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Abstract: Streptococcus mutans, the primary cause of dental caries, relies on its ability to create and
sustain a biofilm (dental plaque) for survival and pathogenicity in the oral cavity. This study was
focused on the antimicrobial biofilm formation control and biofilm dispersal potential of Coumaric
acid (CA) against Streptococcus mutans on the dentin surface. The biofilm was analyzed by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay, microtiter plate
assay, production of extracellular polymeric substances (EPSs), florescence microscopy (surface
coverage and biomass µm2) and three-dimensional (3D) surface plots. It was observed that CA
at 0.01 mg/mL reduced bacterial growth by 5.51%, whereases at 1 mg/mL, a significant (p < 0.05)
reduction (98.37%) was observed. However, at 1 mg/mL of CA, a 95.48% biofilm formation reduction
was achieved, while a 73.45% biofilm dispersal (after 24 h. treatment) was achieved against the
preformed biofilm. The MTT assay showed that at 1 mg/mL of CA, the viability of bacteria in the
biofilm was markedly (p < 0.05) reduced to 73.44%. Moreover, polysaccharide (EPS) was reduced
to 24.80 µg/mL and protein (EPS) to 41.47 µg/mL. ImageJ software (version 1.54 g) was used to
process florescence images, and it was observed that the biofilm mass was reduced to 213 (µm2);
the surface coverage was reduced to 0.079%. Furthermore, the 3D surface plots showed that the
untreated biofilm was highly dense, with more fibril-like projections. Additionally, molecular docking
predicted a possible interaction pattern of CA (ligand) with the receptor Competence Stimulating
Peptide (UA159sp, PDB ID: 2I2J). Our findings suggest that CA has antibacterial and biofilm control
efficacy against S. mutans associated with dental plaque under tested conditions.

Keywords: Streptococcus mutans; dental plaque; biofilm; coumaric acid; EPS; 3D plots; molecular interaction

1. Introduction

Dental plaque is a soft, adhesive layer that develops on the outer surface of teeth. Den-
tal plaque is also stated as a biofilm, which chiefly comprises bacteria and their byproducts,
as well as water and the extracellular polymeric substances (EPS) produced. A biofilm is
the result of a series of sequential processes, such as the formation of conditioning layer,
initial attachment of microbes and plaque growth [1].

Dental plaque is a major oral disease of the teeth, which is caused due to various food
materials, microbes, and their products [2,3]. In dental plaque, different microbes encase
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themselves in extracellular matrix [4]. Streptococcus mutans is mostly present in all dental
plaque samples [3]. However, it is now known that the dental plaque consists of different
and wide ranges of microbial species [5].

S. mutans regulates its biofilm through a density-dependent quorum sensing (QS)
system, chiefly involving the Competence Stimulating Peptide (CSP) and the ComD/ComE
two-component signal transduction system, constituting a significant aspect of its behavior.
In addition to biofilm formation, the CSP-mediated QS system in S. mutans also plays a role
in controlling acidogenicity, genetic transformation and bacteriocin production. Particularly,
these traits are most effectively expressed in cells originating from a biofilm. Therefore,
efforts are underway to target the S. mutans’ QS system to diminish biofilm formation
and/or virulence, with the aim of developing therapeutic or preventive strategies against
dental caries [6].

Bacteria in dental plaques have shown resistance to antimicrobial agents present
in toothpaste and mouthwash. About 30% of chlorhexidine remains in the mouth from
chlorhexidine doses and reveals good effectivity. It was found that chlorhexidine has
strong microbial control potential against different microorganisms [7]. However, many
microorganisms have shown resistance against chlorhexidine, and various factors have a
particular impact on the resistance of biofilms [8]. It is known that many chemicals have
no strong microbial biofilm control potential, and many microbes have shown resistance
against different chemicals. Bacterial biofilms provide resistance to antibiotics and increased
invasiveness capabilities. Several efforts have been undertaken to find new classes of small
molecules that possess biofilm inhibitory activity against clinically relevant Gram-positive
and Gram-negative pathogens [9,10].

Recently, many plant-based compounds have been employed to control dental plaque
biofilms. These compounds have many benefits compared to synthetic chemicals [11].
Using plant extracts and compounds in dentistry provides an affordable option for many
patients globally, addressing the global inequality in preventive dental care and the accessi-
bility issues with fluoride for preventing dental caries [12]. Plant extracts with antimicrobial
properties serve as broad-spectrum antibiotics, minimizing resistance development, inhibit-
ing microbial growth, reducing virulence factors and exhibiting antibiofilm activity [13].

Various plant products were tested to control microbial biofilms [3,14,15]. Among
plant-based compounds, coumaric acid (CA) is one of the compounds; it is derivative of
cinnamic acid. CA is found in plants, such as beans, peanuts, basil and tomatoes. CA was
found to have anti-bacterial potential against Listeria monocytogenes [16]. In a previous study,
CA showed antimicrobial potential [17]. In another study, by Lou et al. [18], it was observed
that p-coumaric acid effectively inhibited the growth of all test bacterial pathogens, and
the MIC values ranged from 10 to 80 µg/mL CA. Furthermore, it was observed that CA at
0.2 mg/mL showed active growth inhibition against Alicyclobacillus acidoterrestris [19].

Dental plaque is difficult to control due to the resilience and rapid growth of certain
microbes. It is known that chemical agents do not seem to have a clear-cut ability to
efficiently mitigate microbial biofilms associated with dental plaque; in fact, these agents
have shown resistance against dental plaque bacteria. Also, the use of such chemicals is
linked with numerous adverse effects, such as teeth discoloration, gastrointestinal problems
like diarrhea and the possibility to induce vomiting. Studies exhibited that many plants
can produce compounds, which have the ability to control microbial biofilms [20].

This study was focused on the antimicrobial, biofilm formation control and biofilm
dispersal potential of coumaric acid (CA) against Streptococcus mutans associated with
dental plaque on the dentin surface. The biofilm was analyzed using an MTT viability assay,
microtiter plate assay, production of extracellular polymeric substances (EPS), florescence
microscopy (surface coverage and biomass µm2) and three-dimensional (3D) surface plots.
Additionally, molecular docking was performed for possible interaction patterns of CA
with Competence Stimulating Peptide (UA159sp, PDB ID: 2I2J) of S. mutans.
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2. Results and Discussion
2.1. The Effect of CA on the Plonktonic Growth of Streptococcus mutans

It was revealed that using a small quantity of coumaric acid (CA) had only a slight
impact on reducing bacterial growth. However, as CA was increased, more significant
effects were observed on growth reduction (Figure 1). At 0.01 mg/mL of CA, we saw
a 5.51% reduction and, at 0.2 mg/L, a 7.20% reduction. The effect became even more
noticeable at higher amounts: 87.25% reduction at 0.4 mg/mL, 93.95% at 0.5 mg/mL and
a remarkable 98.37% decrease at 1 mg/mL against Streptococcus mutans. These results
highlight the potential of CA as a promising agent for bacterial growth reduction.
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Figure 1. Influence of various amounts of CA on bacterial growth. The statistical tests used in
these analyses were one-way ANNOVA followed by Tukey’s Multiple Comparisons Test. * p ≤ 0.05,
**** p ≤ 0.0001.

2.2. Effect of CA on Control of Biofilm Formation against Streptococcus mutans

The results exhibited a clear and dose-dependent association between CA concen-
tration and the mitigation of biofilm formation (Figure 2). At the lowest amount of CA
tested (0.01 mg/mL), we observed a 0.87% reduction in biofilm formation. However, the
impact became more evident as we raised the CA concentration. At 0.4 mg/mL, we noted
a 7.10% reduction, and, at 0.5 mg/mL, an even more considerable reduction of 23.31% was
observed. This trend continued as the concentration of CA increased to 0.1 mg/mL (40.05%
reduction), 0.2 mg/mL (65.28% reduction) and 0.4 mg/mL (77.75% reduction). The efficacy
of CA as a biofilm control agent remained consistent and increased significantly as we
further increased the concentration to 0.5 mg/mL, where we achieved an 84.04% reduction.
Notably, at 0.6 mg/mL, the results were particularly noteworthy, with an 86.35% reduction
in biofilm formation. The effect continued to rise at 0.8 mg/mL, resulting in a significant
91.00% reduction. The most striking outcome was observed at the highest concentration
of 1 mg/mL, where a 95.48% (p < 0.05) reduction in the biofilm formation was achieved.
These outputs indicated that higher CA amounts are more effective in mitigating biofilm
formation, highlighting the efficacy of CA as a potent agent for mitigating biofilms. In one
of the previous studies, CA was used to control the Salmonella enteritidis biofilm. They used
a small concentration of CA (0.5 mg/mL) to control biofilm formation [17].
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Figure 2. Influence of various amounts of CA on biofilm of Streptococcus mutans. The statistical tests
used in these analyses were one-way ANNOVA followed by Tukey’s Multiple Comparisons Test.
**** p ≤ 0.0001.

2.3. Influence of CA on Bacterial Cell Viability

Our research results using the MTT assay to evaluate the effect of various amounts of
CA on biofilm-associated bacteria revealed the antibacterial efficacy of CA. It was exhibited
that CA can reduce bacterial viability within biofilms, marking a significant reduction in
viable cells. This method not only exhibits a method for evaluating the antibacterial activity
of CA against Streptococcus mutans biofilms but also features its substantial potential in
biofilm control. At lower concentrations of CA (0.05–0.1 mg/mL), the reduction in viability
was not significant (ns). Our results in Figure 3 exhibit that at 1 mg/mL, the bacterial
viability in biofilms was reduced by 73.44%. These results hold great promise for the
development of CA-based treatments aimed at combatting biofilm-associated bacterial
infections and contribute to the broader understanding of biofilm control strategies. The
MTT assay is used for bacterial cell viability. However, the MTT assay must be confirmed
in some situations for cell viability in biofilms [21]. Previously, this technique has been
used for viability in biofilms [22,23].

2.4. Influence of CA on Eradication of Preformed Biofilm of Streptococcus mutans

To assess the impact of CA on pre-formed biofilms of Streptococcus mutans, we exposed
the biofilm to various concentrations of CA and different exposure times (2 min, 5 min
and 24 h). The results revealed that CA amounts ranging from 0.1 to 1 mg/mL had the
ability to dislodge the 24 h old Streptococcus mutans biofilm (Figure 4). Most noteworthy,
however, was biofilm dispersal (73.45%) at 1 mg/mL after 24 h of treatment. Also, as
the amount of CA increased from 0.1 to 1 mg/mL, we noted a gradual dispersal of the
pre-established bacterial biofilm. The ability to eradicate pre-formed biofilms is particularly
notable at higher concentration (1 mg/mL) and could have practical implications for
combating biofilm-related problems in various settings, such as healthcare and dentistry.
Further research in this direction may unveil the full extent of CA’s effectiveness in biofilm
eradication and it must be validated using various methods.
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Figure 4. Potential of coumaric acid on the dispersion of S. mutans biofilm that had been pre-formed
and treated at various time intervals.

2.5. Effect on EPS (Polysaccharide and Protein)

Coumaric acid (CA) was evaluated at varying amounts, ranging from 0.1 to 1 mg/mL,
to determine its efficacy in eliminating EPS, which includes polysaccharides and proteins.
It was exhibited that (Figure 5), at 1 mg/mL of CA, the effects were more potent on the
reduction in extracellular polysaccharides produced by S. mutans. In the control, there
was 223.82 µg/mL of polysaccharide on the dentin surface, whereas the application of
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1 mg/mL of CA reduced this amount to 24.80 µg/mL. The effect of CA on EPS elimina-
tion, specifically with regard to proteins, was also explored at varying concentrations. It
was observed that 189.31 µg/mL of protein was observed in the control. However, at
higher concentrations (1 mg/mL), CA significantly lowered the protein concentration to
21.47 µg/mL (Figure 6). Xu et al. [17] demonstrated the effect of CA to reduce extracellular
polymeric substances (EPSs). They observed that CA has the potential to mitigate EPS. This
reduction in extracellular proteins and polysaccharides suggested that CA has the efficacy
to control the extracellular matrix of S. mutans, which is vital for its adhesion.
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2.6. Microscopy of a Treated Biofilm

To provide additional validation of our results, we conducted a closer evaluation
of biofilm control using both light and fluorescence microscopes. Figure 7a represents a
microscopic image of the control (untreated) biofilm. In Figure 7e, it is observed that at
1 mg/mL of CA, less biofilm was present compared to the other tested concentrations.
Al-Juboori and Yusaf [24] studied and demonstrated that light microscopy is one of the
simplest techniques for the analysis of biofilms. ImageJ software (version 1.54 g) was used
to process florescence images (Figure 8a,b), and it was observed that the biofilm mass
was 213 µm2 at 1 mg/mL of CA, and the percent surface coverage was 0.079%, while for
the control biofilm, the mass was 254,113 µm2 and percent surface coverage was 93.80%.
Furthermore, the 3D surface plots (Figure 8c–f) showed that the biofilm treated with CA
displayed more wide-spread, less dense and less fibril-like projections compared to the non-
treated biofilm. The results suggest that CA can mitigate the biofilm caused by S. mutans,
especially at higher amounts. The decrease in biofilm mass and surface coverage along
with the structural difference in the treated and control samples demonstrated the potential
of CA as a promising agent for biofilm mitigation. CA demonstrated antibiofilm activity
against cariogenic bacteria. S. mutans suggests potential applications in the development of
antibiofilm dental formulas for therapeutic use or oral hygiene practices. Future studies
should also explore the toxicity of CA to ensure its safety in various applications.
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(a) florescence image of control non-treated biofilm, (b) florescence image of treated biofilm using
1 mg/mL CA, (c) surface plot of control biofilm, (d) surface plot of treated biofilm, (e) 3D surface
interactive plot of control biofilm, (f) 3D surface interactive plot of treated biofilm.
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2.7. Interaction of CA with Structure of S. mutans 2I2J

Several studies applied molecular docking tools to confirm the activity of natural
compounds, discover new ones or design pharmacological compounds for the treatment of
numerous diseases [25,26]. The results showed that the ligand (coumaric acid) studied has a
comparable position and orientation inside the binding site of the Competence Stimulating
Peptide (CSP) UA159sp (PDB ID: 2I2J) (Figure 9a). Furthermore, the affinity of any small
molecule can be thought of as a unique instrument in the realm of drug design. The
affinity of organic molecules and the free energy of binding have a relationship. This
relationship can help anticipate and interpret the activity of organic chemicals towards
given target proteins. The selected compound (CA) had favorable binding free energies
value in negative Kcal/mol (E score), as indicated in Table 1. The proposed binding mode
of coumaric acid revealed an affinity value of −4.29 towards the 2I2J peptide. The obtained
results of molecular docking interactions (Figure 9b) reflected a low energy score with
2I2J. In the study of the binding properties of coumaric acid, N 1, N 21, O 4, O 24 atoms
form hydrogen bond contact with LEU4, SER5, ASN12 and ARG13 amino acid residues of
Streptococcus mutans 2i2J protein, respectively. These results suggest that CSP 2i2J could be
one of the targets for CA to mitigate S. mutans biofilm formation.
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Table 1. Interaction of CA with structure of S. mutans 2I2J.

Ligand Receptor Interaction Distance E (kcal/mol)

N 1 LEU 4 H-donar 2.75 −6.3
N 21 SER 5 H-donar 2.76 −6.2
O 4 ASN 12 H-acceptor 2.87 −6.1

O 24 ARG 13 H-Acceptor 2.80 −5.3

The toxicity prediction revealed that CA is non-toxic regarding its tumorigenic, irritant
and mutagenic effects. However, risk alerts via Property Explorer Applet are not intended
to serve as entirely reliable toxicity predictions, and the absence of risk alerts does not imply
that a substance is entirely free of any toxic effects. In a study performed by Devi et al. [27],
CA demonstrated safety in acute and sub-acute toxicity tests on mice, showing no adverse
effects on vital organs at the tested doses, indicating its potential as a safe agent.
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3. Materials and Methods
3.1. Microbe, Chemicals and Accessories

Formerly isolated and identified dental plaque bacteria, Streptococcus mutans, were
used for growth and biofilm studies. All chemicals were purchased from Sigma Aldrich,
Deajunge, Republic of Korea, Alfa Aesar (Ward Hill, MA, USA). Glassware and accessories
were purchased from MUSAJI Adam and Sons (Abbottabad, Pakistan), and polystyrene
microplates (24 wells), glass slides and dentin were purchased from local suppliers.

3.2. Cultivation of Bacteria

For cultivation of Streptococcus mutans, Nutrient broth (NB) was utilized. Bacteria were
inoculated in sterilized NB under aseptic conditions. Then, culture was incubated at 37 ◦C
with shaking at 120 rpm for a duration of 24 h [5,28].

3.3. Bacterial Growth Assays

The first round of testing aimed to evaluate the influence of coumaric acid (CA) on
planktonic bacterial growth. Bacterial inoculation was carried out in NB, and the bacterial
samples were cultured at 37 ◦C with shaking at 200 rpm for a duration of 24 h. After
that, microtiter plates were inoculated with the bacterial cultures at optical density of
0.001 (≈to 1.12 × 106 CFU/mL). Next, 50 µL of CA (with concentrations ranging from
0.01 to 1 mg/mL) was added into each well from stocks of CA. After that, NB was added
in each well. The bacterial microtiter plates were then incubated at 37 ◦C in a shaking
incubator at 120 rpm for 24 h. Equivalent to the treated group, a control group was included
in the experiment. The main difference was that, in the control group, an equivalent volume
of distilled water (sterile) was used instead of CA. The absorbance of the bacterial cells
was quantified at 600 nm using spectrophotometer. Each experiment was conducted in
triplicate [29].

3.4. Biofilm Formation Control in Microtiter Plate

Fifty microliters of the CA solution from various stocks of CA was added to each
well of a (24-well) microtiter plate [30] to achieve desired CA concentrations in the wells
ranging from 0.01 to 1 mg/mL. Subsequently, 20 µL of bacterial culture was added to
each well, and 930 µL of NB was added to each well to achieve a total volume of 1 mL.
Afterward, plates were incubated for 24 h in a shaking incubator set at 120 rpm and 37 ◦C.
After incubation, media were removed from each well, and plates were carefully rinsed
with sterilized distilled water to minimize any loss of the biofilm. Plates were air-dried.
After this, 1 mL of 99.9% ethanol was added, and plates were kept at room temperature for
15 min. Then, ethanol was removed, and the plates were air-dried. Each well was stained
with 1 mL of crystal violet solution (0.1% w/v), and the plates were incubated for 20 min at
room temperature. After staining, plates were washed to remove excess dye, and plates
were air-dried. The dye bound to the biofilm was re-dissolved in 1 mL glacial acetic acid
solution (33% v/v). Then, absorbance of the crystal violet dye was quantified at 595 nm
using spectrophotometer [31]. Each experiment was performed in triplicate.

3.5. MTT Biofilm Viability Assay

The MTT test, a widely recognized viability assessment test, was employed for check-
ing the influence of CA on Streptococcus mutans cell viability in biofilms. In the biofilm
formation assay, various amounts of CA were introduced into each well, as outlined in
Section 3.4. After the biofilm formation, the biofilms were gently rinsed with sterile distilled
water. Following rinsing, 100 µL of MTT (5 mg/mL stock) and 900 µL of phosphate-buffered
saline (PBS) were added to each well of the microtiter plates, and plates were incubated
at 37 ◦C for 3 h. The reduction reaction of MTT led to the formation of formazan crystals,
which were then dissolved in dimethyl sulfoxide (DMSO). The absorbance of the samples
was recorded at 570 nm via spectrophotometer.
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3.6. Biofilm Eradication Studies in Polystyrene Plates

We also evaluated the influence of varying CA amounts on the eradication of pre-
existing biofilms. For this purpose, biofilms were cultured in NB in 24-well microtiter plates
for 24 h at 37 ◦C under shaking conditions at 120 rpm. Subsequently, the biofilms were
gently washed with sterilized PBS. Various amounts of CA (ranging from 0.1 to 1 mg/mL)
were incorporated into each well of the plate. Concurrently, a control group without CA
was exposed to the same testing conditions. After that, plates were incubated for 2 min,
5 min and 24 h in an incubator on shaker, keeping a speed of 100 rpm at 37 ◦C [29,32].
Biofilms were analyzed via crystal violet assay, as mentioned in Section 3.4.

3.7. Biofilm Assays on Glass Slides Coated with Dentin

Bacteria were cultivated in NB, and agitation was performed at 120 rpm in a shaking
incubator. The S. mutans cells on the plates were properly diluted to achieve the needed
concentrations (0.001 OD). The bacterial cultures were then transferred to fifty-milliliter
tubes, and tubes were vortexed. Then, slides were kept in 50 mL falcon tubes. Desired
concentrations of CA were added to each tube from different stock cultures to achieve
desired CA concentrations from 0.1 to 1 mg/mL. After that, tubes were incubated at 37 ◦C
under shaking conditions for 24 h at 120 rpm. In the control tube, CA was replaced with
sterilized distilled water [32]. Slides were subjected to microscopy and EPS analysis.

3.8. Extraction of EPS

EPS attached to the dentin surfaces was extracted. For this, a cell scraper was employed
to remove the biofilm from the dentin surface, after which extracted mass was vortexed
and dissolved in 20 mL of PBS in 50 mL falcon tubes. The biofilm samples were vortexed
for five minutes within the same falcon tube. After this step, the samples were centrifuged
at 5000 rpm for twenty minutes. After centrifugation, the supernatant, which contained the
soluble EPS, was shifted to new tube, while the residual pellet was specified as the crude
biomass [33].

3.9. Polysaccharides and Protein Quantification

One milliliter of the EPS solution was gently added into a fifteen-milliliter tube, which
was then labeled. After this, 0.5 mL of a 5% phenol solution was added to the tube. Then,
2.5 mL of concentrated H2SO4 was added to the mixture. Complete mixing was carried
out, and the blend kept incubating for 10 min at room temperature. Then, 1 mL of the
sample was taken in cuvette, and the absorbance was assessed using a spectrophotometer at
492 nm [34]. For quantification of extracellular proteins, Bradford assay was performed [35].

3.10. Microscopy of a Treated Biofilm

Initially, simple microscopy was employed for visualization of biofilm samples. For
this, 1 mL of crystal violet solution (0.1%) was added on each slide, and it was incubated for
15 min at room temperature. After staining, the slides were gently washed with sterilized
water. Slides were visualized under light microscope using objective lens of 40× [36], and
images were captured using digital camera.

Slides containing biofilm samples were also subjected to fluorescence microscopy.
Briefly, samples were washed with saline water and stained with fluorescein isothiocyanate
(FITC) for 20 min in the dark. After staining, the unbound stain was removed with sterilized
water. Stained samples were viewed, and images were obtained at 530 nm emission and
488 nm excitation. Images were processed for surface coverage (%) and biofilm biomass
(µm2) using ImageJ Software (version 1.54 g) [37]. Then, 3D surface plots were constructed
from the green florescence intensity of the samples via ImageJ 3D Surface plots plugin.

3.11. Experimental Methods of Molecular Docking Interaction and Toxicity Analysis

Molecular operating environment (MOE) software (2015.10) was used to conduct
molecular docking investigations on possible interaction pattern of CA with Competence
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Stimulating Peptide (UA159sp, PDB ID: 2I2J) of S. mutans. Protein (2I2J) 3D structure in
PDB format was downloaded from the Protein Data Bank (PDB), and structure of CA (CID
637542) was downloaded from PubChem. At first, the protein file was prepped using the
built-in function. Then, water molecules and hetero molecules were manually deleted
from the downloaded proteins, and polar hydrogen molecules were added for interaction.
Then, the best sites for interaction were found by computing, the largest site was selected
for interaction and the docking site was specified as dummy atoms. Two poses were
selected for docking. The library of compound was browsed, CA was loaded and prepped
into MOE database file and dock calculations were run automatically. At the end of the
docking processes, the obtained poses were carefully studied, and the ones having the best
ligand–protein interaction were selected. Furthermore, we predicted possible toxicity of
CA via OSRIRIS Property Explorer Applet [38].

3.12. Statistical Analysis

Each test was performed three times. Microsoft Excel (Office 365) was used to de-
termine the average and standard error (S.E.). S.E. was represented as error bars in the
graphs using Microsoft Excel and GraphPad Prism (9.5.1). To evaluate the significance of
the results, a two-tailed Student’s t-test was employed, with the significance level set at
p < 0.05. The performance of this statistical test was carried out using Microsoft Excel.

4. Conclusions

CA exhibited its efficacy in combating the biofilm formed by Streptococcus mutans
associated with dental plaque. Especially, at higher amounts, CA displayed a noticeable
inhibition in planktonic bacterial growth. Furthermore, CA exhibited the ability to prevent
the formation of biofilms on dentin surfaces. The MTT assay further showed that CA
could reduce the viability of bacteria within biofilms, with an obvious decrease in cell
viability as the amount of CA increased. CA also demonstrated its efficacy for dispersing
or eradicating pre-existing biofilms on dentin surfaces, featuring its biofilm-dispersing
abilities. Likewise, biomass analysis, as well as light and fluorescence microscopy, provided
additional insights for confirmation of CA’s biofilm-mitigating properties. The reduction
in extracellular polymeric substances (EPSs), involving proteins and polysaccharides, on
dentin surfaces was associated to the mitigation of biofilms by CA. The analysis of the
untreated biofilm exhibited a dense structure with abundant fibril-like projections, as
depicted in 3D surface plots. Moreover, molecular docking predicted a possible interaction
pattern between CA and the Competence Stimulating Peptide (2I2J). This dual approach,
combining microscopic observations with molecular insights, increased our understanding
of biofilm complexity, and it provides vital information for future research.
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Abbreviations

CA Coumaric acid
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
EPS Extracellular Polymeric Substances
CSP Competence Stimulating Peptide
QS Quorum Sensing
MIC Minimum Inhibitory Concentration
OD Optical Density
LEU Leucine
SER Serine
ASN Asparagine
ARG Arginine
NB Nutrient Broth
PBS Phosphate Buffer Saline
DMSO Dimethyl Sulfoxide
FITC Fluorescein Isothiocyanate
PDB Protein Data Bank
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