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Abstract: A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine
(PQM) was generated and characterized to support the activation of diazo compounds for the
formation of new C–N bonds. This neutral Schiff base ligand was structurally characterized to
coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon
characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol
for C–N bond formation between N-nucleophiles and copper carbene complexes arising from the
activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-
based substrates was screened, yielding 2◦ or 3◦ amine products with acceptable to good yields under
mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing
relatively weak C–O or C–S bond formation under optimized conditions.

Keywords: copper carbene; 8-aminoquinoline-based ligand; α-diazoesters; N–H insertion

1. Introduction

Copper(II) complexes featuring tridentate nitrogen ligands exhibit remarkable versatility
in their coordination numbers and geometries due to their d9 electronic configuration [1,2].
This diversity in coordination capability has paved the way for the creation of intricate
structures with potential applications spanning material science, supramolecular architectures
with captivating photoluminescent properties, as well as potential roles in anticancer and
NSAID activity [3–7]. Furthermore, copper(II) complexes with planar nitrogen ligands have
proven highly effective in the realm of bioinorganic chemistry, serving as reactive models for
the active sites in the proteins involved in oxygen activation. The organic motifs, framework,
and donor atom set of these complexes all wield pivotal roles in their chemistry [8,9]. These
coordination complexes have also found extensive utility in catalysis, with numerous research
groups delving into their catalytic properties across a wide spectrum of processes, including
oxidation reactions [10], atom transfer reactions [11,12], Chan-Evans-Lam reactions [13–16],
Ullmann and Goldberg-type couplings [17], and click reactions [18,19].

The focused exploration of carbon–nitrogen bond formation and cleavage has been a
dynamic research area for several decades [20–22]. Dating back to 1901, various controlled
methods for introducing amino groups have been pioneered by Ullmann, Goldberg, Chan,
Evans, Lam, and Buchwald, with these advancements driven by the development and
application of innovative ligands [23,24]. Many copper-catalyzed reactions entail the
addition of heteroatom nucleophiles to α-diazo carbonyl compounds, yielding enolate
intermediates [25,26]. α-Diazoesters and carbonyl compounds have gained broad utility in
both pharmaceutical and laboratory settings for the synthesis of α-amino acid derivatives
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due to their tunable reactivity, encompassing electron acceptor and donor groups [27–29].
Despite significant strides in carbene transfer reactions in organic solvents, recent studies
have emphasized the solvent’s influence on C–H, Si–H, O–H, and N–H activation in
chemoselective insertion reactions [30,31]. Notably, in 2007, Hansen et al. reported the
formation of cyclopropanes employing an expensive dimeric Rh2(OAc)4 catalyst with
N-vinylphthalimide and methyl phenyldiazoacetate under reflux conditions, achieving
clean reactions and high yields [32]. Recently, Lucie et al. reported electron-rich ruthenium
phthalocyanines as a catalyst for the conversion of aromatic, heterocyclic, and aliphatic
amines to corresponding substituted glycine derivatives [33]. Kantam and coworkers
demonstrated that with nanocrystalline copper(II) oxide or Cu(acac)2 in ionic liquids,
glycine esters could be prepared in good yields through the insertion of α-diazoacetate into
the N–H bonds of amines [34,35].

Numerous endeavors have been dedicated to designing asymmetric carbene insertions
into N–H bonds, and copper(II)-based complexes featuring a planar tridentate system have
exhibited exceptional promise due to their robust ligand affinity [30,31,36–39]. Lee and
coworkers demonstrated the conversion of α-aryl-α-diazo esters into glycine derivatives
using a Cu(I)/planar-chiral bipyridine complex, providing critical insights into the develop-
ment of copper/planar-chiral bipyridine for carbene-mediated transformations with high
enantiomeric excess [29]. While achieving superior enantioselectivity, this protocol has
limitations in substrate scope. Fasan and coworkers also detailed a biocatalytic approach for
the enantioselective synthesis of α-trifluoromethyl amines via N–H bond insertion utilizing
acceptor-acceptor carbene donors [40]. Sivasankar’s group reported the chemoselective
utilization of copper(I) complexed with an air-stable phosphine ligand for N–H insertion
over O–H [41]. Transition metals have earned acclaim for their efficacy in catalyzing a
broad spectrum of reactions, particularly in chiral catalysis, with numerous applications
reported in the synthesis of biologically relevant molecules and natural products [42–44].

Building upon these preceding findings (Scheme 1), we have developed a straightfor-
ward Schiff base ligand system for C–N bond construction, which employs a copper catalyst
coordinated with a neutral tridentate ligand. This system offers a ligand architecture that
can be tailored to enhance reactivity under sustainable conditions and create opportunities
for selectivity. In this study, we present the synthesis of a (E)-1-(pyridin-2-yl)-N-(quinolin-8-
yl)methanimine (PQM)-ligated copper(II) complex. We delve into the X-ray and electronic
structure analysis of this complex and employ Cu2+(PQM) to catalytically facilitate C–N
bond formation, yielding moderate to good yields. The investigation into reactivity sheds
light on the mechanism underlying this process, providing a deeper understanding of the
potential and limitations of this system as a catalyst for carbene transfer reactions.
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in the unit cell. This 6-coordinate distorted octahedral complex shows the PQM ligand 
occupying the axial positions and a meridional binding mode. One bound water molecule 
completes the octahedral coordination sphere of this complex. The Cu–N (imine), Cu–N 
(quinoline), and Cu–N (pyridine) bond distances vary within the range of 1.951(4) Å–
2.006(4) Å whereas the Cu–O (triflate) and Cu–O (water) bond distances are 2.398(9) Å 
and 1.953(3) Å, respectively. Curiously, the Cu–N bond from the imine is shorter than the 
other C–N bond from the quinoline and pyridine groups, showcasing the strong coordi-
nation mode of the complex. The tetragonal term T is defined as Rin/Rout = 0.83 (where Rin 
= (1.994 + 1.951 + 2.006 + 1.953)/4 and Rout = 2.368), which indicates that the complex should 
be considered a tetragonally distorted octahedron [45–47]. The two triflate counter anions 
and one water molecule offer some opportunities for carbene or aniline coordination. 
Again, the substantially longer Cu–O bonding of the copper(II) triflate adducts implies 
that the Lewis acidity of the complex was well-modulated, which should influence the 
lability of these anions. 
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2. Results and Discussion

The tridentate PQM ligand was synthesized in a one-step reaction based on its
8-aminoquinoline framework, as outlined in Scheme 2. The purified PQM ligand was
coordinated with copper(II) to generate a green-colored Cu2+(PQM) complex, which was
re-crystallized using a mixture of EtOH and DCM (1:6).
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Scheme 2. The synthesis of a Schiff base NNN-PQM ligand ligated with Cu(OTf)2.

The single-crystal XRD structure of Cu2+(PQM) was resolved (Figure 1). The Cu2+(PQM)
complex was determined to possess two triflate ions and one water molecule in the unit
cell. This 6-coordinate distorted octahedral complex shows the PQM ligand occupying the
axial positions and a meridional binding mode. One bound water molecule completes the
octahedral coordination sphere of this complex. The Cu–N (imine), Cu–N (quinoline), and
Cu–N (pyridine) bond distances vary within the range of 1.951(4) Å–2.006(4) Å whereas the
Cu–O (triflate) and Cu–O (water) bond distances are 2.398(9) Å and 1.953(3) Å, respectively.
Curiously, the Cu–N bond from the imine is shorter than the other C–N bond from the
quinoline and pyridine groups, showcasing the strong coordination mode of the complex. The
tetragonal term T is defined as Rin/Rout = 0.83 (where Rin = (1.994 + 1.951 + 2.006 + 1.953)/4
and Rout = 2.368), which indicates that the complex should be considered a tetragonally
distorted octahedron [45–47]. The two triflate counter anions and one water molecule offer
some opportunities for carbene or aniline coordination. Again, the substantially longer Cu–O
bonding of the copper(II) triflate adducts implies that the Lewis acidity of the complex was
well-modulated, which should influence the lability of these anions.
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Figure 1. The copper complex of the Cu2+(PQM) crystal structure is shown as a 50% thermal ellipsoid
plot. The H-atoms are removed for clarity. (Note: OW = water, OL = triflate anions, black = carbon,
red = oxygen, blue = nitrogen, green = fluorine, yellow = sulfur).

The Cu2+(PQM) copper complex dissolved in methanol exhibits a broad, low-energy
transition consistent with a d→d transition at 655 nm (ε655 = 161 M−1 cm−1), as shown
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in Figure 2A. The planar nature of the PQM ligand enforces two adjacent chelate rings,
where both chelate rings are 5-membered. This observation is consistent with the five
coordinated distorted square-pyramidal copper complexes having one PQM ligand and
two bromide anions previously synthesized and reported [48]. The complex also exhibits
two absorption bands in the UV region, which are likely attributable to the ligand π→π* or
n→π* transitions associated with the aromatic rings in this copper complex. The electronic
structure of the Cu2+(PQM) complex was characterized via electron paramagnetic resonance
(EPR) spectroscopy, as illustrated in Figure 2B. Cu2+(PQM) indicates a distinct Cu2+ signal
with a prototype hyperfine signal g|| = 2.07 and g⊥ = 2.055, which is consistent with the
nuclear spin associated with Cu (I = 3/2). This is an axial signal, and since g|| > g⊥, the
unpaired electron is likely distributed in the dx2-y2 orbital.
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Figure 2. (A) UV–visible absorption spectrum of the Cu2+(PQM) at 5.0 µM in methanol (blue line) and
the inset at 5.0 mM in methanol (red line), highlighting the low-intensity d→d transition. (B) X-band
EPR spectrum of 4.0 mM Cu2+(PQM) shown as an experiment (black) and simulated (blue) data
recorded at 10K.

Figure 3 depicts the cyclic voltammogram of Cu2+(PQM). The CV exhibits a reversible
redox wave at Epa = −0.51 V and Epc = −0.60 V and a chemically irreversible reduction
peak at −0.26 V. The cathodic peak potential (Epc) value of −0.60 V indicates the reduction
of Cu2+ to the Cu+ state. The half-wave potential (E1/2) value of −0.56 V vs. Fc+/Fc is the
average potential of the anodic and cathodic peaks and is effectively equal to the standard
reduction potential for the Cu2+/Cu+ complex. This E1/2 is consistent with Cu2+/Cu+

potentials associated with other copper(II) complexes chelated by N-donor ligands [13,49].
The irreversible reduction peak appearing in the CV data does not appear to be due to
the decomposition of the complex, and the wave amplitude change with the scan rate
indicates a diffusion-controlled mass transfer process (that is, not due to the adsorption of
the complex to the electrode surface). This peak likely corresponds to a separate chemical
species that exists at low concentrations in the solution.

The goal for generating this copper(II) complex was to explore its use as a catalyst for
C–N bond-forming reactions. Our investigation began with the catalytic examination of
the reaction between aniline (1a) and ethyl diazoacetate or EDA (2a), as shown in Table 1.
We conducted the reaction using 10 mol% of simple copper salts, including CuCl, CuBr,
Cu(OTf)2, CuCl2, CuBr2, and Cu(OAc)2. However, the conversions supported by these
systems did not exceed 48% (Table 1, entries 1–6). However, the scope of these reactions
demonstrates that the yields are highly influenced by the copper oxidation state, solvent
medium, and temperature. The highest conversion was observed with copper(II) triflate,
which is known to have activity towards diazo compounds [50]. When Cu2+(PQM) was
employed as a catalyst, the conversion increased to 72% (Table 1, entry 7). Subsequently,
the trials conducted in different solvents showed that DCM and DCE supported good
conversions, while acetonitrile, methanol, and chlorobenzene exhibited low conversions
(Table 1, entries 8–21). The extended reaction times also diminished the conversion (Table 1,
entry 16). Interestingly, the use of 1.0 equivalent of acid or base resulted in reduced reaction
yields (Table 1, entries 18 and 19). The reaction in buffer at pH 7.2 showed low conversion,
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which may be due to the low solubility of substrates in aqueous media. Finally, reducing
the catalyst load to 5 and 2 mol% (Table 1 entry 22–23) led to a lower conversion.
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Table 1. Copper-catalyzed C–N bond formation 1.
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Entry Cu+/Cu2+ (mol %) Solvent Yields 3a % 2

1 CuCl (10) DCM 20
2 CuBr (10) DCM 15
3 Cu(OTf) (10) DCM 48
4 CuCl2 (10) DCM ND
5 CuBr2 (10) DCM ND
6 Cu(OAc)2 (10) DCM 38
7 Cu2+(PQM) (10) DCM 72
8 Cu2+(PQM) (10) DMSO ND
9 Cu2+(PQM) (10) MeOH 23
10 Cu2+(PQM) (10) H2O 10
11 Cu2+(PQM) (10) 1,4-Dioxane 12
12 Cu2+(PQM) (10) Chlorobenzene 20
13 Cu2+(PQM) (10) CH3CN 20
14 Cu2+(PQM) (10) DCM:MeOH ND
15 Cu2+(PQM) (10) DCM:H2O 23

16 3 Cu2+(PQM) (10) DCM 58
17 Cu2+(PQM) (10) Buffer 7.2 12

18 4 Cu2+(PQM) (10) DCM 44
19 5 Cu2+(PQM) (10) DCM 38
20 Cu2+(PQM) (10) oDCB ND
21 Cu2+(PQM) (10) DCE 57
22 Cu2+(PQM) (5) DCM 68
23 Cu2+(PQM) (2) DCM 60

1 Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), and Cu2+(PQM) (0.05 mmol) in 2.0 mL of DCM at 0 ◦C to
room temperature (RT) for 4 h. 2 The reaction yields were determined through crude 1H-NMR spectroscopy using
mesitylene as an internal standard. 3 Reaction performed for 24 h. 4 NaOAc was used as a base. 5 AcOH was
used as an additive.

Having established the optimal conditions, we proceeded to explore the substrate
scope for the N-alkylation of various anilines and diazo compounds, as illustrated in
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Scheme 3. Substituted anilines and diazo compounds were successfully functionalized
with good yields and a nearly 1:1 enantiomeric ratio. It was observed that with weak to
strong electron-withdrawing groups (EWGs) in the para-position of the phenyl ring of
aniline, there was reduced insertion, yielding the desired product in the range of 10% to
51% (3d–3g).
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reaction conversions were determined through crude 1H-NMR spectroscopy using mesitylene as an
internal standard. * represent a newly formed chiral centers in products, where reported conversions
are a racemic mixture of both enantiomers.

Conversely, the electron-donating groups (EDGs) provided good yields (3b and 3c;
53% and 83%, respectively). 1-Naphthylamine and benzamide reacted with 2.0 equivalents
of 2a, yielding the corresponding products in yields of 56% and 64%, respectively (3h and
3i). Unfortunately, imidazole, 2-nitroimidazole, 1,8-naphthalimide, and carbazole either
did not react under our optimized conditions or yielded products in a yield of <5% (3j–3m).
When the substrate Hammett parameters were plotted against the log(ksub/kH), there was a
good linear correlation with a negative slope, where ksub and kH are the pseudo-first order
rate constants for para-substituted aniline and aniline, respectively. The estimated rho (ρ)
value for this correlation was negative and relatively small and should be interpreted with
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caution. Simply, this observation suggests a buildup of electron density on the coordinating
aryl amine, which improves reaction efficiency where stronger Lewis basicity supports C–N
bond-forming reactions. We also conducted experiments using the Cu2+(PQM) catalyst
in the presence of substituted α-aryl-α-diazoesters and other substrates (3s–v). While
the Cu2+(PQM) system showed strong reactivity in DCM, other copper complexes were
described that favor transformations in MeOH or ionic media [34,35].

Furthermore, we demonstrated the compatibility of this approach with phenol (1a’)
and thiophenol (1b’) substrates. The reaction yielded C–O and C–S products with ac-
ceptable yields (Scheme 4). When investigating the reaction of styrene (1c’) and phenyl
acetylene (1d’) with ethyl diazoacetate (2a) in the presence of the Cu2+(PQM) catalyst,
product 3c’ was obtained in a yield of less than 5%, while product 3d’ was not detected.
These results underscore the complementarity and orthogonality of the Cu2+(PQM) catalyst
in facilitating carbene transfer reactions.
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Scheme 4. Control experiments for the carbene transfer reactions. Reaction conditions: 1 (0.5 mmol),
2a (1.0 mmol), and Cu2+(PQM) (0.05 mmol) in 2.0 mL of DCM at 0 ◦C to RT for 4 h. The reac-
tion conversations were determined through crude 1H-NMR spectroscopy using mesitylene as an
internal standard.

A generally accepted mechanism for C–N bond formation via diazo activation is
shown in Figure 4. The proposed mechanism shows that the catalytic reaction occurs
through five major steps. The first step of the reaction starts with water dissociation and
diazo activation (shown here as 2a) to generate a high-energy intermediate labeled here as
M1. From this species, N2 is released, yielding the carbene compound M2.

The substate (shown here as aniline) reacts with the M2 compound via nucleophilic
attack to create a relatively high-energy species (M3.) Based on unpublished data, we have
drawn M3 as a transition state in this process. Significant energy stabilization occurs with
proton transfer from aniline to protonate the carbene carbon, resulting in M4. Preliminary
theoretical data supports M4 decaying through a high-energy transition state that generates
the new C–N bond, releasing the reaction product and generating the resting Cu2+(PQM)
species. The inductive and resonance effects observed in the catalytic trials suggest that the
basicity and copper-modulated pKa of the substrate likely impacts proton exchange in this
mechanism (i.e., M2→M3→M4), which is consistent with this proton transfer event being
the rate-determining step in this process.
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3. Materials and Methods

8-Aminoquinoline, MgSO4, Cu(OTf)2, Cu(OAc)2 (Fisher Scientific, Waltham, MA,
USA), methanol, acetone, dichloromethane (DCM), ethyl acetate, hexanes, chloroform-d
(Sigma Aldrich, St. Louis, MO, USA), 2-pyridine carboxaldehyde, diazo compounds, and
anilines (ACROS Organics, Bridgewater, MA, USA) were used as purchased without further
purification. Silica gel from Alfa Aesar-Thermo Fisher Scientific (70–230 mesh) was used
for flash chromatography. Unless otherwise stated, all the reagents were purchased from
commercial sources.

3.1. Synthesis of 1-(Pyridin-2-yl)-N-(Quinolin-8-yl)Methanimine (PQM) Ligand and Resulting
Copper(II) Complexes

The tridentate NNN-ligand (PQM) was generated via a one-step synthesis based
on their 8-aminoquinoline frameworks. A 25-mL round-bottom (RB) flask was charged
with a magnetic stir bar, 2.0 mmol of 8-aminoquinoline (AQ), 2.2 mmol of 2-pyridine
carboxaldehyde, and 10.0 mmol of MgSO4. This mixture was solvated in 10.0 mL of
dichloromethane (DCM) and the reaction was left to stir for approximately 5–8 h under
an N2 atmosphere at room temperature and closed with a septum. After stirring, the
reaction progress was monitored through TLC. Upon the completion of the precursors, the
reaction mixture was filtered through celite. The evaporation of the solvent and subsequent
purification via column chromatography on silica gel afforded the solvent removal of a
light-yellow, oily product of PQM in a yield of 60%. This compound is known and the
1H-NMR data matches with reported spectra [51–53]. Yield 60% (320.0 mg), Yellow sticky
liquid; 1H NMR (500 MHz, CDCl3) δ: 9.24 (d, J = 10.0 Hz, 1H), 9.01 (d, J = 4.0 Hz, 1H), 8.06
(dd, J = 2.0, 8.0 Hz, 1H), 7. 85 (d, J = 7.8 Hz, 1H), 7.66–7.40 (m, 4H), 7.19 (dd, J = 2.4, 7.6 Hz,
1H), 7.08 (dd, J = 2.4, 8.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H) ppm.

Cu2+(PQM) was prepared by stirring the synthesized PQM ligand with Cu(OTf)2 in
ethanol at an ambient temperature for 5 h. The resulting Cu2+(PQM) complex exhibited a
green color and was filtered and recrystallized using a mixture of EtOH and DCM (1:6).
The FT-IR spectra of the Cu2+(PQM) complex showed distinctive stretching peaks of the
azomethine group at approximately 1610 cm−1. This complex was characterized using
powder and single-crystal X-ray diffraction studies.

3.2. General Procedure for C–N Bond Construction via Cu2+(PQM)-Catalyzed Redox-Neutral
Type Cross-Coupling (3a–3o)

A 10-mL vial was charged with a magnetic stir bar, 0.5 mmol of anilines or related
amines (1a–1n), 1.0 mmol of diazo-compounds (2a–2c), and 0.05 mmol of Cu2+(PQM). This
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mixture was solvated in 3.0 mL of dichloromethane (DCM) and the reaction was started
at 0 ◦C to ambient temperature with stirring for approximately four hours under an N2
atmosphere. After the completion of the reaction time, the resulting reaction mixture was
diluted with ethyl acetate and filtered through a thin pad of celite. The filtrate was evapo-
rated under reduced pressure, and subsequent purification via column chromatography on
silica gel afforded the desired products (3a–3o) obtained in the yields of roughly 90–10%. A
summary of the characterization data for each known complex is provided in the Supple-
mental Information (SI) section associated with this work. The full characterization data
is also included in the SI section for compound 3o, including chiral HPLC traces, 1H, 13C,
and 19F NMR data, and high-resolution mass spectrometry data.

3.3. Other Experimental Methods

All the catalytic C–N bond-forming reactions were conducted at 0 ◦C to room tem-
perature using pre-dried glassware unless otherwise mentioned. The obtained products
were characterized by melting points (m.p.), 1H NMR, 13C NMR, mass spectrometry (MS),
and infrared spectra (IR). The 1H NMR and 13C NMR spectra were obtained on a Bruker
500 MHz, and the chemical shifts were reported in parts per million (ppm, δ) with CDCl3
as a reference. Based on the time-dependent trials, the reaction was defined as having
first-order reaction kinetics. This implies that the rate of the reaction was proportional to
the concentration of a single reactant, and the reaction’s progress could be mathematically
described using first-order rate equations. HRMS-ESI mass data collection was conducted
on an Orbitrap Exploris 240 mass spectrometer (Thermo Scientific, Waltham, MA, USA); ion
source type: ESI in the positive mode; ionization method: infusion of individual compound
(100 µM stock in MeOH) at a flow rate of 5 µL/min using syringe pump; source setting:
spray voltage, 3500 V; ion transfer tube temperature, 275 ◦C; sheath gas pressure, 45 psi;
aux gas pressure, 15 psi.

3.3.1. Cyclic Voltammetry

The cyclic voltammetry (CV) analysis of the complex in a three-electrode cell was
performed with Ar-degassed acetonitrile as the solvent and tert-butyl ammonium hex-
afluorophosphate as the supporting electrolyte. A 3 mm diameter glassy carbon electrode
was the working equipment, a carbon rod was the counter, and a silver wire in silver
nitrate/acetonitrile solution served as a quasi-reference electrode. The CVs were then
referenced to the ferrocene/ferrocenium standard potential. The data were collected using
a CHI 620A electrochemical analyzer. The CV peaks were analyzed using the eL-Chem
viewer 3.3.

3.3.2. Single-Crystal X-ray Crystallography

All the crystals selected for the X-ray crystallographic analysis were mounted on a
cryo-loop using an oil cryoprotectant. The X-ray intensity data was measured at a low
temperature [T = 120 K; Cu2+(PQM)] using three-circle goniometer geometry with a fixed
Chie angle at = 54.74 deg Bruker AXS D8 Venture equipped with a Photon 100 CMOS active
pixel sensor detector. Monochromatized Cu X-ray radiation (λ = 1.54178 Å) was selected
for the measurement.

The X-ray intensity data was measured at a low temperature (T = 120K) using three-
circle goniometer Kappa geometry with a fixed Kappa angle at = 54.74 deg Bruker AXS
D8 Venture equipped with a Photon 100 CMOS active pixel sensor detector. Monochro-
matized Cu X-ray radiation (λ = 1.54178 Å) was selected for the measurement. All the
frames were integrated with the aid of the Bruker SAINT software which is included
in the package software: APEX4 v2021.10.0 using a narrow-frame algorithm. The inte-
gration of the data using a monoclinic unit cell yielded a total of 48,142 reflections to a
maximum θ angle of 74.66◦ (0.80 Å resolution), of which 5136 were independent (average
redundancy 9.373, completeness = 99.7%, Rint = 3.27%, Rsig = 1.79%) and 4785 (93.17%)
were greater than 2σ (F2). The final cell constants of a = 24.0665(11) Å, b = 11.8732(5) Å,
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c = 17.8506(8) Å, β = 99.940(2) ◦, volume = 5024.2(4) Å3, were based upon the refinement
of the XYZ-centroids of 1916 reflections above 20 σ (I) with 8.330◦ < 2θ < 149.7◦. The data
were corrected for absorption effects using the multi-scan method SADABS. The ratio of
minimum to maximum apparent transmission was 0.741. The calculated minimum and
maximum transmission coefficients (based on the crystal size) were 0.4300 and 0.5720.
The structure was solved in a monoclinic unit cell; C-centered unit cell; space group: C 1
2/c 1 with Z = 8 for the formula unit, C17H19CuF6N3O10S2. Using the Bruker SHELXT
software package, the refinement of the structure was carried out by least squares proce-
dures on weighted F2 values using SHELXTL-2018/3 included in the APEX4 v2021 4.0 AXS
Bruker program.

CCDC 2259535 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html,
accessed on 22 January 2024 (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK;
Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk).

3.3.3. UV–Vis Spectroscopy and Continuous Wave Electron Paramagnetic Resonance (CW
EPR) Spectroscopy

UV–Vis spectroscopy was performed on a Shimadzu UV-2550 machine at room tem-
perature. All UV–Vis data was collected in 1-cm quartz cuvettes in 5 × 10−6 M methanol
solvent. Based on this data, the molar absorptivity of the complexes was calculated to be
161 M−1 cm−1.

CW EPR spectroscopy was performed on a Bruker ELEXSYS E540 X-band (Bruker-
Biospin, Billerica, MA, USA). The liquid nitrogen spectra analysis was carried out using
an unimodal resonator fixed with a Suprasil symmetric nitrogen dewar flask (Wilmad-
Labglass, Vineland, NJ, USA), while the liquid helium spectra analysis was performed
using an Oxford ESR900 cryostat and Oxford ITC 03 temperature controller.

CW EPR spectroscopy was performed on a Bruker ELEXSYS E540 X-band (Bruker-
Biospin, Billerica, MA, USA). The liquid nitrogen spectra analysis was carried out using
an unimodal resonator fixed with a Suprasil symmetric nitrogen dewar flask (Wilmad-
Labglass), while the liquid helium spectra analysis was performed using an Oxford ESR900
cryostat and Oxford ITC 03 temperature controller. Simulations of the EPR spectra were
completed using Spincount (6.5.7773.19293) developed by Professor Michael Hendrich at
Carnegie Mellon University by utilizing the general spin Hamiltonian seen in Equation (1):

Ĥ = βe
⇀
B0·
∼
g·Ŝ + Ŝ·

∼
A· Î (1)

Here,
∼
g is the g-tensor and

∼
A is the nuclear hyperfine interaction, which is treated with

the second-order perturbation theory [54,55]. The simulations take into consideration all in-
tensity factors, both theoretical and experimental. The concentration of species can be used
as a constraint during spectral simulation, which allows the quantitative determination of
the concentration by comparing the experimental and simulated signal intensities [56]. The
only unknown factor relating the spin concentration to the signal intensity is an instrumen-
tal factor that depends on the microwave detection system. This factor is determined using
a copper(II) EDTA spin standard. The copper(II) complexes were dissolved in a solvent
(acetonitrile or methanol) to obtain a final concentration of 3 to 4 mM. The solutions were
then transferred into 3 mm quartz EPR tubes and frozen in liquid nitrogen. To remedy
the broadening effects from aggregation, the Cu2+(PQM) sample was prepared in a binary
mixture of 1:1 (v/v) toluene:acetonitrile for glassing. Unless noted elsewhere, the X-band
(9.4 GHz) EPR spectra were collected at 10 and 77 K under non-saturating conditions.

4. Conclusions

In conclusion, a copper(II) complex, Cu2+(PQM), derived from an NNN-donor Schiff
base ligand, was synthesized and characterized using various spectroscopic and structural
techniques. This relatively simple planar tridentate ligand was assessed as part of the

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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Cu2+(PQM) complex to catalyze the activation of diazo compounds and the resulting car-
bene transfer reaction to generate new C–N bonds. This reaction was optimized to catalyze
C–N bond-forming processes with upwards of 84% conversions with select substrates.
Remarkably, the C–N alkylated product was obtained in a single step without the need
for additional base, oxidant, or additive, demonstrating the redox-neutral nature of the
process. Some preference for carbene insertion in N–H bonds was achieved with a PQM-
ligated copper catalyst over other O–H or S–H bonds. There are also clearly electronic and
resonance effects that govern the productivity of this process over a range of substrates,
where designing new catalysts aimed to overcome these tendencies remains a focus of our
research group.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29030730/s1, General synthetic procedures; Figure S1: Cu2+(PQM)
LeBail refinement fitting profile of PXRD and single-XRD; Figure S2: Cu2+(PQM) complex crystalline
phase PXRD; General catalytic procedures; Tabulated Spectroscopic data; Figure S3: HPLC spectra
of compound 3o and integration data; Figure S4: 1H NMR spectra of compound 3o; Figure S5: 13C
NMR spectra of compound 3o; Figure S6: 19F NMR spectra of compound 3o; Figure S7: HRMS data
for the compound 3o; General kinetic procedures; Figure S8: N–H insertion reaction kinetics plot for
compound 3a; Figure S9: N–H insertion reaction kinetics plot for compound 3b; Figure S10: N–H
insertion reaction kinetics plot for compound 3c; Figure S11: N–H insertion reaction kinetics plot for
compound 3d; Figure S12: N–H insertion reaction kinetics plot for compound 3e; Figure S13: N–H
insertion reaction kinetics plot for compound 3f; Figure S14: N–H insertion reaction kinetics plot for
compound 3g; Figure S15: Cu2+(PQM) complex crystal view on mounted on a cryoLoop. Figure S16:
Crystallographic data, structure of Cu2+(PQM) complex, and related report; Table S1: Sample and
crystal data for Cu2+(PQM) complex; Table S2: Data collection and structure refinement for Cu2+(PQM)
complex. References [57–70] are cite in the Supplementary Materials.
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