development in the
pharmaceutical industry, derivatives of cinnamic acid, which is an aromatic carboxylic acid
commonly substituted in the trans position by an acrylic acid group, represent an interesting
starting point for directing studies in the search for possible hits against different species of
leishmaniasis [27]. Although some of these compounds have already been studied, many
more remain to be analyzed.

Some cinnamic acid derivatives, such as indole-based inhibitors with a Michael ac-
ceptor cinnamic ester head, have been tested against human coronaviruses, demonstrating
EC50 values of 9.14 µM and 10.1 µM [28]. Another area in which their potential has been
demonstrated is as antitumor agents. In this context, it has been found that brefeldin A
4-O-(4)-dimethylaminocinnamate improves aqueous solubility and exhibits strong cyto-
toxic activity against HepG2 and BEL-7402 cell lines, with IC50 values of 0.29 and 0.84 µM,
respectively [29].

Additionally, the compound (E)-N-(2-(dimethylamino)ethyl)-3-(1H-indol-3-yl)-N-
(pyridin-2-yl) acrylamide has shown promise as a focal adhesion kinase (FAK) inhibitor
for the intervention in metastatic triple-negative breast cancer. It potently inhibits the
proliferation, invasion, and migration of TNBC cells in vitro, with an IC50 of 8.37 µM [30].
Additionally, these types of compounds have been proven to be potential anti-inflammatory
agents by inhibiting Akt/NF-κB and MAPK signaling pathways. Among them, ursodeoxy-
cholic acid–cinnamic acid hybrids showed the best inhibitory activity, with an IC50 of
7.70 µM and no significant toxicity [31].

In the present study, a computational approach was undertaken to identify potential
inhibitors of the bifunctional enzyme dihydrofolate reductase-thymidylate synthase (DHFR-
TS) of Leishmania major given its crucial role in the synthesis of DNA in trypanosomatids,
which is essential for the parasite’s reproduction [32]. To accomplish this, a custom-made,
in-house library containing 314 specialized metabolites derived from cinnamic acid was
virtually screened.

Initially, a ligand-based predictive classification model was developed using experi-
mental information on the IC50 values retrieved from in vitro assays of reported compounds
against Leishmania. Simultaneously, employing a hybrid LmDHFR-TS model constructed
based on its amino acid sequence [33], a structure-based ranking through molecular dock-
ing calculations was performed using the investigated specialized metabolite database.
Through a consensus analysis, molecules with the highest probability of being inhibitors
by both approaches were classified as possible hits.

These secondary metabolites were further evaluated through in vitro assays using
the recombinant LmDHFR-TS, and ADMET properties were calculated to determine their
pharmacokinetic properties.

2. Results and Discussion
2.1. Combined Ligand-/Structure-Based Virtual Screening Approach Using LmDHFR-TS
2.1.1. Ligand-Based Virtual Screening

Initially, a compilation of compounds exhibiting inhibitory activity against LmDHFR-
TS was assembled from the ChEMBL database. These compounds underwent classification
as either active or inactive, a determination based on their reported IC50 values. A cutoff
point of pIC50 = 5.0 was employed for this classification. The choice of this threshold was
grounded in the range of IC50 values documented in the ChEMBL database, with an effort
to strike a balance between the number of active and inactive compounds. This specific
value aims to optimize the representation of chemical space for both active and inactive
structure classes while concurrently minimizing the false positive rate of the model.

To refine the dataset, duplicate molecules were eliminated during the data curation
process, ensuring the creation of a virtual screening model characterized by high prediction
efficiency. Additionally, molecules with an IC50 value falling within ±0.1 of the cut-off
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point were included in the analysis. Ultimately, a total of 790 molecules were chosen for
model training. Within this set, 378 were identified as inactive (47.8%), while 412 were
recognized as active (52.2%).

In the ligand-based process, VolSurf+ (128) and AlvaDesc (more than 4000) molecular
descriptors were calculated from the three-dimensional representation of each compound
in the database. For AlvaDesc molecular descriptors, a feature selection was conducted
before model training. This process involved removing all constant variables, variables
with only one unique value, variables that had at least one sample with a missing value or
exhibited autocorrelation greater than 0.95. After this process, 523 molecular descriptors
were used for the model construction.

These descriptors were then utilized to construct the random forest (RF) model in
Knime software (KNIME 4.5.0, the Konstanz Information Miner, Copyright 2003–2014,
www.knime.org (accessed on 2 February 2023)), which comprised 200 decision trees. The
Gini index was employed as the split criterion in the RF model to reduce the number of
false positive results. The dataset underwent a five-fold cross-validation strategy, where it
was divided into five subsets, each containing an 80% modeling set and a 20% validation
set. The modeling set was exclusively used for model construction and further subdivided
into multiple training and test sets, maintaining an 80%/20% split ratio. These procedures
were conducted following the approach described by Fourches et al. [34].

Molecular descriptors play a crucial role in drug discovery and development, serv-
ing as representations of the molecular and chemical properties of the compounds under
investigation. In this study, the selected descriptors proved to be instrumental. VolSurf+
generates three-dimensional (3D) molecular descriptors based on the distribution of molecu-
lar electrostatic potentials and hydrophobicity, encapsulating molecular surface properties,
such as size, shape, and electrostatic potential distribution [35,36]. On the other hand,
AlvaDesc provides a diverse array of descriptor types, encompassing constitutional de-
scriptors (detailing the number and type of atoms, bonds, and functional groups in the
molecule), topological descriptors (representing molecular shape, size, and complexity),
electrostatic descriptors (conveying molecular polarity and charge distribution), and quan-
tum mechanical descriptors (pertaining to the electronic structure and properties of the
molecule) [37,38].

The performance of the RF model was assessed to compare the efficacy of the two
types of descriptors. This assessment included calculating classification precision, recall,
F1-score, and Matthew’s correlation coefficient (MCC). Additionally, receiver operating
characteristic (ROC) curves were analyzed, and the area under the ROC curve (AUC)
was calculated (Figure 1). These evaluation metrics are commonly utilized to gauge the
effectiveness of binary classification models. ROC curves and their AUCs are frequently
employed to evaluate the performance of models that generate continuous output scores or
probabilities. AUC serves as a scalar measure of the model’s overall ability to distinguish
between positive and negative cases [37,39].

According to the parameters presented in Figure 1, it is evident that the MCC and
AUC values for both the test sets and cross-validation are higher for AlvaDesc descriptors
compared to those obtained for VolSurf descriptors. However, considering that a higher
AUC value indicates a more remarkable classification ability of the model and that MCC
is expressed in a range of −1 to 1 (where a high value close to 1 suggests a strong correla-
tion between the predicted class and the true class), good values were obtained for both
AlvaDesc (AUC: 0.863 and 0.906, MCC: 0.554 and 0.645) and VolSurf (AUC: 0.855 and 0.884,
MCC: 0.539 and 0.598) descriptors.

www.knime.org
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Figure 1. ROC curve comparison for the RF model using AlvaDesc and VolSurf descriptors for
(a) test sets and (b) cross-validation. Performance evaluation of RF using (c) AlvaDesc and (d)VolSurf
descriptors. (e) Precision–recall (PR) curves for cross-validation. (f) Scatter plots depicting the results
of the PCA analysis conducted on the training and test datasets.

Regarding precision, recall, and F1 score, good and similar values were obtained for
both models, except for the recall for inactive compounds in the model created using VolSurf
descriptors, which was low, with a value of 0.69. Sensitivity and specificity measures were
also calculated to assess the performance of the RF model. For AlvaDesc, the values were
0.807 and 0.752, while for VolSurf, the values were 0.843 and 0.690, respectively. These
results indicate a tendency to have few false negatives, a higher value of true negatives,
and a lower false positive rate for both descriptors.

The precision–recall (PR) curves, closely related to the ROC curve, were constructed
as an evaluation tool for binary classification, enabling the visualization of performance
across various thresholds [40]. The results revealed an area under the PR curve of 0.934 for
AlvaDesc and 0.885 for VolSurf molecular descriptors, indicating a high-quality model and
balanced datasets.

The reliability of the regression model was systematically verified by assessing its
applicability domain, ensuring the capability to generate trustworthy predictions. The
applicability domain (APD) determination relied on molecular interactions. Results for the
training set indicated high reliability rates, reaching 98.1% and 98.4% for the AlvaDesc and
VolSurf descriptors, respectively.

Similarly, the test set demonstrated substantial reliability, boasting rates of 96.1% and
100% for the AlvaDesc and VolSurf descriptors, respectively. These results emphasize the
model’s dependability in predicting outcomes. In the specific context of cinnamic acid
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derivatives, the APD calculation yielded a noteworthy 80% of structurally reliable outcomes.
This analysis further attests to the model’s robustness in diverse chemical scenarios.

To enhance insights from the APD and visually represent the chemical space distribu-
tion, principal component analysis (PCA) was conducted on the datasets employed in this
study. This analysis, performed using the training set, projected the results of the test set
onto the distribution observed for the training set (Figure 1f). Remarkably, the chemical
space of the training set encompassed that of the test set, incorporating molecules classified
as both active and inactive.

Regarding the model constructed with AlvaDesc molecular descriptors, those demon-
strating greater relevance are those associated with the last eigenvector of the Barysz matrix.
This can be achieved either by calculating the average of its coefficients (VE2sign_Dz(p))
or by summing them, with the resulting value weighted by the molecule’s polarizability
(VE2sign_Dz(p)) or by Van der Waals volumes (VE2sign_Dz(v)). Additionally, descriptors
AVS_B(m) and AVS_B(v) utilize the charge matrix, summing the elements of a specific
row or column, and weighting them by mass or Van der Waals volumes, respectively. Fur-
thermore, descriptors based on extended topochemical atom (ETA) indices are considered,
specifically those related to hydrogen bond donor atoms (ETA_D_epsiD) [37]. The obtained
results regarding the relevance of molecular descriptors are presented in Table S1.

The same analysis, evaluating the relevance of molecular descriptors, was also con-
ducted for VolSurf. The two descriptors with the highest accuracy values were associated
with the partition coefficient between 1-octanol and water, namely LgD6 and LgD5, which
ranked highest. These descriptors calculate the logarithm of the partition coefficient be-
tween 1-octanol and water by summing the logP and the fraction of each species at pH 5
and 6, respectively (Table S1).

Additionally, the LogP n-oct descriptor emerges as one of the most relevant in
model construction, along with LdS5, which computes the logarithm of the partition
coefficient between 1-octanol and water through a linear equation derived by fitting
GRID-derived atom types to experimental data on n-octanol/water partition coefficients.
Finally, DD1 appears, measuring the difference between the maximum hydrophobic
volumes and the hydrophobic volumes of the imported 3D structure calculated at the
first level of energy [35,36].

Ligand-based virtual screening (VS) was utilized to predict the potential inhibitory
activity of 314 compounds derived from cinnamic acid in the Asteraceae family, as doc-
umented in the literature. Figure 2 showcases the structure and probability of the five
best compounds classified using AlvaDesc descriptors. These compounds were (E)-2-
hydroxy-3′,6′-dimethoxychalcone (103) [41], apigenin 7-O-(6′′-caffeoyl)-glucoside (235) [42],
montamine (63) [43], 3-O-p-coumaroyl-betulinic acid (150) [44], and cordoin (202) [45].
Additionally, Figure 2 presents the top five compounds predicted using VolSurf descrip-
tors: 6,8-di-C-β-glucopyranosylchrysin (242) [46], montamine (63) [43], dihydrocubebin
(305) [47], prebalanophonin (312) [48], and 4-O-feruloyl 5-O-caffeoylquinic acid (96) [49].

Among all the tested compounds, 116 were classified as active using AlvaDesc molec-
ular descriptors, with probability values ranging from 0.50 to 0.71. On the other hand,
93 compounds were considered active with VolSurf molecular descriptors, and their proba-
bility values ranged from 0.50 to 0.86. Some of these molecules were previously reported
to exhibit various activities, such as analgesic activity (305), antimalarial activity (150),
cytotoxic activity (63), acting as anticancer agents (202), and demonstrating antiproliferative
properties (312) [43,45–47,50–52].

Regarding the best compounds, only one contains nitrogen in its structure (63). The
rest have various oxygen atoms, forming heterocycles or containing carbonyl groups, ethers,
and alcohols. Additionally, one of them is a steroid (150), and another is glycosylated (242).
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2.1.2. Structure-Based Virtual Screening

Structure-based virtual screening (VS) was conducted using a hybrid homology model
of LmDHFR-TS [33], a bifunctional enzyme with a critical role in the metabolic pathway of
Leishmania parasites as well as several protozoa species. The Leishmania genus is autotrophic
for folate and unconjugated pteridines, with the enzyme DHFR-TS playing a pivotal role in
the reduction of dihydrofolate to tetrahydrofolate, a cofactor in the biosynthesis of thymine
in nucleotide metabolism [53,54].

The LmDHFR-TS hybrid model was constructed in YASARA software v.19.12.14 and
subjected to thorough evaluation for reliability and stereochemical qualities through Ra-
machandran, WHAT IF, and VERIFY 3D analyses. The Ramachandran plot indicated
that 96.9% of residues were in favored regions, confirming model satisfaction (Figure S1).
VERIFY 3D results, with 92.6% of residues having a reliable 3D-1D score, and WHAT IF
evaluation, showing a mean score of −0.594, substantiated the model’s quality. Dihedral as-
sessment revealed optimal values above 1.085, affirming the robustness of the LmDHFR-TS
hybrid model [33].

To assess the potential inhibitory capability of cinnamic acid derivatives against
LmDHFR-TS, molecular docking calculations were carried out using Molegro software.
The results were validated by redocking the co-crystallized ligand, i.e., ethyl 4-(5-{[(2,4-
diaminoquinazolin-6-yl)methyl]amino}-2-methoxyphenoxy)butanoate (DQ1), along with
the reference inhibitor methotrexate (MTX) (Figure 3).
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Figure 3. (A) Chemical structures of reference ligands: Methotrexate (MTX) and ethyl 4-(5-{[(2,4-
diaminoquinazolin-6-yl)methyl]amino}-2-methoxyphenoxy)butanoate (DQ1). Redocking results
of (B) MTX and (C) DQ1 in the active site of LmDHFR-TS. The original ligand conformation is
highlighted in red, while the best pose found in the molecular docking procedure is shown in green.

The compounds were ranked based on the predicted docking binding energy using
the probability calculation shown below (Equation (1)), as previously reported by Herrera-
Acevedo et al. [19,20]. The ten compounds exhibiting the highest probability of being
active are presented in Table 1. Ranked compounds that did not previously show high
ligand-based probability values but appeared among the best-ranked derivatives through
a structure-based approximation are represented in Figure 4 along with their respective
structure-based probability (PSB) values.

PSB = (Ei/Emin) > 0.5 and Ei < Eligand (1)

where PSB is the structure-based probability; Ei is the docking energy of compound i, where
i ranges from 1 to 314 (cinnamic acid derivatives dataset); Emin is the lowest energy value
of the dataset; and Eligand is the ligand energy from the co-crystalized inhibitor.

Table 1. Chemical structure of six of the best-ranked cinnamic acid derivatives that appear as active
in the structure-based virtual screening with their respective probability to be active. PSB = active
probability value.

Rank Ligand Docking Score (kJ/mol) SD RMSD

1 241 −182.8 5.4 1.0
2 164 −175.6 7.1 1.8
3 21 −175.5 11.2 1.0
4 242 −169.6 1.9 1.2
5 140 −167.0 3.3 0.4
6 283 −165.4 4.8 1.7
7 165 −161.8 7.4 1.2
8 235 −161.4 5.9 0.9
9 285 −160.9 8.8 1.2

10 63 −160.1 5.2 1.1

Redocking MTX −114.2 2.2 0.3
DQ1 −134.4 2.5 0.3
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in the structure-based virtual screening with their respective probability to be active. PSB = active
probability value.

The results showed that the energy-based scoring values were lower for the cin-
namic acid derivatives compared to the reference ligands. This suggests that the studied
compounds exhibit a higher affinity with the LmDHFR-TS active site in the molecular recog-
nition process. Furthermore, the docking results revealed that 24.5% of the 314 cinnamic
acid derivatives dataset had PSB values above 0.5, and among these top-ranked compounds,
64 had a lower docking score than methotrexate, which achieved −114.15 kJ/mol.

Three of the top-ranked molecules predicted to have high ligand-based probability
values based on the RF model also demonstrated high structure-based probability values.
Specifically, Compound 242, ranked fourth in the structure-based classification (Table 1),
was the best classified in the ligand-based VS model with VolSurf descriptors. Compounds
235 and 63, positioned among the top ten compounds in structure-based VS with docking
scores of −161.4 kJ/mol and −160.1 kJ/mol, respectively, also showed high ligand-based
probabilities. Compound 235 was predicted to be the second-best structure with high poten-
tial for inhibition using the model built with AlvaDesc descriptors, while Compound 63 was
classified in the top three for both RF models (AlvaDesc and VolSurf molecular descriptors).

The analysis of residues for the best poses in the top three compounds revealed that
the residues responsible for ligand binding (Val30, Val31, Ala32, Ile45, Trp47, Asp52, Met53,
Phe56, Val87, Pro88, Fhe91, Leu94, Val156, Tyr162, and Thr180) have been previously
reported in the literature as part of the active site [55]. Certain characteristics of these
residues, such as accessibility and charge distribution, enable selective drug design against
these protozoans without affecting human enzymes [55]. The interaction diagrams in
Figure 5 illustrate that the compound with the highest docking score (Compound 241,
Figure 5C) possesses heterocyclic rings like the reference ligands, with oxygen atoms
replacing the nitrogen atoms present in the reference ligands. However, due to the similar
electronegativities of nitrogen and oxygen, these atoms favor nearly identical interactions
with the enzyme’s active site.
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Figure 5. Residual interaction diagrams of (A) compound 241, (B) compound 164, (C) compound 21,
(D) DQ1, and (E) methotrexate. Interacting residues are shown in colored circles and dashed lines
depending on the type of interaction: H-bond (lime), van der Waals (green), π–π (purple), π–alkyl
(pink), unfavorable (red), carbon H-bond (light green), π–anion (orange), π–sulfide (yellowish orange).
(F) structural conformations of the coupling between the LmDHFR-TS enzyme and the ligands: DQ1
(red), Compound 241 (green), Compound 164 (pink), Compound 21 (blue).

Compounds 164 and 21 lack heterocyclic rings but contain benzene rings, which par-
ticipate in π–π and π–alkyl interactions. Additionally, these compounds exhibit a relevant
number of oxygen-containing groups, such as esters, ethers, and carboxylic acids, facilitat-
ing interactions with both residues within the active site and other residues. Specifically,
the carboxylic moiety facilitates van der Waals interactions, crucial as they occur with the
amino groups in the reference ligands and appear to be important since they are present in
the three top-ranked molecules. On the other hand, Compounds 242 and 140, containing
only hydroxyl groups, are less favorable in this binding mode. Although both compounds
are isomeric, Compound 164 has few favorable interactions (8 interactions), and Compound
21 has more interactions (25 interactions).

All ligands adopted a U-shaped conformation like the reference ligands DQ1 and
MTX (Figure 5F), and most of them formed robust hydrogen bonding interactions with the
enzyme (Val156, Val30, Lys95, Met53, Phe91, and Arg97), which are crucial determinants for
binding [53]. To delve deeper into this behavior, a topological polar surface area (TPSA) map
was constructed for both the reference ligands and the best-ranked compounds (Figure 6).

The results of the TPSA maps confirmed a similar spatial distribution among the
three top-ranked compounds concerning DQ1 and MTX. An electron-deficient region was
identified at the top of the molecule (Figure 6, blue area), which is consistently present in
all evaluated molecules, including the two reference ligands. This observation rationalized
the similar binding behavior within the active site of LmDHFR-TS, particularly with Met53
as a common crucial contact for these test compounds.

The molecular lipophilic potential (MLP) was also analyzed for both ligands and the
protein (2). The results obtained from both TPSA and MLP concerning the active site of
LmDHFR-TS show that the active site ends are highly polar, explaining the observed charge
distribution in cinnamic acid derivatives.
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The lipophilic areas of the pocket predominate in the center of the active site, justifying
the charge distribution depicted in Figure 6. Additionally, these calculations revealed a
pattern of distribution for polar charges for DQ1, MTX, and the three top-ranked structures.
However, this was not observed in the lipophilic regions determined in the MLP. The
structure 241 exhibits a pattern like MTX, while Ligands 146 and 21 present lipophilic
potential like DQ1 (Figure S2).

2.1.3. Consensus Analysis of the Two VS Approaches

A combined approach was employed to determine the potential activity of cinnamic
acids against the LmDHFR-TS enzyme and to mitigate the selection of false positive com-
pounds. This approach incorporated probability scores derived from both structure-based
and ligand-based virtual screening (VS) methods in conjunction with the true negative rate
obtained from the RF model (Equation (2)) [19].

The design of this approach aimed to assign a higher weight to the ligand-based
probability scores (considering their reliance on experimental pIC50 values), in contrast to
the structure-based probability scores, which are founded on protein–ligand interactions.
This weighting scheme significantly reduces the risk of incorrectly classifying inactive
molecules as active (false positives) [23].

CALm =

[
PSB +

((
1 + TNLB(AD)

)
× PLB(AD) +

(
1 + TNLB(VS)

)
× PLB(VS)

)]
[
3 + TNLB(AD) + TNLB(VS)

] (2)

where CALm = combined-approach probability, PSB = structure-based probability,
TN = true-negative rate, and PLB = ligand-based probability (AD = AlvaDesc descriptors
and VS = VolSurf descriptors).

Table 2 presents the results of the best-ranked compounds calculated from the con-
sensus analysis equation. The compounds ranked among the top five for each method are
highlighted in bold. Except for 235, all compounds were classified as potentially active in
all virtual screening approximations used in this study. The consensus analysis identified
110 compounds with combined-approach probability values greater than 0.5; however, only
47% of these compounds (52) were classified as active through the three in silico models
used in this study (Table S2). Compound 63 (montamine) was the top-ranked compound.
Montamine is an indole alkaloid that has been isolated from Asteraceae species, such as
Centaurea schischkinii and Centaurea montana. Previous studies have reported its anticancer
properties [43,56], but its efficacy against Leishmania has not been investigated.
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Table 2. Cinnamic acid derivatives are classified as active by combining ligand-based and structure-
based VS. The numbers in italics represent those compounds classified as active in all three in silico
models, but they were not previously identified as the best-ranked compounds in any approach.

Rank Ligand PLB(AD) PLB(VS) PSB CALm

1 63 0.68 0.83 0.88 0.78
2 242 0.52 0.86 0.93 0.74
3 96 0.55 0.73 0.77 0.67
4 241 0.53 0.55 1.00 0.64
5 39 0.57 0.64 0.77 0.64
6 237 0.61 0.55 0.84 0.64
7 306 0.63 0.53 0.83 0.63
8 165 0.53 0.60 0.88 0.63
9 140 0.59 0.51 0.91 0.63

10 308 0.57 0.59 0.81 0.63

The second best-ranked compound was 6,8-di-C-β-glucopyranosylchrysin (242), a
derivative of chrysin obtained from Lychnophora ericoides (Asteraceae). Compared to Com-
pounds 69 (chrysin) and 231 (techtochrysin), classified as inactive, the glycosylated deriva-
tive 242 has more hydroxyl groups, enabling interactions with the enzyme’s active site.
In previous studies, chrysin was biofunctionalized with gold particles due to its low
bioavailability, poor absorption, and rapid excretion issues, aiming to neutralize Leishmania
parasites through its activity against the kinase−3 enzyme [57]. However, Compound 242
could represent an alternative due to its hydrophilic character resulting from the glycosyl
groups, potentially inhibiting Leishmania parasites by interacting with LmDHFR-TS.

The third- and fourth-best-ranked compounds were 4-O-feruloyl-5-O-caffeoylquinic
acid (96) and lucenin-2, 6,8-di-C-β-glucopyranosylluteolin (241), respectively, both ex-
tracted from the genus Lychnophora—specifically, Lychnophora ericoides [46] and Lychnophora
salicifolia [49], respectively. Additionally, apigenin 7-O-rutinoside (39), lithospermic acid
(237), diarctigenin (306), and isolappaol A (308)—four cinnamic acid derivatives that previ-
ously exhibited moderate values in both RF models and the molecular docking calculations
(all classified as active)–appeared among the top ten ranked compounds in the combined
approach (Figure 7). Hence, these compounds emerge as interesting antileishmanial candi-
dates, as they exhibit activity across all models and maintain consistency in their probability
values. Notably, consensus scoring methods are known to enhance hit rates by diminishing
the likelihood of false positives [53–58].
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Figure 7. Cinnamic acid derivatives as potential inhibitors of LmDHFR-TS were identified using an
approach that combines ligand-based and structure-based virtual screening (VS). CALm represents
the combined probability value.

The compounds 4-(3,4-dihydroxybenzyl)-2-(3,4-dihydroxyphenyl)tetrahydrofuran-3-
carboxy-O-β-D-glucopyranoside (306) and 7-(3,4-dihydroxyphenyl)-3′,4′-dihydroxy-7,8,7′,
8′-tetrahydronaphtho [8,8′-c]furan-1(3H)-one (308) are two lignans found in certain species
of Asteraceae. Notably, Hypochaeris radicata (native to Europe, northern Asia, and parts of
North Africa) and Arctium lappa (native to Europe and Asia) have been reported as natural
sources of these compounds. However, A. lappa is widely disseminated in America, and
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H. radicata has also become invasive in regions as far-flung as New Zealand and Chile [59].
Conversely, compound 237, lithospermic acid, is a common polycyclic phenolic carboxylic
acid that has been isolated from species of multiple botanical families, including Lamiaceae
and Asteraceae. It has demonstrated a wide range of beneficial properties, acting against
cardiovascular diseases and hepatitis. It allows endothelium-dependent vasodilatation,
lowers blood pressure, and produces antioxidant effects [60,61].

2.2. Molecular Dynamics Simulations

Conducting molecular dynamics (MD) studies aimed at evaluating protein–ligand
stabilities involved considering various factors such as solvent, ions, pressure, and tem-
perature for Compounds 237, 306, and 308. These three compounds emerged as potential
inhibitors of LmDHFR-TS based on the consensus analysis of the methodologies employed
in this study. Methotrexate (MTX) served as the reference ligand.

The assessment of structural stability was accomplished through root mean square de-
viation (RMSD) measurements. Over the simulated period of 100 ns, all tested compounds
exhibited comparable behavior in relation to the apoenzyme of LmDHFR-TS (apoLmDHFR-
TS, the protein without a ligand) and the LmDHFR-TS···MTX complex.

Upon detailed examination of Figure 8A, it becomes evident that during the initial
30 ns of the simulation, the complexes formed by LmDHFR-TS with the three analyzed
ligands exhibit behavior like that of the complex with MTX and apoLmDHFR-TS. However,
after the 40 ns mark, derivatives 237 and 308 display a higher level of disturbance, with
RMSD values fluctuating between 0.10 and 0.15 nm (Figure 8A).

Structure 306, in contrast, maintains behavior like the LmDHFR-TS···MTX complex
throughout the entire 100 ns simulation, with a minor RMSD variation (close to 0.10 nm)
compared to the other two analyzed derivatives. This suggests favorable stability of
the protein, as the apoLmDHFR-TS experiences a variation of 0.15 nm, with a minimum
observed at 40 ns and an increase in RMSD values reaching a maximum near 85 ns of
the simulation.

Concerning RMSF values (Figure 8B), all examined compounds displayed similar
behavior, although specific cases revealed distinct characteristics. Residues Glu218 and
Thr410, situated in the protein’s loop regions, exhibited the highest fluctuations for the
apoenzyme, with Glu218 showing approximately twice the RMSF value compared to the
complexes with MTX and the tested cinnamic acid derivatives.

Among the selected compounds, Compound 237 demonstrated higher fluctuations in
the loop regions than the other derivatives and MTX, with Gly118, Arg254, and Arg380
being the most variable amino acids. Compounds 306 and 308 exhibited a similar behavior
throughout the simulation, showcasing reduced flexibility when complexed.

The critical amino acid residues involved in binding to LmDHFR-TS· exhibited rel-
atively stable behavior, with RMSF values ranging from 0.10 to 0.20 nm throughout the
simulation. Among these residues, Phe91 and Lys95 demonstrated higher variation, exceed-
ing 0.20 nm. In contrast, Arg97 and Val156 exhibited minimal fluctuation, with values close
to 0.10 nm. Notably, Val156 in apoLmDHFR-TS and the MTX complex displayed lower
fluctuation (approximately 30%) compared to the three analyzed cinnamic acid derivatives.

Conversely, Arg97 displayed values between 0.09 and 0.12 nm. Structure 306 achieved
a remarkable value of 0.09 nm, even lower than observed for the MTX complex, while
Structures 237 and 208 showed values like those of the apoprotein. Throughout the simula-
tion, the LmDHFR-TS complex with Structure 306 consistently promoted protein stability,
evidenced by lower RMSF values in this complex, except for residues Leu145 and Lys90.

The structural compactness and mobility of the protein–ligand complexes were as-
sessed throughout the simulation using the radius of gyration (RoG) plot (Figure 8C) [23].
In the initial half of the 50 ns simulation, complexes with cinnamic acid derivatives dis-
played RoG values indistinguishable from those of the control MTX and apoLmDHFR-TS,
ranging from 2.64 nm to 2.70 nm.
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apoenzyme, with Glu218 showing approximately twice the RMSF value compared to the 
complexes with MTX and the tested cinnamic acid derivatives. 

Among the selected compounds, Compound 237 demonstrated higher fluctuations 
in the loop regions than the other derivatives and MTX, with Gly118, Arg254, and Arg380 
being the most variable amino acids. Compounds 306 and 308 exhibited a similar behavior 
throughout the simulation, showcasing reduced flexibility when complexed. 

The critical amino acid residues involved in binding to LmDHFR-TS· exhibited rela-
tively stable behavior, with RMSF values ranging from 0.10 to 0.20 nm throughout the 
simulation. Among these residues, Phe91 and Lys95 demonstrated higher variation, ex-
ceeding 0.20 nm. In contrast, Arg97 and Val156 exhibited minimal fluctuation, with values 
close to 0.10 nm. Notably, Val156 in apoLmDHFR-TS and the MTX complex displayed 
lower fluctuation (approximately 30%) compared to the three analyzed cinnamic acid de-
rivatives. 

Figure 8. (A) Root mean square deviation (RMSD), (B) root mean square fluctuation (RMSF), and
(C) radius of gyration (RoG) values within the LmDHFR-TS binding site obtained after molecular
dynamics simulations. Apoenzyme (blue); DHFR-TS···MTX complex (cyan); DHFR-TS···237 complex
(light green); DHFR-TS···306 complex (yellow) and DHFR-TS···308 complex (pink).

This indicates a high level of stability and low fluctuations in the tertiary structure.
However, after 60 ns, Compounds 237, 306, and 308 exhibited similar behavior (varying be-
tween 2.64 nm and 2.70 nm) with increased perturbation compared to the DHFR-TS···MTX
complex and the apoenzyme, maintaining a consistent mean value with fluctuations rang-
ing from 2.62 to 2.64 nm.

Following molecular dynamic simulations, binding free energies for complexes involv-
ing Compounds 237, 306, 308, and the control (MTX) with LmDHFR-TS were determined
using the MM/PBSA method. The complexes of benzylbutyrolactone-type lignans (306
and 308) and the polyphenolic acid (compound 237) with LmDHFR-TS showed binding
free energies of −111.1 kJ/mol, −81.0 kJ/mol, and −91.6 kJ/mol, respectively. In all cases,
the energy was higher than the −124.5 kJ/mol observed for the complex of MTX with
LmDHFR-TS (Table 3).
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Table 3. Binding free energies (kJ/mol) from the MM/PBSA calculations for Compounds 237, 306,
and 308 in the active site of LmDHFR-TS; MTX was used as the reference ligand.

237 306 308 MTX

Energy Contribution kJ/mol SD kJ/mol SD kJ/mol SD kJ/mol SD

van der Waals −218.3 6.2 −209.7 4.6 −217.6 6.2 −239.5 8.2
Electrostatic −31.3 4.1 −38.0 3.9 −29.0 4.6 −57.3 4.3

Polar solvation 181.5 6.5 157.6 6.3 185.6 6.5 194.6 8.5
SASA −23.6 1.8 −21.0 1.9 −20.0 1.2 −22.4 2.2

Binding energy −91.6 4.7 −111.1 4.2 −81 4.6 −124.5 5.8

All complexes under evaluation, including the MTX reference, exhibited a consistent
contribution pattern characterized by negative energy values arising from van der Waals,
electrostatic, and solvent-accessible surface area (SASA) parameters influencing the binding
free energy. The van der Waals parameter, displaying the most substantial negative con-
tribution, registered values lower than −209 kJ/mol. This finding implies that non-polar
electrostatic interactions play a pivotal role in the molecular recognition of the LmDHFR-TS
binding site by the tested compounds.

Concerning polar solvation, all compounds made positive contributions to the total
binding energy, with similar values observed for Compounds 237, 308, and MTX. Con-
versely, diarctigenin (306) exhibited a lesser contribution to this parameter. Additionally,
electrostatic interactions negatively influenced the binding free energies, with MTX show-
ing a more significant negative contribution of −57.3 kJ/mol. Meanwhile, the impact of
electrostatic interactions for the evaluated cinnamic acid derivatives ranged from 35% to
50% relative to the reference ligand.

2.3. In Vitro Enzymatic Activity Inhibition for Selected Cinnamic Acid Derivatives (Compounds
237, 306, and 308) against LmDHFR-TS and HsDHFR

To validate the outcomes of our combined approach utilizing two virtual screening
(VS) methodologies, we conducted in vitro enzymatic inhibition assays on five compounds
sourced from our in-house library. Compounds 237, 306, and 308, identified as active in all
approaches, were selected, along with hesperidin (140), a notable flavonoid recognized for
its reported antileishmanial activity through apoptosis induction and sterol C-24 reductase
inhibition [62]. Isovitexin 4′-O-glucoside and rutin, demonstrating moderate levels of
activity and categorized as inactive in one of the three approaches, were also assessed
against LmDHFR-TS, with methotrexate serving as the positive control.

The determination of IC50 values involved analyzing concentration-response curves
within the 0.1–128 µM range, employing spectrophotometric monitoring of enzymatic
activity in a standard DHFR assay. This investigation yielded a spectrum of values ranging
from 6.1 to 53.2 µM, corresponding to pIC50 values between 4.27 and 5.21. Notably,
Compounds 237, 306, and 308 demonstrated the highest activity against LmDHFR-TS.
Hesperidin (IC50 = 21.6 µM) exhibited substantial activity against the target among the
three evaluated flavonoids, with IC50 values of 53.2 µM and 41.7 µM for isovitexin 4′-O-
glucoside and rutin, respectively (Table 4).

Structurally, we sought to establish a correlation between the inhibitory activity against
LmDHFR-TS and the interaction of hydrogen bond acceptors and donors, particularly
carbonyl and hydroxyl groups. Among the lignans—306 and 308—the presence of the γ-
butyrolactone moiety highlighted that the most active compound (306) possessed a higher
number of carbonyl groups compared to 308—a feature shared with lithospermic acid (237).
However, the glycosylated flavonoids (hesperidin, isovitexin 4′-O-glucoside, and rutin)
exhibited low inhibitory activities, suggesting that the abundant hydroxyl groups may
negatively impact inhibitory activity.
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Table 4. Results of enzymatic activity against LmDHFR-TS and HsDHFR for selected cinnamic acid
derivatives. CI = confidence interval (95%). SI = selectivity index.

Compound
LmDHFR-TS HsDHFR

SI
IC50 (µM) CI (95%) IC50 (µM) CI (95%)

hesperidin 21.6 20.2–23.1 86.5 82.3–87.2 4.0
lithospermic acid (237) 7.5 6.8–7.9 22.6 21.3–24.7 3.0

diarctigenin (306) 6.1 5.7–6.4 27.9 26.8–28.6 4.6
isolappaol A (308) 10.1 9.7–10.3 44.8 42.4–45.9 4.4

isovitexin 4′-O-glucoside 53.2 51.1–54.1 125.7 122.8–127.8 2.4
rutin 41.7 40.3–43.1 188.9 186.2–190.6 4.5
MTX 1.4 1.1–1.5 4.9 4.7–5.1 3.5

Following this, we calculated the selectivity index (SI) based on the results obtained
from in vitro tests using the recombinant protein of Homo sapiens (Hs) DHFR. The IC50
values against HsDHFR revealed a distinct pattern, implying different mechanisms of action
for these two proteins. Moderate SI values were observed, with both benzylbutyrolactone-
type lignans (Compounds 306 and 308) exhibiting the highest SI values—4.6 and 4.4,
respectively. Notably, both lignans demonstrated higher SI values than MTX, employed as
a positive control (Table 4)

2.4. Pharmacokinetic Properties Predictions

The pharmacokinetic properties, encompassing absorption, distribution, metabolism,
excretion, and toxicity (ADMET), of Compounds 237, 306, and 308 were predicted using
ADMETlab 2.0 and OSIRIS DataWarrior 5.5.0 [63,64]. Multiple approaches were employed
to evaluate oral bioavailability, yielding mixed results. While all compounds adhered
to Lipinski’s “rule of five” [65], none met the criteria set by Pfizer [66] and GSK [67],
suggesting potential challenges in oral bioavailability (Table S3).

Regarding cytochrome P450 (CYP) and its isoenzymes, compound 237 exhibited a sig-
nificant probability of inhibiting CYP2C9. Similarly, Compounds 306 and 308 demonstrated
potential inhibition of CYP2C19, CYP2C9, and CYP3A4, indicating potential impacts on the
metabolism of other drugs. Conversely, Compound 237 was predicted to act as a substrate
for CYP2C9, while Compounds 306 and 308 were associated with CYP1A2, CYP2C19,
CYP2C9, CYP2D6, and CYP3A4, suggesting that they could be metabolized by these isoen-
zymes. Furthermore, none of the studied compounds exhibited mutagenic, tumorigenic,
reproductive, or irritant effects. Identifying potential hERG channel blockers is crucial for
assessing the risk of cardiotoxicity [68], and for the three structures, the probabilities of
hERG blocking were at most 0.212.

3. Materials and Methods
3.1. Cinnamic Acid Derivatives In-House Dataset

A custom-made, in-house virtual library of 314 distinct cinnamic acid derivatives
was built from 76 scientific articles using various search criteria, including keywords
such as Asteraceae, Cinnamic Acid Derivatives, Lignans, Polyphenols, Flavonoids, and
others. ChemAxon MarvinSketch (ChemAxon, version 21.18.0 (2021), a calculation module
developed by ChemAxon, https://www.chemaxon.com/, accessed on 12 January 2023)
was used to design all the structures.

The three-dimensional (3D) structures for the entire set were generated using Stan-
dardizer software (JChem, version 21.18.0 (2021), a calculation module developed by
ChemAxon, https://www.chemaxon.com/, accessed on 12 January 2023). This software
standardized the structures, added hydrogens, performed aromatic form conversions, and
refined molecular graphs in three dimensions. The process employs a divide-and-conquer
strategy, wherein the structure is partitioned into smaller fragments. These fragments are
then organized into a tree based on connectivity information. Conformers generated for
the initial structure, represented by the root node in the tree, undergo optimization. The

https://www.chemaxon.com/
https://www.chemaxon.com/
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tree-building process incorporates a proprietary extended version of the Dreiding force
field [69]. The final dataset was saved in special data file (.sdf) format.

3.2. Classificatory Machine Learning Models

The analyses described below utilized Knime 4.5.0 software (KNIME 4.5.0, the Konstanz
Information Miner, Copyright 2003–2014, www.knime.org (accessed on 2 February 2023)) [70].
The process commenced with importing those descriptors generated by the Volsurf+ [35,36]
and AlvaDesc [37,38] programs in CSV format.

Subsequently, these descriptors underwent segmentation via the “Partitioning” node,
implementing the stratified sampling option, with 80% of the initial dataset designated as
the training set and the remaining 20% composing the test set. Random splits were also
explored while maintaining consistent ratios for both training and test sets.

The model’s creation processes entailed utilizing the modeling set and the RF algo-
rithm, executed through a five-fold cross-validation procedure employing WEKA nodes.
This approach provides a robust and efficient means to evaluate a model’s performance by
partitioning the data into five subsets for testing and training, facilitating model selection
and generalization assessment [23].

The applicability domain was assessed through Euclidean distances, targeting com-
pounds in the test set with potentially unreliable predictions. A compound was considered
unreliable if its applicability domain value exceeded d + Zσ, where d represents the average
Euclidean distance, and σ is the standard deviation of the samples in the training set. These
samples exhibited Euclidean distance values lower than the average when compared to all
training set samples, with Z serving as an empirical cutoff value set at 0.5 by default [20,71].

To complement these findings and provide a more comprehensive visualization of the
chemical space within the datasets used for model construction, principal component anal-
ysis was conducted on the four datasets, encompassing both active and inactive structures
for both the training and test sets. This analysis was executed using Unscrambler X (The
Unscrambler® X v10.3 User Manual Version 1.0 CAMO SOFTWARE AS, Oslo, Norway).

The RF models were fine-tuned with 200 trees and a random number generator
seed of 1, and the Gini index was utilized as the split criterion for both the training and
cross-validation sets. These parameter choices were informed by a thorough evaluation
of relevant hyperparameters for the machine learning model. The “number of trees”
parameter was explored across a range from 100 to 1000, with 200 trees identified as the
optimal selection for achieving the best quality parameters. Subsequently, the Gini index
was meticulously chosen as the preferred split criterion (Table S4).

Performance analysis of the selected models encompassed an evaluation of both inter-
nal and external aspects, incorporating parameters such as sensitivity (true-positive rate),
specificity (true-negative rate), and accuracy (overall predictability), derived from the con-
fusion matrix. To offer a more comprehensive understanding of the model’s performance
beyond accuracy, the ROC curve was employed. Generated through an “ROC curve” node,
this curve relies on sensitivity and specificity. The AUC values derived from the ROC
curve range from 0.5, indicating an inability to distinguish between the two groups, to 1,
signifying perfect separation without overlap [72]. Additionally, the Matthews correlation
coefficient (MCC) was calculated, in which a value of 1 represents perfect prediction, 0
denotes random prediction, and -1 indicates complete disagreement between prediction
and observation [73].

Moreover, a performance evaluation of the RF model using AlvaDesc and VolSurf+
descriptors was conducted. This evaluation included precision, recall, and F1 score metrics
for both active and inactive sets.

3.3. Molecular Docking Calculations

Molecular docking calculations involved the hybrid model of LmDHFR-TS bound
to methotrexate (MTX) [33] and the three-dimensional structures of the cinnamic acid
derivatives. We conducted these calculations using Molegro 6.0.1 software.

www.knime.org
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To ensure consistency, we removed all water molecules from both the enzyme and
compound structures, and we prepared them to use the software’s default settings. The
MolDock scoring function was utilized, considering internal ES, internal H-bond, and
Sp2–Sp2 torsions as criteria for evaluating the ligands.

The molecular docking process was executed through 10 runs utilizing the MolDock
SE algorithm. It allowed for a maximum of 1500 interactions, maintained a population size
of 50, included up to 300 steps, employed a neighbor distance factor of 1.00, and returned
a maximum of 5 poses. To cover the enzyme’s ligand-binding site, we established a grid
with a 15 Å radius and 0.30 Å resolution [23,33].

Our results were categorized according to docking scores, reflecting the free energy or
affinity of the interactions. Each calculation was repeated three times to ensure reliability.
For comparison, we employed methotrexate (MTX) as a control.

Topological polar surface area (TPSA) maps were calculated using Spartan 14 for Win-
dows Spartan’14 (Wavefunction Inc., Irvine, CA, USA) [74]. Molecular lipophilic potential
(MLP) maps for ligands were calculated in Molinspiration (Molinspiration, Cheminformat-
ics free web services, https://www.molinspiration.com (accessed on 24 November 2023),
Slovensky Grob, Slovakia). For LmDHFR-TS, MLP and TPSA were calculated using
ChimeraX [75]. The visualization of two-dimensional residual interaction diagrams was
accomplished using Discovery Studio Visualizer v21.1.0.20298 (BIOVIA, Dassault Systèmes,
San Diego, CA, USA) [23,33].

3.4. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were conducted in YASARA Structure
v. 19.12.14 [76], employing the AMBER14 force field to model the enzyme and ligand–
enzyme systems. Before the simulations, each protein underwent hydrogen bond opti-
mization, and chloride (Cl−) and (Na+) ions were added to the model systems through
the transferable intermolecular potential 3-point (TIP3P) employing 0.997 g/L density for
solvating the simulation cell. Acid dissociation constant values (pKa) were calculated for
enzymes’ titratable amino acids with the H-bonding network and the side-chain placement
using a rotamer library (SCWRL) algorithm. Periodic boundary conditions were applied
to facilitate the simulations, involving a cell size set 10 Å larger than the protein’s size in
all instances.

An initial 5000-cycle energy minimization step was carried out using the steepest
gradient approach. MD simulations used the particle-mesh Ewald (PME) method to
account for long-range electrostatic interactions (8-Å cut-off distance). The simulations were
performed under physiological conditions at 298 ◦K, pH 7.4, and 0.9% NaCl. Temperature
control was maintained using a Berendsen thermostat while keeping the pressure constant.
A multiple-time step algorithm with a time step of 2.00 fs was employed. Finally, MD
simulations were run for 100 ns under constant pressure, and the Berendsen thermostat,
with snapshots saved at intervals of 100 ps, used the YASARA macro (md_run.mcr) for all
simulation phases. Subsequent analyses were also carried out using the default YASARA
macro scripts. The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA)
method was employed to calculate the binding free energies of apoenzyme and enzyme–
ligand complexes from the resulting MD trajectories using the g_mmpbsa tool in Gromacs
5.0.5 (open source, http://www.gromacs.org (accessed on 17 May 2023)) [77] on an Ubuntu
12.04 server, using NPT and periodic boundary conditions, as previously reported [33,78].

3.5. LmDHFR-TS and HsDHFR Enzymatic Inhibition Assays

Purification and kinetic characterization of the recombinant LmDHFR-TS protein were
performed according to the previously reported procedures [33,79,80], while HsDHFR
protein was obtained from the commercial assay kit (CS0340, Merck KGaA, Darmstadt,
Germany). Thus, the in vitro evaluation of the top-ranked selected compounds (237,
306, 308, hesperidin, rutin, and isovitexin 4′-O-glucoside) for inhibitory activity against
LmDHFR-TS and HsDHFR was conducted using a spectrophotometric assay under standard

https://www.molinspiration.com
http://www.gromacs.org
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DHFR conditions. These tested compounds were available from our in-house compound
library. Rutin, lithospermic acid, and rutin were commercially purchased (>98%, Merck
KGaA, Darmstadt, Germany). Isolappaol and diarctigenin were isolated from a commercial
A. lappa powdered root extract (Prescribed For Life, Fredericksburg, TX, USA) through
successive column chromatography, whose spectroscopic data was identical to those of
previous reports [81,82].

The assay was conducted with either LmDHFR-TS or HsDHFR (2.7 nM), bovine serum
albumin (BSA, 1 mg/mL), N-[tris(hydroxymethyl)-methyl]-2-aminoethanesulfonic acid (TES)
buffer (100 mM, pH 7.0, 150 mM β-mercaptoethanol, 2 mM ethylenediaminetetraacetic acid
(EDTA)), and nicotinamide adenine dinucleotide phosphate (NADPH, 100 µM), along with
varying concentrations of the test compounds (0.1–128 µM). The reaction was initiated by
adding the substrate (7,8-dihydrofolate (H2F), 20 µM) and monitored for 360 s at 340 nm,
measuring the oxidation of NADPH to NADP+. This allowed the determination of the initial
reaction rate (Vo) through linear regression analysis of the resulting absorbance profile.

All measurements were conducted in triplicate, and methotrexate (MTX) served as a
positive control [33]. The resulting Vo values were utilized to calculate the % inhibition,
expressed as 100 − (Ri/Rc × 100), where Ri is the Vo in the presence of the inhibitor, and
Rc is the Vo in the absence of inhibitors (1% DMSO v/v final concentration). % inhibi-
tion was measured for at least five concentrations (0.1–128 µM) for each test compound
(cinnamic acid derivatives and MTX), and concentration-response curves (% inhibition
vs. Log[inhibitor]) were constructed using non-linear regression in GraphPad Prism 7.0
(GraphPad, San Diego, CA, USA). [33].

3.6. Pharmacokinetic Properties Predictions

The ADMET parameters for Compounds 237, 306, and 308 were calculated using
ADMETlab 2.0, an integrated online platform for predicting ADMET properties [63]. Ad-
ditionally, drug toxicity predictions were conducted using OSIRIS DataWarrior v.5.2.1,
considering parameters such as mutagenicity, tumorigenicity, reproductive effects, and
irritability [64].

4. Conclusions

This study identified three cinnamic acid derivatives, lithospermic acid (237), di-
arctigenin (306), and isolappaol A (308), as potential inhibitors of LmDHFR-TS using a
combined virtual screening approach (structure/ligand-based). Two random forest models
were built using different molecular descriptors. Sensitivity and specificity measures were
obtained to evaluate the RF model’s performance. The models classified 116 (AlvaDesc)
and 93 compounds (VolSurf) as active, showing a tendency to minimize false negatives.

Molecular docking revealed that 24.5% of the 314 cinnamic acid derivatives had values
above 0.5, with 64 of them having a lower docking score than methotrexate, the reference
ligand. A consensus analysis combining the RF models with molecular docking identified
110 compounds with combined-approach probability values greater than 0.5. From them,
47% were classified as active through the in silico models, identifying some compounds
with potential leishmanicidal activity that a single approach had not previously highlighted.
Lithospermic acid (237), diarctigenin (306), and isolappaol A (308) were among the top-
ranked compounds, and their binding mode was evaluated using molecular dynamics.
Finally, in vitro assays using recombinant LmDHFR-TS validated the computational results,
with 237, 306, and 308 exhibiting significant activity against LmDHFR-TS. However, mod-
erate selective indices (SIs) were observed when assays were performed using HsDHFR.
Despite this finding, higher SI values than MTX were observed. Thus, these three tested
compounds emerged as an interesting alternative as hits against LmDHFR-TS; however,
specific assays against the parasitic forms of Leishmania major are required to extend a
clearer prospect for fighting this neglected tropical disease.
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3D Three-dimensional
ADMET Absorption, distribution, metabolism, excretion, and toxicity
APD Applicability domain
AUC Area under the ROC curve
BSA Bovine serum albumin
CL Cutaneous leishmaniasis
CYP Cytochrome
DHFR-TS Dihydrofolate reductase-thymidylate synthase
DNA Deoxyribonucleic acid
Eligand Ligand energy
EDTA Ethylenediaminetetraacetic acid
Ei Docking energy.
Emin Lowest energy value
FAK Focal adhesion kinase
Hs Homo sapiens
HTS High-throughput screening
IC50 Half-maximal inhibitory concentration
Lm Leishmania major
PLb Ligand-based probability
MAPK Mitogen-activated protein kinases
MCC Matthew’s correlation coefficient
MD Molecular dynamics
MLP Molecular lipophilicity potential
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MM-PBSA Molecular mechanics Poisson–Boltzmann surface area
MTX Methotrexate
NADPH Nicotinamide adenine dinucleotide phosphate
NTD Neglected tropical diseases
ns Nanoseconds
PCA Principal component analysis
pKa Acid dissociation constant values
PME Particle-mesh Ewald
PRC Precision-recall curve
PSB Structure-based probability
RF Random forest
RMSD Root-mean-square deviation
RMSF Root-mean-square fluctuation
ROC Receiver operating characteristic
RoG Radius of gyration
SASA Solvent-accessible surface area
SI Selective index
TES N-[tris(hydroxymethyl)-methyl]-2-aminoethanesulfonic acid
TNBC Triple-negative breast cancer
TPSA Topological polar surface area
Vo Initial reaction rate
VS Virtual screening
WHO World Health Organization
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