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Abstract: We present a study on the green synthesis of undoped and Er-doped ZnO compounds
using Mangifera indica gum (MI). A set of tests were conducted to assess the structure of the material.
The tests included X-ray diffraction, Raman, and Fourier-transform infrared spectroscopy. Optical
properties were studied using diffuse reflectance and photoluminescence. Morphological and textural
investigations were done using SEM images and N2 adsorption/desorption. Furthermore, photocat-
alytic tests were performed with methylene blue (MB), yellow eosin (EY), and the pharmaceutical
drug ibuprofen (IBU) under UV irradiation. The study demonstrated that replacing the stabilizing
agent with Mangifera indica gum is an effective method for obtaining ZnO nanoparticles. Additionally,
the energy gap of the nanoparticles exhibits a slight reduction in value. Photoluminescence studies
showed the presence of zinc vacancies and other defects in both samples. In the photocatalytic test,
the sample containing Er3+ exhibited a degradation of 99.7% for methylene blue, 81.2% for yellow
eosin, and 52.3% for ibuprofen over 120 min. In the presence of methyl alcohol, the degradation of MB
and EY dyes is 16.7% and 55.7%, respectively. This suggests that hydroxyl radicals are responsible for
the direct degradation of both dyes. In addition, after the second reuse, the degradation rate for MB
was 94.08%, and for EY, it was 82.35%. For the third reuse, the degradation rate for MB was 97.15%,
and for EY, it was 17%. These results indicate the significant potential of the new semiconductor in
environmental remediation applications from an ecological synthesis.

Keywords: doped-ZnO; erbium; rare earth doping; Mangifera indica gum; sol–gel synthesis; photocatalysis

1. Introduction

Zinc oxide (ZnO) is an n-type of semiconductor that has been extensively studied due
to its unique properties such as thermal and optical stability, adequate band gap, large
excitation binding energy, and affordable cost. These properties make it appropriate for use
in various applications such as solar cells, energy storage, optoelectronics and electronic
devices [1–7], and photocatalysis [8–11]. Additionally, ZnO nanoparticles are non-toxic and
biocompatible, making them suitable for various biological applications [12–14], which is
why they are receiving attention in different research fields.

For photocatalysis research, ZnO is commonly used in combination with other com-
pounds to form heterostructures that exhibit enhanced photocatalytic performance. In this
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sense, the doping process is a widely employed strategy to modify its properties [15–17].
Doping modifies the number of defects within the material, thereby retarding the recom-
bination of electron–hole pairs [18,19]. Notably, ZnO doped with rare earth cations has
emerged as an effective method for photocatalytic applications [20,21]. In this context, rare
earth ions, in addition to altering the defects concentration within the material, also func-
tion as electron traps, leading to increased hydroxyl radical production and consequently
an enhancement in the photocatalytic efficiency of ZnO [22,23].

Yu et al. [24] synthesized pure and Er-doped ZnO nanoparticles using the homoge-
neous precipitation method. The authors revealed that Er-doped ZnO samples significantly
enhanced methylene blue (MB) dye degradation. Pascariu et al. [25] obtained pure ZnO
nanostructures and doped with 1% of Er, Sm, and La cations using the electrospinning
method. The doped samples exhibited superior photocatalytic activity compared to pure
ZnO, with the sample doped with Sm showing the highest percentage of Congo red dye
removal, approximately 95.8%. Pure and Er-doped ZnO nanoparticles were prepared using
the solid-state reaction method [26]. In this study, the authors showed that increasing
the concentration of Erbium improved the degradation of methylene blue dye. Further-
more, the sample doped with 0.6 wt% of Er exhibited the highest degradation efficiency.
Chemingui et al. [27] synthesized pure and Er-doped ZnO nanoparticles by solid-state reac-
tion. The authors demonstrated that adding Er3+ ions increased visible emission, reduced
the energy gap, and improved the degradation of the textile dye RR180.

ZnO nanostructures are commonly synthesized through various methods, including
precipitation [24], solid-state reaction technique [27], and sol–gel [28]. However, these
traditional methods often involve the use of toxic reagents, leading to the generation of
toxic products [29]. In this context, the green route is an environmentally friendly approach
that minimizes the use of energy and toxic products by utilizing natural and renewable
materials during the synthesis process [30,31]. The use of extracts and polysaccharides has
been reported to synthesize various ZnO nanostructures [32–35]. In particular, Vinayagam
et al. [34] synthesized ZnO nanoparticles using an extract from Calliandra haematocephala
leaves. The resulting nanostructures exhibited significant photocatalytic activity, leading
to the degradation of up to 88% of methylene blue. Conversely, Araujo et al. [32,33]
demonstrated that Gum Arabic or Gum Karaya, when applied for the synthesis of ZnO
nanostructures, exhibited excellent photocatalytic properties. Recent reports have indicated
the potential of mango leaf extract in the fabrication of nanostructures [36,37]. Panwar
et al. [36] employed mango leaf extract to synthesize silver nanoparticles and observed that
the resulting nanostructures exhibited good photocatalytic activity. Kumawat et al. [37]
synthesized carbon quantum dots using mango leaf extract for application in bioimaging.

Motivated by these findings, this study aimed to use Mangifera indica gum as a sta-
bilizer agent for the synthesis of pure and Er-doped ZnO nanoparticles, providing an
environmentally adequate approach. Our work focuses on investigating the effect of
synthesis parameters and dopants on structural, morphological, and optical properties.
Furthermore, for the compound containing Er3+ cations, we present a study on methylene
blue, yellow eosin, and drug ibuprofen removal by photodegradation. This research is
significant because it employs green chemistry in the synthesis of doped nanoparticles for
environmental remediation applications aimed at removing toxic organic molecules in an
aqueous medium.

2. Results and Discussion

2.1. Influence of Er3+ Insertion on the Structural and Vibrational Properties of ZnO Nanoparticles

Figure 1a depicts the XRD patterns for the Zn1−xErxO compound. The diffraction
peaks corresponding to reflections of the (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0), (1 0 3),
(2 0 0), (1 1 2), (2 0 1), (0 0 4), and (2 0 2) planes, confirm the wurtzite hexagonal structure
of ZnO, by the reference code JCPDS No. 36-1451 [38]. In Figure 1a, the XRD pattern of
Mangifera indica gum (green line) confirms its amorphous nature. Moreover, the utilization
of Mangifera indica gum and the Er3+ ions did not lead to secondary phase formations or the
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introduction of undesired impurities into the ZnO crystal structure. Figure 1b provides a
closer view of the diffraction peaks associated with the (1 0 0), (0 0 2), and (1 0 1) planes. It is
noteworthy that the insertion of Er3+ ions into the ZnO structure resulted in a shift towards
larger angles. This phenomenon can be attributed to the difference in ionic radii between
Zn2+ (0.74 Å) and Er3+ (0.89 Å) [39]. Similar results were reported for rare earth-doped
ZnO [40].
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Figure 1. (a) XRD patterns for Mangifera indica gum, pure, and Er-doped ZnO; (b) closer view of the
diffraction peaks associated with the (1 0 0), (0 0 2), and (1 0 1) planes.

The lattice parameters a and c, the average crystallite size (D), and lattice strain (ε) were
calculated using the equations provided in Table 1. For further information regarding these
equations, please refer to References [41,42]. For the ZnO sample, the lattice parameters a
and c values were 3.246(7) Å and 5.202(1) Å, respectively. Meanwhile, for the Er-doped ZnO
sample, a and c were 3.244(6) Å and 5.198(2) Å, respectively. In this instance, the Er3+ ions
resulted in a decrease in the lattice parameters’ values. This outcome could be attributed
to Er3+ ions replacing Zn2+ ions within the ZnO hexagonal structure [11]. Because Er3+

and Zn2+ ions have different oxidation states, this substitution may lead to the creation of
defects, such as cations vacancies, aligning with the principle of electrical neutrality within
the ZnO crystal [43]. These vacancies may be responsible for the reduction in the lattice
parameters, a phenomenon previously reported in studies involving rare earth-doped ZnO
ceramic [44–46].

Table 1. Structural parameters calculated for pure and Er-doped ZnO samples.

Parameters Equation ZnO Er-ZnO

a (Å) 1
d2 =

4(h2 + hk + k2)
3a2 + l2

c2
3.246(7) 3.244(6)

c (Å) 1
d2 =

4(h2 + hk + k2)
3a2 + l2

c2
5.202(1) 5.198(2)

D (nm) βcosθ = sinθ + Kλ
D 110 115

ε × 10−4 (%) βcosθ = sinθ + Kλ
D 4.22(2) 2.97(5)

When comparing the average crystallite size values, it becomes evident that the dopant
insertion increased the average crystallite size. In the case of pure ZnO, D = 110 nm, whereas
for Er-doped ZnO, D = 115 nm. This outcome can be attributed to the greater ionic radius
of Er3+ (0.89 Å) if compared to the Zn2+ (0.74 Å). This behavior further supports the notion
that Er3+ ions replace Zn2+ ions within the ZnO structure. Habib et al. [47] demonstrated
a similar effect when incorporating Ce3+ ions into the ZnO structure, resulting in an
enlargement of the average crystallite size. Additionally, Padmavathy et al. [48] found
that the ZnO doped with Ag and La cations led to an increase in the average crystallite
size due to the larger ionic radii of the dopants. Finally, for pure ZnO and Er-doped ZnO
samples, the lattice strain was ε = 4.22(2) × 10−4 and 2.97(5) × 10−4, respectively. In this
scenario, since Er3+ ions possess an ionic radius larger than that of Zn2+ ions, it is plausible
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that interstitial Zn atoms are affected. Specifically, the Er3+ insertion into the substitutional
sites may induce the displacement of Zn atoms from their interstitial positions to the grain
boundaries, resulting in a reduction in the lattice strain [49].

Raman spectroscopy was employed to investigate how the Er3+ ions insertion can
impact the vibrational properties of Zn1−xErxO compound. In Figure 2a, the Raman spectra
of pure and Er-doped ZnO compounds exhibit similarity, with the presence of all the
vibrational modes corresponding to the ZnO hexagonal wurtzite structure, confirming the
results obtained through XRD analysis. The ELow

2 , 2ELow
2 , and EHigh

2 modes were observed
at approximately 99 cm−1, 211 cm−1, and 438 cm−1, respectively, for both samples. The
EHigh

2 mode is associated with the vibration of oxygen atoms, while the ELow
2 mode is linked

to the vibration of Zn atoms [50]. For the pure ZnO sample, the EHigh
2 − ELow

2 mode was
observed at approximately 333 cm−1, and the dopant insertion caused a shift for 331 cm−1.
This vibrational mode is associated with the second-order vibration of modes arising to
ELow

2 from EHigh
2 the scattering process [51]. Conversely, the A1(TO) mode was observed

at approximately 377 cm−1 for the ZnO sample and shifted to 380 cm−1 for the Er-doped
ZnO sample. This peak corresponds to the vibration of O and Zn atoms parallel to the
c-axis of the ZnO structure [52]. Nyarige et al. [53] demonstrated that displacements and
changes in the intensity of this peak may be linked to the number of defects present in the
microstructure of Er-doped ZnO. The displacement on the vibrational modes is connected
to structural defects like zinc and oxygen vacancies caused by the insertion of Er3+ ions
into the ZnO lattice. These findings are consistent with the XRD results, where changes in
the structural parameters were detected after the doping process.
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Figure 2. (a) Raman spectra and (b) FTIR spectra for Zn1−xErxO compound.

The FTIR technique was used to examine the functional groups present in the Zn1−xErxO
compound. Figure 2b displays the FTIR spectra for pure and Er-doped ZnO nanostruc-
tures, within the range of 4000 cm−1 to 400 cm−1, measured at room temperature. All the
vibrational modes observed in pure and Er-doped ZnO samples confirm the ZnO hexag-
onal wurtzite structure, thereby supporting the results obtained from XRD and Raman
spectroscopy [54].

The broad band observed at approximately 3450 cm−1 can be attributed to the normal
stretching vibration of the O–H function [55]. The peak at approximately 1630 cm−1 is
linked to C–O stretching vibration, while the region spanning from 1450 cm−1 to 820 cm−1

corresponds to the stretching of the CH–OH and C–H bonds and ionized carboxylic
OH [33,56]. The presence of polysaccharide structure is probably derived from the low
calcination temperature that did not eliminate the organic parts. Lastly, the band in
the range between 700 cm−1 and 400 cm−1 is associated with the vibration of the Zn–O
bonds [55,57]. The spectra observed for pure and Er-doped ZnO samples exhibit remarkable
similarity, mainly because the Er–O vibrations are situated at 569 and 550 cm−1, overlapping
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with the Zn–O vibrations [27]. Therefore, the FTIR results agree with the literature where
the presence of carboxylate residues is observed due to the polysaccharide used in the
synthesis and confirms the ZnO hexagonal phase formation [58].

2.2. Effect of Er3+ Cations Inclusion on the Optical Property of ZnO Structure

Photoluminescence (PL) spectroscopy is a powerful tool for observing the formation
of defects in nanomaterials. Typically, the PL spectrum for the ZnO structure exhibits
two emission bands. The first band is situated in the UV region and is linked to excitonic
recombination between the valence band and the conduction band. The second band
is found in the visible region and is attributed to multiple electronic transitions within
the material, yielding crucial insights into intrinsic and surface defects, such as oxygen
vacancies and zinc vacancies, present in the ZnO crystal structure [59,60]. Figure 3 displays
the room temperature PL spectra for the Zn1−xErxO compound with wavelength excitation
of 340 nm.
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Figure 3. Deconvoluted PL spectra for (a) pure ZnO system and (b) Er-doped ZnO sample. The insets
show the relative percentage of defects in each sample.

The broad emission peak observed in the visible band, featuring multiple electronic
transitions, is characteristic of the ZnO hexagonal wurtzite structure and results from
the overlap of red, orange, and yellow emissions [61,62]. This finding aligns with results
obtained through the XRD, Raman, and FTIR. To gain a deeper understanding of the defects
within the material, the PL spectra deconvolutions were performed using a Gaussian
function. Three types of defects were identified in the deconvoluted spectra: zinc vacancies
(VZn) [470–520 nm], neutral oxygen vacancies (Vo) [520–570 nm], and singly charged
oxygen vacancies (V+

o ) [570–620 nm] [54]. The percentages of these defect types within the
Zn1−xErxO compound are presented in the bar graph inset in Figure 3a,b.

The pure ZnO sample exhibited a higher concentration of zinc vacancies (VZn = 51.13%)
in comparison to the Er-doped ZnO sample (VZn = 46.94%). This variation in behavior
might be attributed to either the surface of the nanostructures or the grain boundaries, as
suggested by Galdámez-Martinez et al. [63]. For the ZnO sample, the percentages of Vo
and V+

o were 34.94% and 13.95%, respectively, while for the Er-doped ZnO sample, they
were Vo = 37.77% and V+

o = 15.29%. As noted, the insertion of Er3+ ions into the ZnO
structure led to an increase in the number of oxygen vacancies. This phenomenon can be
attributed to the substitution of divalent Zn2+ ions by trivalent Er3+ ions, confirming the
outcomes of the structural analysis. A similar outcome was reported by Punia et al. [61]
in their study on ZnO nanostructures doped with Gd3+. In summary, the analysis of PL
spectra allowed us to explore the impact of Er incorporation on the presence of defects
within ZnO structures. Modifications in the number of defects hold significant importance
for photocatalytic applications [64].
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Diffuse reflectance (DR) measurements were conducted to investigate the impact of
Er3+ inclusion on the reflectance and bandgap of the Zn1−xErxO compound. Figure 4
illustrates the DR spectra, measured at room temperature within a wavelength range of
200–800 nm, for pure and Er-doped ZnO. In both samples, the reflectance starts to exhibit
an increase at approximately 375 nm, displaying a pronounced reflective characteristic
beyond 450 nm. This behavior signifies that within this wavelength range, photons lack
the requisite energy to interact with the electrons or atoms of the material, resulting in
a robust reflective capacity [65]. The Er-doped ZnO sample displays a reduction in the
reflection band and a redshift. This behavior may be linked to the creation of faulty energy
levels within the energy bands around the Fermi level or oxygen deficiency [66]. A similar
phenomenon has been reported for ZnO doped with rare earth ions [67,68]. Moreover,
the Er-doped ZnO sample exhibits bands at approximately 487 nm, 521 nm, and 649 nm,
indicating transitions between the excited levels (4F5/2), (4F7/2), and (4F9/2), and the
fundamental level (4I15/2) of Er3+ [55,69]. The results obtained through DR provide further
evidence of the replacement of Zn2+ ions by Er3+ ions in the ZnO structure, corroborating
the findings obtained from the XRD, Raman, FTIR, and PL measurements.
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Figure 4. The diffuse reflectance spectra of Zn1−xErxO compound.

The optical band gap (Eg) was estimated using the Kubelka-Munk model [70] and the
Tauc equation [71]. Figure 5a presents Tauc’s plot for pure and Er-doped ZnO samples.
The band gap value for pure sample is Eg = 3.278 ± 0.001 eV, while for sample Er-doped
ZnO sample, it is Eg = 3.247 ± 0.002 eV. The band gap for the ZnO synthesized sample
(Eg = 3.278 ± 0.001 eV), is smaller than that of bulk ZnO (Eg = 3.37 eV) [72]. However, the
value obtained is in good agreement with nanostructures synthesized by different methods,
such as co-precipitation (Eg = 3.26 eV) [73], aerosol-assisted CVD (Eg = 3.24 eV) [74],
hydrothermal (Eg = 3.20 eV) [75], and sol–gel (Eg = 3.26 eV) [50].

Comparing the Eg values of the pure sample with the Er-doped ZnO sample, it is
evident that the Er3+ insertion promotes a reduction in the optical band gap. This variation
is primarily associated with the sp-d exchange interaction between the d electrons located in
the 4f orbital of the Er3+ ions, which replace the Zn2+ ions in the ZnO structure [76]. Toma
et al. [77] demonstrated that ZnO doped with different rare earth ions (Nd, Gd, Er) led to a
reduction in the optical gap due to charge transfer between the conduction band of ZnO
and the electrons (4f or 5d) of the rare earth ions. Another possible reason for band gap
reduction could be the formation of intermediate energy levels just below the conduction
band [62]. In our case, the higher oxygen vacancy concentration present for the Er-doped
ZnO sample may be influencing the reduction in the bandgap value. Costa-Silva et al. [66]
demonstrated that the dopant’s inclusion into the ZnO structure results in an imbalance of
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charges, leading to an increase in defect numbers, such as oxygen vacancies and interstitials
zinc, which act as electronic trap centers.
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Figure 5. (a) Tauc’s plot to estimate the Eg energy of the samples and (b) Urbach energy for pure and
Er-doped ZnO samples.

To comprehensively investigate the impact of Er3+ insertion on the electronic quality
of the Zn1−xErxO compound, we evaluated the Urbach energy (Eu) [78]. Figure 5b illus-
trates the Urbach energy values for pure and Er-doped ZnO samples. For ZnO sample,
Eu = 68.303 ± 0.001 meV, while for Er-doped ZnO sample, Eu = 93.999 ± 0.002 meV. The
dopant inclusion has led to an increase in the Urbach energy value. This effect could be
attributed to the higher oxygen vacancy defect concentration observed for the Er-doped
ZnO sample, which induces structural disorder and creates localized defect states within
the band gap, resulting in a redshift and an increase in the Eu value [66]. Furthermore, the
electronic states stemming from Er doping will contribute to the preexisting defect states,
increasing the Urbach energy [79,80].

2.3. Morphological and Textural Changes Induced by the Er3+ Ions Inclusion in the ZnO Structure

The morphology of the Zn1−xErxO compound was examined using SEM. Figure 6a,b
depict SEM images for pure and Er-doped ZnO samples, respectively. Both samples exhibit
a similar morphology characterized by the presence of particle agglomerates with varying
sizes and shapes. This result suggests that agglomerate formation may result from the
nucleation and growth of secondary particles originating from the agglomeration of larger
primary particles [81]. These findings are consistent with prior research on ZnO doped
with rare earth elements, as reported by other authors [82–85].

The chemical composition of undoped and Er-doped ZnO samples was examined
through energy dispersive spectroscopy (EDS) analysis. Figure 6c,d display the EDS spectra
for pure and Er-doped ZnO samples, respectively. In both samples, peaks corresponding to
the elements Zn and O were detected, confirming the findings obtained via XRD, Raman,
and FTIR. Additionally, the EDS spectrum for the Er-doped ZnO sample (Figure 6d) exhibits
signals associated with Er, suggesting the Er3+ inclusion into the ZnO structure.

EDS mapping was also conducted to validate the presence and distribution of elements
in the ZnO nanoparticles. The EDS maps for the pure ZnO sample are illustrated in
Figure 6e–g, whereas the Er-doped ZnO sample is presented in Figure 6h–k. The red and
cyan dots, which represent oxygen and zinc, respectively, were detected in both samples.
In Figure 6k, the yellow dots represent the Er element, providing straightforward evidence
of Er3+ cations insertion into the ZnO crystal structure. In summary, EDS analysis confirms
that pure and Er-doped ZnO nanoparticles were successfully synthesized using an eco-
friendly synthesis method.
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Figure 6. SEM images (a,b), EDS spectrum (c,d), and elemental maps (e–k) of the Zn1−xErxO compound.

Figure 7 shows the N2 adsorption/desorption results for the Zn1−xErxO compound.
To determine the textural properties of pure and Er-doped ZnO samples, the specific
surface area was calculated using the equation developed by Brunauer, Emmett, and Teller
(BET). Additionally, the Barrett, Joyner, and Halenda (BJH) method was used to obtain
the average diameter and volume of pores in the adsorption and desorption stages. The
shape of the isotherm changes at high relative pressures, and the materials exhibit type IV
isotherms, which are characteristic of mesoporous materials. In addition, the H3 hysteresis
loops are typical of aggregated materials with no uniform shape and size, as confirmed by
SEM images. The pore distribution curves show that the materials have large pores in the
mesopore ranges [86–88].
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Table 2 summarizes the textural properties, where it is observed that there is an
increase in the surface area after the dopant cations insertion. These results are favorable
for the photocatalytic application of materials because larger surface areas promote the
photocatalytic processes.

Table 2. Textural properties of ZnO and Er-doped ZnO a.

Sample Surface Area
(m2 g−1) b

Pore Volume
(m3 g−1) c

ZnO 9.227 2.032 × 10−2

Er-ZnO 12.4 2.756 × 10−2

a Nitrogen adsorption/desorption at 77 K. b Multi point BET method. c BJH method.

2.4. Photocatalytic Properties of the Zn0.97Er0.03O Compound
2.4.1. Degradation/Discoloration Tests

Photocatalytic experiments were conducted to investigate the effectiveness of
Er-doped ZnO nanoparticles in breaking down methylene blue and eosin yellow dyes, as
well as the ibuprofen drug in aqueous solution under UV light exposure. The maximum
absorption band for reference was found to be 664 nm, 520 nm, and 222 nm for MB, EY, and
IBU, respectively. Figure 8 shows the removal efficiency, which was determined by plotting
the C/C0 ratio against the irradiation time. During the photocatalysis test, the pollutant
solution was irradiated in the presence of the catalysts. In addition, it was attested that
after UV irradiation, the discoloration of MB was 99.77%, for EY was 81.23%, and for IBU,
the removal rate was 52.3% after 120 min. These findings indicate the material has excellent
photocatalytic activity in removing dyes and drugs from the solution. During the synthesis
of the compound, structural changes occurred, as identified by XRD, FTIR, Raman, and PL
characterizations. . . [42,89,90]. These changes have altered the properties of the material,
making it more efficient in photocatalytic action [11,40,54,66,81]. This improvement may
have been caused by the dopant insertion or by the synthesis with the replacement of the
stabilizing agent by gum.

To explain the kinetics of the photodegradation process in heterogeneous photocata-
lysts, the Langmuir–Hinshelwood model is used. This model describes how the reaction
rate is affected by the initial concentration of the reactants [91–93]. Once the system reaches
adsorption/desorption equilibrium, the reaction constant can be calculated using the
following Equation (1):

ln
C
C0

= Kapp × t (1)

where Kapp is the apparent rate constant [91,94] obtained by the linear slope of the ln C/C0
versus irradiation time (t) graph. A higher Kapp value indicates a greater efficiency in
photodegradation. For example, the degradation rate for MB, EY, and IBU corresponds
to 0.0305 min−1, 0.0132 min−1, and 0.0057 min−1, respectively. The values suggest that
the Er-doped ZnO nanoparticles are a better photocatalyst for MB than for EY and IBU
molecules. In addition, the results indicate that the Er-doped ZnO-based photocatalyst
promotes charge separation, improving photocatalytic efficiency.

The photocatalytic efficiency of semiconductor materials depends on various factors
such as particle size, morphology, surface area, crystalline structure, and the presence of
defects [16,95–97]. Apart from these factors, the recombination rate of photogenerated
charges can impact the photocatalytic process. This is where dopant and co-dopant come
in as alternatives to introduce structural modifications and create defects in the crystal
lattice of materials to increase the formation of active species and delay the recombination
of electron/hole pairs [17,21,98–101]. Table 3 presents a comparison of the photocatalytic
efficiency of doped ZnO-based semiconductors used in photocatalytic studies of dyes and
drugs, drawing on previous research studies.
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Table 3. Comparative studies using doped ZnO-based catalysts.

Catalyst Catalyst
Dosage (g L−1)

Target
Contaminant

Contaminant
Dosage

(mg L−1)

Radiation
Source Removal (%)

Time of
Reaction

(min)
Ref.

Dy-ZnO 0.25
Tetracycline

Malachite Green
Crystal Violet

20 500 W xenon
Lamp

74.90,
97.18,

98
120 [102]

Pr-ZnO 1.0 Methyl orange 20 500 W xenon
Lamp >90 90 [103]

La-ZnO 0.5 Methyl blue
Ciprofloxacin 10 160 W

UV Lamp
91.45
87.6 150 [19]

La-ZnO 0.16 Congo red 60 150 W
UV Lamp 97.63 240 [104]

Al-ZnO 0.25 Rhodamine B 4 11 W
Hg Lamp 81 120 [105]

Cu-ZnO 0.25
Methylene blue
Indigo Carmine

Rhodamine B
10 30 W

UV Lamp

91.3
92.2
90.1

75 [106]

Cu-ZnO 0.05 Methylene blue 10 Natural
sunlight 81 240 [107]

Gd-ZnO 0.33 Methylene blue 10 40 W
LED Lamp 93 90 [108]

Er-ZnO 0.5
Methyl blue
Eosin yellow

Ibuprofen

10
10
20

160 W
UV Lamp

99.77
81.23,
52.3

120 This work
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2.4.2. Scavengers and Recycling Tests

Several tests were conducted to determine the primary agent responsible for Er-ZnO
photocatalysis. Methyl alcohol, EDTA, and AgNO3 were added to the aqueous dye solution
to inhibit the action of specific agents. Methyl alcohol functions as a hydroxyl radical
inhibitor, EDTA serves as a hole inhibitor, and silver nitrate acts as an electron inhibitor.
In Figure 9a, it was observed that the photocatalysis, in the AgNO3 presence, resulted in
the complete degradation of MB and EY dyes during the photocatalytic process. This is
due to the interaction of silver nanoparticles that undergo photoreduction and adsorb onto
the semiconductor surface. They act as electron acceptors and favor the photocatalytic
process [109,110]. The EDTA addition in the dye solution resulted in a degradation of 72.5%
and 71.7% for MB and EY, respectively. This suggests that holes partially participate in the
oxidative decomposition of dyes because they are responsible for the formation of hydroxyl
radicals [111]. In the presence of methyl alcohol, the degradation of MB and EY dyes is
16.7% and 55.7%, respectively. Based on these results, it can be concluded that hydroxyl
radicals are the active agents responsible for the direct degradation of both dyes [33,56].
During the process of decolorization of the methylene blue, the aromatic rings break and
open due to the attack of •OH species. This leads to the decomposition of the phenothiazine
structures of these compounds [112]. In the yellow eosin dye degradation, •OH radicals
attack benzenic rings and initiate cleavage of C–O and C–C bonds, leading to the complete
fragmentation of organic molecules [113].

For a photocatalyst to be efficient, it must have good reuse performance [114]. There-
fore, the reuse capacity of Er-doped ZnO nanoparticles was studied over three consecutive
cycles (Figure 9b). The nanoparticles, synthesized by green synthesis, underwent three
photocatalytic tests, each lasting for a total of 24 h, which was the time required for the
collected material by centrifugation to dry and be ready for use. The same pattern, solution
dye concentration, and proportion of photocatalyst concentration per dye solution (0.5 g L−1)
were used in all three photocatalysis processes under UV radiation for 120 min.

The collected material was measured by mass for reuse, and the proportion of dye
solution was calculated to maintain the initial concentration. No extra material was added,
and the collected material was not washed. In the second reuse, the degradation rate for
MB was 94.08%, and for EY, it was 82.35%. In the third reuse, the degradation rate for MB
was 97.15%, and for EY, it was 17%. These results show that the material is highly stable
when used for decolorization of methylene blue dye. However, for yellow eosin dye, there
is a decrease in the ability to remove the dye observed only in the third reuse cycle. This
phenomenon may occur due to the formation and adsorption of by-products from eosin
photodegradation onto the catalyst surface, leading to decreased efficiency [115].
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2.4.3. Degradation/Discoloration Proposal Mechanism

The photodegradation mechanism of many organic molecules has been well-established
in the literature. When a photon of light hits the surface of a semiconductor, it provides
energy equal to or greater than the bandgap of the semiconductor. This energy causes an
electron from the valence band to move to the conduction band, leaving behind a hole [116].
These processes form electron–hole pairs (e−/h+), promoting oxidation/reduction reactions
on the semiconductor surface and facilitating the breakdown of organic molecules. During
the photocatalytic process, the trapped electron (e−) is captured by oxygen molecules (O2) to
generate superoxide anions (•O2

−). Simultaneously, the holes (h+) act to produce hydroxyl
radicals (•OH) due to the reaction with H2O on the surface of the material. The trapped electron
can then be directed towards oxygen, which boosts the production of superoxide radical
anion, acting as a robust reducing agent and resulting in the generation of hydrogen peroxide
(H2O2). Meanwhile, hydroxyl radicals act as an oxidizing agent [117–120]. Moreover,
the dopant (Er3+) serves the purpose of accepting the electron during the reaction, thus
preventing its recombination. A proposed mechanism of action for Er-doped ZnO sample
for decolorization of methylene blue and yellow eosin can be summarized by the following
Equations (2)–(9):

ErZnO + hν→ h+ (VB) + e− (CB) (2)

h+ + H2O(ads) → H+ + •OH(ads) (3)

e− + O2 → •O2
− (4)

•O2
−+ H+ → •OOH (5)

•OOH + H+ + e− → H2O2 (6)

Er3+ + e− →Er2+ (7)

Er2+ + O2 → Er3+ + •O2
− (8)

Pollutants + •OH → degradation/discoloration (9)

Regarding photocatalysis, there are two important factors to keep in mind. The
competition between the electron removed from the semiconductor’s surface and the re-
combination of electron/hole pairs is the first. This can be a significant challenge, but
doping can be a useful strategy to reduce charge recombination. This can help promote the
formation of radical species that enhance the catalytic potential of the photocatalyst [121].
The surface area is another relevant factor in the degradation mechanism because the semi-
conductor’s surface area affects the number of active sites available for reactions [86–88].
The Er-doped ZnO nanoparticles are nano-sized, which results in a greater surface area
than ZnO alone. Additionally, suitable crystal size and bad gap energy can enhance the
material’s photocatalytic activity [122]. This may be contributing to the discoloration of the
dye solutions.

3. Materials and Methods
3.1. Materials

Reagents of high purity, including zinc nitrate hexahydrate (Zn(NO3)2·6(H2O)) with a
purity of 99%, and erbium nitrate pentahydrate (Er(NO3)3·5H2O)) with a purity of 99.9%,
were obtained from the Sigma Aldrich Brazil (São Paulo, Brazil) for the synthesis of the
compounds. Additionally, distilled water, sodium hydroxide (NaOH), and ethanol were
used as solvents, pH control, and for washing, respectively.

3.2. Methods
3.2.1. Preparation of Mangifera indica Gum

To extract the gum, 20 g of exudate were ground in a mortar and mixed with 100 mL
of water. The mixture was stirred constantly on a magnetic stirrer for 14 h. The resulting
milky liquid was then filtered to separate it from the solid sticky part. The supernatant
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was filtered again to ensure that no unwanted material was present. At the start, the
pH of the supernatant was 5, so sodium hydroxide (NaOH) was added to neutralize it
to pH 7. Next, 99% absolute ethyl alcohol was added to the supernatant to precipitate
the gum. The gum formed slowly and appeared as small flakes. Once all the gum was
decanted, the solution was centrifuged to separate the gum from the alcohol. The gum was
then washed with alcohol three times and dried in an oven at 60 ◦C for 24 h to obtain the
natural polysaccharides.

3.2.2. Preparation of ZnO-Based Nanoparticles

For the ZnO sample synthesis (Figure 10), 0.5 g of gum was heated in 50 mL of distilled
water in a sand bath until the temperature reached 60 ◦C. Then, 5.9498 g of zinc nitrate
hexahydrate was added and stirred continuously for 6 h at an average temperature of 85 ◦C.
The solution obtained had a milky color. Afterward, the solution was dried in an oven at
100 ◦C for 24 h and then calcined at 400 ◦C for 2 h.

For the Er-doped ZnO nanoparticles synthesis (Figure 10), 0.5 g of gum was used,
which was previously heated in 50 mL of distilled water in a sand bath until reaching a
temperature of 60 ◦C. Then, 5.77 g of zinc nitrate hexahydrate and 0.26601 g of erbium
nitrate hexahydrate were added and kept under constant stirring for 6 h at an average
temperature of 85 ◦C. The solution obtained had a pinkish color. The solution went to the
oven to dry at a temperature of 100 ◦C for 24 h and was then calcined at a temperature of
400 ◦C for 2 h. At the end of the syntheses, two compounds were produced via the sol–gel
method at pH 9, the pure ZnO and Zn1−xErxO, (x = 0.03), stabilized with 0.5% of natural
Mangifera indica gum. Each compound was named ZnO for the MI-stabilized pure ZnO
compound and Er-ZnO for the MI-stabilized Er-doped ZnO compound.
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3.2.3. Characterization Techniques

The samples were characterized by X-ray diffraction (XRD), model D8 Advance
from Bruker. Fourier-transform infrared spectroscopy (FTIR) using an Agilent Technol-
ogy spectrometer, CARY 630 model. Raman spectra were obtained in a mono-grating
spectrometer Bruker Senterra. The diffuse reflectance (DR) spectra were measured in a
UV-VIS Spectrometer, Shimadzu, UV-2700. The photoluminescence spectra were obtained
using a Spectrofluorometer Horiba-JobinYvon Fluorolog-3 with a xenon lamp, 450 W. The
micrographics were analyzed in a SEM device, model TESCAN MIRA3; and textural
properties were investigated from N2 adsorption–desorption employing a Quanta chrome
Autosorb-iQ instrument.
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3.2.4. Photocatalytic Tests

To investigate the ability of materials to degrade dyes like methylene blue and eosin,
as well as the drug ibuprofen, a photochemical reactor made of borosilicate was utilized
and placed on top of a magnetic stirrer. The reactor was linked to a thermostatic water
bath that kept the solution at a controlled temperature, thus preventing heat from affecting
it. A commercial lamp (160 W (emission peak at 350–450 nm)) was placed on top of the
reactor (distance of 13 cm from the reactor system), and a Luxmeter was used to measure
the light intensity, which was found to be 700 lux. For each test, a concentration of 0.5 g L−1

of photocatalyst was added proportionally to 100 mL of MB, YE dye, or IBU drug with a
concentration of 10, 10, and 20 mg L−1, respectively. The process began with initial agitation
for 30 min in dark conditions to reach the adsorption–desorption equilibrium. After this, the
solution was irradiated with UV light for 120 min, while 1 mL of the solution was taken out
at specific intervals. The samples were centrifuged, and the supernatant was analyzed by
using a UV–Vis Spectrometer, Shimadzu, UV-2700. Maximum absorbance was monitored in
each solution, where MB = 664 nm, EY = 520 nm, and IBU = 222 nm. Photocatalytic efficiency
was calculated using the following expression: Degradation rate (%) = [(C0 − Ct)/C0] × 100.
Here, C0 represents the initial concentration of the solution, and Ct is the concentration in the
specific time up to 120 min period exposed to UV light irradiation.

The role of reactive species in the degradation of dyes was also evaluated by im-
plementing different inhibitor types, such as methyl alcohol, which inhibits the role of
OH; EDTA, which inhibits the action of h+, and AgNO3, which inhibits the role of e- in
heterogeneous photocatalysis. For this, 406 µL of methyl alcohol, 0.0765 g of EDTA, and
0.0086 g of AgNO3 were used, along with the same initial amount of photocatalyst and
model pollutant. The reuse capacity was also analyzed by performing three cycles. For all
reuses, the photocatalysis process was the same as the first photocatalysis, with the amount
of substrate balanced about the photocatalyst collected, since it is known that part of the
semiconductor is lost during photocatalysis.

4. Conclusions

Nanoparticles of pure and Er-doped ZnO were synthesized by the sol–gel method
using Mangifera indica gum as a stabilizing agent. The calculated parameters demonstrated
that the lattice parameters, the average crystallite size, lattice strain, and band gap are
influenced by the Er3+ dopant ions. Using a Gaussian function, the Urbach energy values
and the fit of the photoluminescence (PL) spectra confirmed that the compounds contain
high concentrations of VZn, Vo, and Vo

+ defects. The defects affected the behavior of free
electrons and created new energy levels, enhancing the photocatalytic potential of the
samples. The SEM images confirm the formation of randomly shaped particle clusters,
indicating that a natural polysaccharide can contribute to this type of structure. In addition,
the samples containing Er (Er-ZnO) showed high efficiency in the photocatalytic test for
discoloring MB (99.77%), EY (81.23%), and removing IBU (52.3%) after 120 min. These
results indicate that the material has exceptional photocatalytic activity to eliminate dyes
and drugs from the solution. Based on the inhibitor test, it can be concluded that hydroxyl
radicals are the active agents responsible for the direct degradation of the MB and EY
dyes. During the recycling test, it was observed that the Er-doped ZnO sample caused a
degradation rate of 94.08% for MB and 82.35% for EY. After the third reuse, the degradation
rate for MB was found to be 97.15%, while for EY it was only 17%. These results indicate
that the material is highly stable when used for decolorizing methylene blue dye for three
consecutive cycles.
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