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Abstract: The Photophysical properties, such as fluorescence quenching, and photoexcitation dy-
namics of bimolecular non-covalent systems consisting of cationic poly[(9,9-di(3,3′-N,N′-trimethyl-
ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and
anionic graphene carboxylate (GC) have been discovered for the first time via steady-state and
time-resolved femtosecond transient absorption (TA) spectroscopy with broadband capabilities. The
steady-state fluorescence of PFN is quenched with high efficiency by the GC acceptor. Fluorescence
lifetime measurements reveal that the quenching mechanism of PFN by GC is static. Here, the quench-
ing mechanisms are well proven via the TA spectra of PFN/GC systems. For PFN/GC systems, the
photo electron transfer (PET) and charge recombination (CR) processes are ultrafast (within a few
tens of ps) compared to static interactions, whereas for PFN/1,4-dicyanobenzene DCB systems, the
PET takes place in a few hundreds of ps (217.50 ps), suggesting a diffusion-controlled PET process. In
the latter case, the PFN+•–DCB−• radical ion pairs as the result of the PET from the PFN to DCB are
clearly resolved, and they are long-lived. The slow CR process (in 30 ns time scales) suggests that
PFN+• and DCB−• may already form separated radical ion pairs through the charge separation (CS)
process, which recombine back to the initial state with a characteristic time constant of 30 ns. The
advantage of the present positively charged polyfluorene used in this work is the control over the
electrostatic interactions and electron transfers in non-covalent polyfluorene/quencher systems in
DMSO solution.

Keywords: photochemical reactions; donor-acceptor systems; time-resolved spectroscopy; organic
materials; conjugated Polymers; ultrafast laser spectroscopy; photo electron transfer (PET)

1. Introduction

Conjugated polymers are attractive for many applications such as solar cell appli-
cations [1,2], optical devices [3], chemical sensors [4] and biological sensors [5,6], due to
their unique properties. Among the developing conjugated polymers, conjugated polyelec-
trolytes (CPEs) containing a conjugated main chain and side chains with various functional
groups have been intensively investigated [7,8]. Their molecular structure can easily be
tuned, making them suitable for an enormous number of specific applications. By virtue of
their light harvesting properties, CPEs have also been utilized as photosensitizers in fluores-
cent sensors [9] and solar cells applications [7–10]. The basis of such successful utilization of
the CPEs in the optoelectronic applications is their chemical structures which can be easily
changed as well as their semiconducting properties with large optical densities [11,12]. In
addition, their high emission intensities can be also one of their important features to be
used for fluorescence resonance energy transfer [13,14]. In particular, the key issues of
CPEs for solar cell applications are their flexibility, along with their simple, large scale,
and low-cost fabrication devices [15,16]. Another advantage is that the functional groups
of the side chains can be ionic or polar moieties, which makes it easy to modify not only
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solubility of the CPEs in water and other polar solvents [17] but also the redox potentials,
intermolecular interactions, and energy level, which determine electronic coupling [18] and
the rate of electron transfer at the donor–acceptor interface [19–21].

It is well known that in solar cell devices, rapid electron or energy transfer to overcome
electron–hole recombination is absolutely required to reach high light energy conversion
efficiency [20]. In this sense, the interaction, linking, and distance between the electron
donor and acceptor moieties play a crucial role. Therefore, for CPEs, in particular, they
should form strong interconnections and interpenetrations with the electron acceptor moi-
eties to attain efficient electron or energy transfer [2]. An innovative approach utilizing the
electrostatic interactions between cationic CPEs with negatively charged electron acceptor
moieties has consequently attracted great attention [7,19,20]. With this approach, for ex-
ample, strong electrostatic interactions between cationic CPEs and DNA and DNA bases
were achieved, allowing the detection of DNA and DNA bases based on the fluorescence
quenching of the cationic CPEs [21]. In addition to such a fascinating method to detect DNA
and DNA bases, efficient energy transfer from photoexcited cationic polyfluorene, one of
the CPEs, to porphyrins demonstrated that the cationic polyfluorene can form electrostatic
assembly with small molecules, and in the assembly, it acts as a photosensitizer [22].

Recently, polyfluorene with azide derivatives has been covalently linked with graphene
flakes, and the produced materials have been demonstrated to have low bandgaps and
high charge carrier mobility, and they are potential materials for solar cells [23]. It is there-
fore an interesting challenge to explore the electron or energy transfers in non-covalent
polyfluorene associations, which can provide a unique study of the bimolecular electron
transfer reactions of polyfluorene in the solution phase [24,25]. Like in the case of the pho-
toexcitation dynamics of small molecules, vertical excitation of the electron donor–acceptor
system would also induce electron or energy transfer [21], and the rate of the photoinduced
electron transfer (PET), charges separation (CS), and charge recombination (CR) can be
related to the quenching mechanism [26]. Thus, understanding the quenching dynamics of
polyfluorene, as well as the electron or energy transfer from the excited polyfluorene to
the quenchers, are critically important to develop solar cell materials based on water- or
organic solvent-soluble polyfluorenes [27] and on solid-phase polyfluorenes [28].

In this paper, polyfluorene with positively charges, namely poly[(9,9-di(3,3′-N,N′-
trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] di-
iodide salt (PFN), that reacts with negatively charged graphene carboxylate (GC) are
reported. The reasons behind using GC were because (i) it is one of strong electron acceptor
moieties to several porphyrin derivatives, resulting in ultrafast and efficient electron trans-
fer [20,29], and (ii) its opposite charge would provide strong electrostatic interactions with
PFN. Because this non-covalent PFN/GC system is of interest and offers a good model
of the PET in the polyfluorene electrostatically interacted with the electron acceptor, this
work has been studied and scientifically reported in this paper. To make this work more
interesting, a comparison between what has been discovered in this paper (PFN+–GC−)
along with what has been investigated before (PFN+–DCB) [2] are well reported for the
first time. The non-covalent associations of polyfluorene with the neutral electron acceptor
1,4-dicyanobenzene (DCB) are reported. DCB has been demonstrated as an electron accep-
tor in bimolecular PET in perylene/DCB systems [2]. This means that DCB is also a strong
electron acceptor and may form donor–acceptor pairs with PFN. Steady-state absorption
and emission spectroscopies showed the strong affinity of PFN on the GC surface and
efficient quenching of the PFN fluorescence. However, by comparing the fluorescence
lifetimes of PFN by GC and that by DCB shown in previous work [2], it can be clearly
demonstrated that the quenching mechanism of the PFN/GC systems is static, whereas
that of the PFN/DCB systems is dynamic.

This finding is supported by the femtosecond time-resolved absorption spectra, which
reveal ultrafast electron transfer from the photoexcited PFN to the GC (within 0.02 ps time
scales), which is much faster than that taking place from the photoexcited PFN to the DCB
(within <5 ps time scales) [2]. One of the many advantages of the present cationic polyflu-
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orene is, therefore, the control over the electrostatic interactions and electron transfers in
non-covalent polyfluorene/quencher systems in aqueous solution. Furthermore, based
on polyfluorene, once it can be easily modified, the side chains of the polyfluorene in the
future can be to construct new non-covalent associations.

Since the conjugated co-polymer interaction has widespread applications, and the
study of photo-physics interactions between donor and acceptor systems are important even
from the point of view of fundamental research, a detailed investigation of the properties of
charge transfer (CT) and charge recombination (CR) in the presence of different acceptors
is of considerable interest to develop insight into the behavior and applications in different
fields, such as solar cells and organic photovoltaic cells.

2. Results and Discussion

The absorption spectra of PFN alone and PFN with the successive addition of GC, in
the absence of the GC, the absorption spectrum of PFN has a maximum peak at 402 nm
with a shoulder at 383 nm and absorption cutoff at 450 nm [2,20,30]. Upon successive GC
addition, the absorption spectrum of PFN is shifted upward with the GC concentration.
This upward shift was demonstrated for the whole range of the recorded wavelength, and
it was mainly originating from the absorption contribution of GC. The absorption and
fluorescence of PFN with the successive addition of GC are shown in Figure 1A,B.
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Figure 1. Steady-state absorption (A) and emission spectra (B) for PFN alone and PFN with GC
associations. The inset gives the Stern−Volmer plot.

On the other hand, upon DCB addition, a consecutive increase was observed in the
region below 360 nm, see Figure 2A [2]. This was because DCB does not absorb light in
the visible region. Thus, in general, the spectra of the mixtures are the superposition of the
absorptions of the PFN and the electron acceptors. This indicates that, upon the electron
acceptor addition, the electronic structure of the PFN is unaffected or, in other words, the
ground state interactions between the PFN and the electron acceptors do not form the
CT complex.

Excitation at 380 nm shows a rise in the fluorescence spectrum of the PFN in the
visible region in the range of 400–550 nm centered at 424 nm, with two vibrionic shoulders
at 447 and 485 nm, respectively. Successive addition of GC results in the quenching of
the PFN emission. Moreover, 97% quenching of the PFN was observed upon addition of
0.120 mg/mL GC indicating that, in comparison to a neutral DCB, a negatively charged
GC was more effective for the enhanced fluorescence quenching of PFN.

The emission spectra of the PFN and PFN–GC are shown in Figure 1B. It may be
noted that the fluorescence quenching refers to the electron or energy transfer from the
excited PFN to the quencher. Because the fluorescence intensity for all of the PFN peaks
was decreasing at the proportional scales, resulting in the consistent spectral shape of the
emission without any new emission band, here, it can be safely concluded that there is no
energy transfer process from the photoexcited PFN to the electron acceptors. However, for
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the PFN/DCB system, see Figure 2B, in particular, saturation of the reaction mixture was
observed for the DCB concentrations above 0.25 M. DCB above this saturation level leads
to precipitation and a decrease in the density of the UV-vis spectrum [2]. The key difference
in the fluorescence quenching behavior of the PFN by GC and DCB is revealed by the
fluorescence lifetime of the PFN–GC and PFN–DCB systems at different concentrations of
the quencher. In Figure 3, the mechanism of the fluorescence quenching was evaluated
by monitoring the fluorescence lifetime using the TCSPC technique in the absence and
presence of the graphene carboxylate (GC) quencher. It has been found that the quenching
mechanism in the PFN–GC system is static, suggesting the strong electrostatic interactions
facilitated by the opposite charge on PFN and GC. In the PFN–GC system, the same
fluorescence lifetime of the PFN in the absence and presence of GC clearly indicates that
the quenching in the PFN–GC systems proceeds according to a static mechanism. In
contrast, the fluorescence lifetime of the PFN in the presence of DCB is shorter than that
in the absence of DCB, supporting the dynamic nature of the interaction [2]. The different
quenching mechanisms are measured to provide different rates of the PET process, where
the rate of PET for quenching through static mechanism in the PFN–GC systems was found
to be much faster than that in the PFN–DCB systems due to its dynamic mechanism. In
addition to the driving force of the electron transfer process [31–34], in the earlier case,
the rate constant depends on the electronic coupling [20], whereas in the latter case, the
rate constant should be determined via the diffusion of the electron donor and acceptor
moieties [35–37]. This issue is further evaluated by means of ultrafast TA spectroscopy,
which provides detailed information on the photoexcitation dynamics.
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Figure 2. Steady-state absorption (A) and emission (λex = 370 nm, (B)) for the PFN/DCB system. The
concentrations used are given in the graph. The inset gives the PFN structure, Stern−Volmer plot
and the time-correlated single photon counting (TCSPC) kinetic profile collected using excitation at
370 nm of the PFN. The red line shows the fitting profile.

Figure 4 illustrates the transient absorption TA spectra of PFN in the absence (Figure 4A)
and presence of two different concentrations (0.03 and 0.12 mg/mL) of GC (Figure 4B,C) after
photoexcitation at 410 nm. As shown in Figure 4A, excitation of the PFN alone immediately
results in ground state bleach (GSB) at 410 nm, stimulated emission (SE) at 600 nm, and a
broad excited state absorption (ESA) band centered at 580 nm. Both the GSB recovery and
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ESA decay are dominated by slow dynamics and the GSB is recovered on the same time scales
as the ESA decay without any spectral shift and a new emerging band. Within a 5 ns time
delay, the GSB is recovered up to 80% and the ESA band decays up to 70%.
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As presented in the kinetics figures (Figure 5A,B), the kinetics of the GSB recovery and
ESA decay can be adequately described by a single exponential fit with a time constant of
0.012 ps. This indicates that the excited single state S1 of the PFN has a long lifetime at a
few ps time scales and it decays directly into the ground state through the CR process.

In the presence of 0.03 and 0.12 mg/mL of GC (Figure 4B,C), the transient spectral
feature of the PFN–GC associations is basically similar to those of PFN alone. New absorp-
tion bands, which can be assigned to the existences of PFN+•–GC−• radical ion pairs, are
not clearly observed. However, the results shown in Figure 4A,B for the kinetics of ESA at
600 nm and GSB at 410 nm for different GC concentrations reveal that the kinetics of GSB
recovery and ESA decay are GC concentration-dependent.

The exponential fits to the data shown in the kinetic traces figure (Figure 5) propose that
the kinetics of the ESA decay absolved at 600 nm (A), and GSB recovery, absolved at 410 nm
(B), are biexponential with two-time constants of ~00.27 ± 00.019 ps and ~00.50 ± 00.020 ps,
respectively. The rapid GSB recovery and ESA decay of the PFN in a few ps may apparently
be due to the contribution from the ultrafast PET from the excited PFN to GC as well as CR
recovering the PFN ground state. This thought is supported by the inspection of the kinetics
in Figure 5, in which the amplitude of the fast component increases systematically with the
GC concentration (80 and 70% for 0.03 and 0.12 mg/mL GC addition, respectively). The
ultrafast PET and CR processes indicate the strong interactions and electronic couplings of
PFN on the GC surface. Since the CR process is ultrafast, it is the reason behind the absence
of PFN+•–GC−• radical ion pairs in the spectra. This is also consistent with the trend of
the static mechanism of the fluorescence quenching. In comparison with other bimolecular
systems based on the electrostatic interactions of GC, it has been found that the rate of the
PET process from the PFN to GC is in agreement with those observed in porphyrins/GC
systems (within few tens of ps). Accordingly, it is believed that the slow component of the
ESA decay and GSB recovery of the PFN in few hundreds of ps is related to the relaxation of
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free or uncomplexed PFN, which reduces subsequently in the presence of GC, as indicated
by the lower amplitudes of the slow component with the GC concentration.
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Figure 4. Femto-nanosecond transient absorption spectra for (A) PFN alone, (B) FPN in the presence
of 0.03 mg/mL GC, and (C) FPN in the presence of 0.12 mg/mL GC.

The femtosecond TA spectra of PFN in the absence and presence of 0.05 and 0.34 M
DCB are recorded after photoexcitation at 400 nm. [2] The features of the TA spectra are
similar to those in the case of the PFN/GC systems, where the TA spectra show the GSB at
410 nm, SE at 450 nm, and broad ESA at 580 nm. Importantly, the peaks of the spectra are
slightly blue shifted upon the DCB additions, and they are further blue shifted at longer
time delays. The blue shift is most probably due to the spectral overlap between the GSB,
SE, and broad ESA bands and the new emerging bands in the range 420–620 nm, with two
peaks clearly observed at 370 and 600 nm at long time delays. The two emerging bands are
the spectroscopic signatures of the PFN+•–DCB−• radical ion pairs as the result of the PET
from the excited PFN to DCB.

Due to the spectral overlapping, the time constants of the PET cannot be extracted
accurately from the TA spectra. Nevertheless, the kinetics of the absorption at 410 nm
(Figure 5) reveal that the GSB recovery data follow a single exponential function with a time
constant in a few hundred ps time scales related to the relaxation of free or uncomplexed
PFN, as mentioned above. In comparison, the GSB recovery of PFN alone is more efficient
than that in the presences of DCB, suggesting that DCB induces lower GSB recovery [2].
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More importantly, as shown in Figure 5, the kinetics of the absorption at 410 nm indicates
that the percentage of unrecovered GSB and, accordingly, amount of the long-lived PFN+•

radical cations are increased with DCB addition. These findings again support clearly
the PET from the excited PFN to DCB, given that the PFN+•–DCB−• radical ion pairs are
long-lived and the CR is slow (in 7.09 ns time scales).
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Figure 5. Kinetic traces extracted from femto-nanosecond TA spectra presented in Figure 4 using
phtoexcitation at 600 nm (A), and 410 nm (B) for PFN in the absence and presence of 0.03 and
0.12 mg/mL GC.

From previous work [2], it was presumed that PFN+• and DCB−• may form separated
radical ion pairs through the CS process, as is observed in the case of perylene/DCB system
as well (1.3 ns) [2,20].

The absence of ultrafast dynamics in the photoexcitation of the PFN/DCB system
was consistent with the results of the steady-state fluorescence quenching of the DCB
concentration-dependent fluorescence lifetime [2], which suggests that the quenching
occurs through dynamic interactions. In order to evaluate the time constants of the PET
process from the excited PFN to nature DCB, the rate of the PET fluorescence lifetime
was extracted by fitting with a single exponential decay function. From the fluorescence
lifetimes of PFN in the absence and presence of 0.24 M DCB, being 3.58 and 30.14 ns,
respectively [2], the rate of the PET was estimated to be ≈2 × 10−2 s−1. This rate is much
slower than that of the PET from excited perylene to DCB (in 250 ps) [2,20], and it is also
slower than from PFN to GC (within 0.012 ps), the diffusion rate of typical small molecules
such as DCB (in the order of 109 s−1M−1), supporting the suggested diffusion-controlled
PET process.

Finally, it is noteworthy that the PET events are the reduction of the strong electron
acceptor moieties by PFN. It can be considered that PET events are facilitated by the energy-
level alignment between the PFN and GC to induce favorable energetics for the charge
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transfer process. However it is important to note that although the reduction potential
of GC (−1.02 V vs. SCE) [20] is lower than that of DCB (−1.64 V vs. SCE) [2], relating
to the smaller driving force from PFN to GC, the PET from PFN to GC is much faster
than that from PFN to DCB, and this is due to the opposite charge on GC to achieve
strong electrostatic interactions, enhancing the electronic coupling and the rate of the PET
process between PFN and GC because of the close distance of the electron donor and
acceptor [16,20]. Via the electrostatic interactions, one thus can control the rate of the
ultrafast PET in the non-covalent associations of the cationic polyfluorene.

3. Experimental Section
3.1. Materials

Commercially available PFN (99%) was purchased from Solaris Chem Inc., Vaudreuil-
Dorion, QC, Canada, and GC from ACS Materials. In all the experiments, high-purity
dimethyl sulfoxide (DMSO) (99.9%; Sigma-Aldrich, St. Louis, MO, USA) was used as a sol-
vent. All the chemicals were used without further purification. The PFN/GC mixers were
prepared at standard conditions of pressure (1 atm), and temperature, (25 ◦C), in DMSO.

3.2. Steady-State Measurements

A rectangular quartz cell with a 1 cm optical path was used to measure the steady-
state absorption and emission spectra of the mixtures of PFN in the presence of different
concentrations of GC. The absorption spectra were recorded on a Cary5000 UV-visible
spectrometer (Agilent Technologies, Santa Clara, CA, USA), and the emission spectra were
collected on a Fluoromax-4 spectrofluorometer (Horiba Scientific, Piscataway, NJ, USA).

For each experiment, a fixed volume (3 mL) of the starting solution of PFN in DMSO
was put in the cell, and aliquots of the quencher dissolved in DMSO and mixed with PFN
were added consecutively. The concentration of PFN was held constant at an optical density
(OD) of 0.8 and 1.2 for PFN/GC and PFN/DCB systems, respectively. For the PFN/GC
system, GC (in the range of 0–0.12 mg mL−1) was added in a constant concentration of PFN.
Accordingly, for the PFN/DCB system, DCB in the range of 0–0.28 M was successively
added to the PFN solution.

The emission spectra were collected with the excitation wavelength at 380 nm. Both
the entrance and the exit slits of the spectrofluorometer were kept the same (380 nm) for
all the experiments. The quenching mechanism was further analyzed by monitoring the
fluorescence lifetime of the PFN in the absence and in the presence of the quenchers using
the time-correlated single photon counting (TCSPC) technique [2].

3.3. TCSPC Setup

In this setup, the excitation source was fs pulses at 370 nm (a few J of pulse energy)
generated from an optical parametric amplifier (Newport Spectra-Physics, Darmstadt.
Germany). The emission at 90◦ geometry was collected at magic angle polarization and
detected using a Halcyone MC multichannel fluorescence up-conversion spectrometer with
a temporal resolution of 120 fs (Ultrafast System, Sarasota, FL, USA) integrated into our
existing laser system [2].

3.4. Femtosecond Broadband Transient Absorption (TA) Spectroscopy

Femtosecond broadband TA spectroscopy was employed to monitor the photoex-
citation dynamics, including the PET, CS, and CR, in both the PFN/GC and PFN/DCB
systems after excitation at 380 nm. The experimental setup of the TA spectroscopy has been
previously reported in detail [2,7,20]. Briefly, the setup consists of a white-light continuum
probe pulses generated by a 2 mm thick sapphire plate and spectrally tunable pump fs
pulses (240–2600 nm; a few J of pulse energy) generated in an optical parametric amplifier
(Newport Spectra-Physics). The pump and probe pulses were overlapped within a 2 mm
thick cuvette cell containing PFN (0.4 OD) in the absence and presence of GC (0.03 and
0.12 mg/mL). In order to cover the transient spectra from a few hundred fs to s time scales,
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a Helios and an EOS detection system were employed with time resolutions of 120 fs and
200 ps and detection limits of 5 ns and 1 s, respectively [2].

4. Conclusions

In conclusion, I have investigated for the first time the photophysical comparison
time-resolved spectroscopy between two bimolecular donor–acceptor systems. One is
the positively charged PFN and negatively charged GC containing carboxylate groups in
DMSO, and the other system is the interactions of the same PFN polymer and a different
neutral DCB acceptor that were also investigated by the same methods, via the steady-state
absorption and fluorescence spectra as well as time-resolved spectroscopy. For comparison,
the mechanism of the fluorescence quenching was evaluated by monitoring the fluorescence
lifetime using the TCSPC technique in the absence and presence of the graphene carboxylate
(GC) quencher. It has been found that the quenching mechanism in the PFN–GC system is
static, suggesting the strong electrostatic interactions facilitated by the opposite charge on
the PFN and GC. This is supported by the dynamic quenching mechanism of the PFN/DCB
system [2]. The photoexcitation dynamics of the PFN–GC system were further investigated
using femtosecond broadband TA spectroscopy. The TA absorption spectra of PFN in
the absence and presence of different GC concentrations revealed the ultrafast PET and
CR processes (within few tens of ps) in the non-covalent PFN–GC systems. This finding
is consistent with the trend of the static mechanism of the fluorescence quenching. In
comparison, the PFN–GC systems, PET process is in ~27&196 ps time scales, suggesting a
diffusion-controlled PET process. The PFN+•–DCB−• radical ion pairs are clearly resolved,
and they are long-lived. The slow CR process (in ~30 ns time scales) suggests PFN+• and
DCB−• may form separated radical ion pairs through the CS process, which recombined
back to the initial state with a characteristic time constant of 30 ns [2].
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