

Review

Anti-Inflammatory and Cytotoxic Compounds Isolated from Plants of *Euphorbia* Genus

Sarai Rojas-Jiménez¹, María Guadalupe Valladares-Cisneros², David Osvaldo Salinas-Sánchez³, Julia Pérez-Ramos⁴, Leonor Sánchez-Pérez⁵, Salud Pérez-Gutiérrez⁴, and Nimsi Campos-Xolalpa⁴,

- ¹ Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Ciudad de México 04960, Mexico; sarai_168@hotmail.com
- ² Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico; mg.valladares@uaem.mx
- ³ Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico; davidos@uaem.mx
- ⁴ Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Ciudad de México 04960, Mexico; jperez@correo.xoc.uam.mx
- ⁵ Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Ciudad de México 04960, Mexico; tlsperez@correo.xoc.uam.mx
- * Correspondence: msperez@correo.xoc.uam.mx (S.P.-G.); nimsicaxo@hotmail.com (N.C.-X.)

Abstract: *Euphorbia* is a large genus of the Euphorbiaceae family. Around 250 species of the *Euphorbia* genus have been studied chemically and pharmacologically; different compounds have been isolated from these species, especially diterpenes and triterpenes. Several reports show that several species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as abietanes, ingenanes, and lathyranes. In addition, it was found that some diterpenes isolated from different *Euphorbia* species have anti-cancer activity. In this review, we included compounds isolated from species of the *Euphorbia* genus with anti-inflammatory or cytotoxic effects published from 2018 to September 2023. The databases used for this review were Science Direct, Scopus, PubMed, Springer, and Google Scholar, using the keywords *Euphorbia* with anti-inflammatory or cytotoxic activity. In this review, 68 studies were collected and analyzed regarding the anti-inflammatory and anti-cancer activities of 264 compounds obtained from 36 species of the *Euphorbia* genus. The compounds included in this review are terpenes (95%), of which 68% are diterpenes, especially of the types ingenanes, abietanes, and triterpenes (approximately 15%).

Keywords: Euphorbia genus; anti-inflammatory; anti-cancer activities

1. Introduction

Inflammation is a homeostatic defense of the body against any injurious stimulus, whether physical, chemical, or biological [1]. It is characterized by the presence of pain, redness, swelling, heat, and loss of function, and it can be classified as acute or chronic. Acute inflammation is a protective response that disappears within minutes, hours, or a few days after the stimulus or injury. It is characterized by the release of phagocytes and mediators that act on endothelial cells, causing changes in vascular permeability and generating the migration of leukocytes and plasma proteins to produce edema. At this level, a generalized systemic reaction is triggered, and it is dynamic to resolve the inflammation. If unresolved, there is a risk that the inflammation could become chronic [2].

Chronic inflammation is long-term, lasting months to years, and it is characterized by the infiltration of macrophages, lymphocytes, and plasma cells into the injured tissue. It is a proliferation of fibroblasts and small blood vessels [2] producing pro-inflammatory cytokines, such as tumor necrosis factor- α (TNF- α), interleukin 6 (IL-6), and IL-8, and they stimulate reactive oxygen species (ROS), which are involved in modulating inflammation and activating the transcription factor NF- $\kappa\beta$ [3].

Citation: Rojas-Jiménez, S.; Valladares-Cisneros, M.G.; Salinas-Sánchez, D.O.; Pérez-Ramos, J.; Sánchez-Pérez, L.; Pérez-Gutiérrez, S.; Campos-Xolalpa, N. Anti-Inflammatory and Cytotoxic Compounds Isolated from Plants of *Euphorbia* Genus. *Molecules* 2024, 29, 1083. https://doi.org/10.3390/ molecules29051083

Academic Editor: Athina Geronikaki

Received: 19 January 2024 Revised: 19 February 2024 Accepted: 26 February 2024 Published: 29 February 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Currently, in the treatment of inflammatory problems, steroidal (SAIDs) and nonsteroidal anti-inflammatory drugs (NSAIDs) and disease-modifying antirheumatic drugs (DMARDs) are used. However, their constant or long-term use produces undesirable side effects on the renal, liver, gastric, cardiovascular, and central nervous systems [4].

The progress and permanence of inflammation are the reasons for most chronic diseases, and inflammation presents one of the major threats to the health and longevity of persons. Chronic inflammation is involved in several diseases, including, for example, Alzheimer's, type 2 diabetes, obesity, hypertension, and cancer [5].

Cancer is a disease where some cells of the body grow uncontrollably and can blowout to other organs of the body; this disease is caused by mutations, and the inflammation process produces oxidative stress, which causes damage to DNA and initiates signaling pathways, thus deregulating the cell cycle and increasing the risk of developing cancer [6]. The most common treatment for cancer is chemotherapy, which produces side effects and can result in resistance to the compounds used [7].

Since ancient times, many cultures have used plants for therapeutic purposes as an important source of natural products for treating different health problems, such as inflammation and cancer. Recently, the research on medicinal plants has been increasing [8]; about 80% of chemotherapeutic drugs have been obtained from plants in addition to anti-inflammatory compounds [9].

Ethnobotany

The Euphorbiaceae family is one of the most diverse families of flowering plants of angiosperms. This family contains around 6745 species in 317 genera, distributed mainly in the tropics and subtropics of the world [10]. In Mexico, *Euphorbia* species are found mainly in Nayarit, Veracruz, Chiapas, Michoacán, Oaxaca, Jalisco, Guerrero, Puebla, Sonora, Sinaloa, and Tamaulipas. Only about 250 species of the *Euphorbia* genus have been studied chemically and pharmacologically [11,12]; from these species, terpenes, flavonoids, alkaloids, coumarins, cyanogenetic glycosides, and mainly tannins have been isolated. Several reports show that some species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as tiglians, ingenanes, and dafnanes. In addition, it was found that some diterpenes isolated from different *Euphorbia* species have anti-inflammatory and cytotoxic activity against some types of cancer [13–15].

The aim of this review is to provide an overview of scientific studies on 264 natural products isolated from 36 species of the *Euphorbia* genus with anti-inflammatory and cytotoxic activities reported from 2018 to September 2023. In Table 1 are shown the different species evaluated in this review.

Species	Collection Place	Plant Material	Extract Solvent
E. alatavica [16]	China	Stems	Acetone
L. antiquomum [17,10]	Thailand	Aerials parts	Methanol
E. unuquorum [17,10]	China	Stems	Methanol
<i>E. atoto</i> [19]	China	Aerial parts	Ethanol
E. balsamifera [20]	Saudi Arabia	Aerial parts	Ethanol
E. dendroides [21]	Egypt	Aerial parts	Methanol
E. denticulata [22]	Iran	Whole plant	Acetone
	China		Ethanol
E. ebracteolata [23–27]	Korea	Roots	Methanol
	China		Ethanol

Table 1. Species of Euphorbia analyzed in this review, 2018–2023.

Species	Collection Place	Plant Material	Extract Solvent
E. Gosheniana [20, 22]	Mongolia		Ethanol
<i>E. fischerunu</i> [28–33] –	China	- Koots	Acetone
E. formosana [34]	Taiwan	Roots	Methanol
E. gedrosiaca [35]	Iran	Aerial parts	Dichloromethane: Acetone
E. glomerulans [36]	China	Whole plant	Acetone
E. grandicornis [37 38]	South Africa	Aerial parts and roots	Dichloromethane
	Hungary	Aerial parts	Methanol
E. grantii [39]	Egypt	Aerial parts	Methanol
		1471 1 1 4	Ethanol
E. helioscopia [40–42]	China	Whole plant	Methanol
		Aerials parts	Ethanol
E. hypericifolia [43]	China	Aerial parts	Ethanol
E. kansuensis [44,45]	China	Roots	Ethanol
E. kansui [46–48]	China	Roots	Ethanol
E. kopetdaghi [49]	Iran	Aerial parts	Dichloromethane: Acetone 2:1
E. láctea [50]	Thailand	Aerial parts	Ethanol
			Ethanol
	China		Petroleum Ether
			Ethanol
			Ethanol
E. lathuris [51–60]		Seeds	Petroleum Ether
2			Ethanol
			Ethanol
			Ethanol
-	South Korea	Seeds	Methanol
	China	Whole plant	Ethanol
<i>E. maculata</i> [61,62] –	Japan	Whole plant	Methanol
E. microsphaera [63]	Iran	Aerial parts	Chloroform
	Taiwan	Stems	Ethanol
E. neriifolia [64–67]		Aerial parts	Ethanol
, . .	China	Whole plant	Acetone: Water 3:1
E. pedroi [68]	Portugal	Aerial parts	Methanol
E. pekinensis [69]	China	Roots	Ethanol
E. peplus [70]	China	Leaves	Methanol
E. pulcherrima [71]	Pakistan	Whole plant	Methanol
E. resinifera [72]	China	Latex	Methanol
E. saudiarabica [73]	Saudi Arabia	Aerial parts	Methanol
E schimperiana [74]	Saudi Arabia	Aerial parts	Ethanol

Species	Collection Place	Plant Material	Extract Solvent
E. stracheyi [76]	China	Whole plant	Methanol
E. thymifolia [77]	China	Aerial parts	Ethanol
	Vietnam	Whole plant	Ethanol
<i>E. tirucalli</i> [78–80]	Brazil	Sap	Hexane
E. umbellata [81]	Brazil	Latex	H ₂ SO ₄ 1%
E. wallichii [82,83]	China	Whole plant	Methanol

In Table 2 is shown the anti-inflammatory activity of the compounds obtained from 16 species of *Euphorbia*.

Table 2. The anti-inflammatory activity of the compounds obtained from 16 species of *Euphorbia*.

Species	Active Compounds	Biological Model	Results	Ref.
	Ent-15-Acetoxylabda-8(17),13E-diene-3-one (1)		IC ₅₀ (μM)11.7	
	Ent-15-Oxolabda-8(17),13E-diene-3-one (2)		12.5	
	Ent-13-epi-8,13-epoxy-14α,15- isopropylidenedioxylabdane-3-one (3)	Griess assay	44.6	
	Ent-3β,20-Epoxy-3α-hydroxy-15-beyeren-18- acetate (4)	J774.A1 cells stimulated LPS NO	36.6	[17]
	Ent-3β,20-epoxy-3α-hydroxy-18-norbeyer-15- ene (5)		40.4	
	Rhizophorin B (6)		16.1	
	Ent-15-Acetoxylabda-8(17),13E-diene-3-one (1)	Western blot iNOS	IC ₅₀ (μM) 11.7	
E. antiquorum	Ent-15-Oxolabda-8(17),13E-diene-3-one (2)		12.5	
	Euphorin A (7)	Griess assay BV-2 cells stimulated LPS NO	IC ₅₀ (μM) 35.8	
	Euphorin B (8)		41.4	[18]
	Euphorin D (9)		32.0	
	Euphorin E (10)		40.7	
	3,12-O-diacetyl-7-O-[(E)-2-methyl-2-butenoyl]- 8,12-diepjing-ol (11)		49.2	
	3,12-diacetyl-8-benzoylingol (12)		14.5	
	12-O-acetyl-8-O-benzoylingol-3-tiglate (13)		14.9	
	Ent-(3α,5β,8α,9β,10α,12α)-3-hydroxyatis-16- en-14-one (14)		31.6	
	3-oxo-ent-trachyloban-17-oic acid (15)	Griess assay RAW264 7 cells	IC ₅₀ (μM) 41.61	[19]
E. atoto	Ent-kauran-16β-ol-3-one (16)	stimulated LPS	16.00	[]
	Ent-16-hydroxy-3-oxosanguinane (17)	NO	33.41	
		Griess assay RAW264.7 cells stimulated LPS NO	IC ₅₀ (µg/mL) 2.39	
E. ebracteolata	Ebractenoid F (18)	SEAP Assay NF-kB	Decreased NF-kB. Inhibited the phosphorylation of Akt and mitogen-activated protein kinases (MAPKs)	[24]
		Western blot	Inhibited levels of IL-6 and IL1	

Species	Active Compounds	Biological Model	Results	Ref.
	Ebractenoid O (19)		IC ₅₀ (μM) 6.04	
	Ebractenoid P (20)	-	10.23	
	Ebractenoid Q (21)	-	1.97	
E. ebracteolata	γ-pyrone-3- <i>O</i> -β-D-(6-galloyl)-glucopyranoside (22)	Griess assay RAW264.7 cells stimulated	42.49	[27]
	Tricyclohumuladiol (23)	- LPS NO	13.21	
	Ingenol (24)	-	6.25	
	Ingenol-20-acetate (25)	-	6.73	
	Langduin A4 (26)	_	18.50	
E. fischeriana	Bisfischoid A (27)	Assay Inhibition of sEH	IC ₅₀ (μM) 9.90	[30]
2	Bisfischoid B (28)	_ ,	10.29	[]
	Euphormin A (29)	Superoxide Anion	IC ₅₀ (μM) 4.51	
	Euphormin B (30)	In human neutrophils	3.68	
	Larixol (31)	methionyl-L-leucyl-L-	3.81	
	Methylbrevifolincarboxylate (32)	phenylalanine/cytochalasin - B	0.68	
	Brevifolin (33)		1.39	
E. formosana	Euphormins A (29)	- Flastasa Poloaso -	IC ₅₀ (μM) >10	[34]
	Euphormins B (30)	_ In human neutrophils	>10	
	Larixol (31)	stimulated with formyl-L	>10	
	Methylbrevifolincarboxylate (32)	phenylalanine/cytochalasin B	>10	
	Brevifolin (33)		>10	
	epi-manool (34)		8.07	
E. helioscopia	Euphohelide A (35)	Griess assay _ RAW264.7 cells	IC ₅₀ (μM) 32.98	[40]
21100000000	Helioscopinolide C (36)	stimulated LPS NO	33.82	[10]
	Euphkanoid A (37)		IC ₅₀ (μM) 9.41	
	Euphkanoid B (38)		11.3	
	Euphkanoid C (39)		5.92	
	Euphkanoid D (40)	_	24.5	
	Euphkanoid E (41)	_	35.3	
E konouonoio	Euphkanoid F (42)	Griess assay RAW264.7	4.8	[44]
L. KUNSUENSIS	Prostratin (43)	_ NO	45.9	נדדן
	Phorbol-13-acetate (44)	_	44.8	
	12-deoxyphorbol-13,20-diacetate (45)	_	37.9	
	Phorbol (46)	_	47.0	
	12-deoxyphorbol (47)	_	35.7	
	12-deoxyphorbol-13-hexadecanoate (48)	_	24.3	
	Helioscopinolide A (49)		23.5	
	Cynsaccatol L (50)	Na+-K+-ATPase Analysis	Induced inactivation of AKT and ERK due to the downregulation of ATP1A1 expression	
E. kansui	Cynotophylloside B (51)	Western blot	Inhibited the phosphorylation of AKT and mTOR, as well as upregulating the expression of LC3-Band p62	[46,47]

Species	Active Compounds	Biological Model	Results	Ref.
	Cynsaccatol L (50)		IC ₅₀ (μM)	
	Cynotophylloside B (51)	–	9.10	[46,47]
	Kidjolanin (52)		30.7	
	Wilfoside G (53)		1.77	
	Cynotophylloside J (54)	- stimulated LPS NO	17.39	
	Maslinic acid (55)		17.38	
	Kidjoranin 3-O-α-diginopyranosyl-(1 \rightarrow 4)-β- Cymaropyranoside (56)	-	2.79	
	Euphorkan A (57)		IC ₅₀ (μM) 4.90	
	Euphorkan B (58)	_	10.4	
	3-O-(2,3-dimethylbutanoyl)-13-O-dodecanoyl- 20-O-acetylingenol (59)	-	5.69	
E. kansui	3-O-(2,3-dimethylbutyryl)-13-O-n-dodecanoyl- 13-hydroxyingenol (60)	- Griess assay	5.80	
	3-O-(2'E,4'E-decadienoyl) ingenol (61)	RAW264.7 cells stimulated	2.78	
	3-O-(2'E,4'Z-decadienoyl) ingenol (62)	- LPS NO	10.6	
	3-O-(2'E,4'Z-decadienoyl)-20-O-acetylingenol (63)	-	2.86	[48]
	20-O-(2'E,4'E-decadienoyl) ingenol (64)	Luciferase assay	9.05	
	20-O-(2'E,4'Z-decadienoyl) ingenol (65)		9.45	
	20-O-acetyl-[5-O-(2'E,4'Z)-decadienoyl]- ingenol (66)		4.60	
	13-O-docecanoylingenol (67)		8.86	
	Euphorkan A (57)		IC ₅₀ (μM) 11.0	
	3-O-(2'E,4'E-decadienoyl) ingenol (61)		17.9	
		Cytokines were determined using ELISA	SHI-induced inflammatory cell infiltration and IL-1β, IL-6, TNF-α were decreased	
E. lathyris	Euphorbia Factor L1 (68)	Western blot	Treatment with EFL1 downregulated DDR1 protein expression and immuno-reactivity in SHI mice, leading to the surge of CD4+, CD8+, and CD49b+ (NK) T cells	[52]
		Fibroblast-like synoviocytes (FLSs)	Ameliorated inflammatory phenotype FLSs (decreased viability, migration, invasion, and cytokine production)	
Euphorbia Factor L3 (69)	Collagen-induced arthritis (CIA)	Inhibited arthritic progression	[53]	
		Wester blotting and immunofluorescence	Inhibited nuclear translocation of the p65	
		Molecular analysis	Target of EFL3 is RACI	
		Griess assay RAW264.7 cells stimulated LPS NO	IC ₅₀ (μM) 7.50	
	Euplarisan A (70)	Enzyme-linked immunoassay (ELISA)	Inhibited IL-1β, IL-6, and TNF-α	[54]
		Western blot assay	Decreased the expression of iNOS, COX-2, and p-ΙκΒα	

Species	Active Compounds	Biological Model	Results	Ref
	Lathyranoic acid A (71)		% Inhibitory 74.51	
	Euphorbia Factor L3 (69)		61.85	-
	Euphorbia Factor L31 (72)	- Griess assay — BV-2 cells stimulated LPS	50.46	- [55]
	Euphorbia Factor L30 (73)	NO	50.01	
	Euphorbia Factor L9 (74)		63.68	_
	Euphorbia Factor L11 (75)		76.66	_
	Euphorbia Factor L3 (69)	Griess assay RAW264.7 cells stimulated LPS NO	IC ₅₀ (μM) 11.24	[56]
	Euphorbia Factor L29 (76)		IC ₅₀ (μM) 47.9	
	Euphordracunculin C (77)		12.7	-
	Epoxyboetirane A (78)		26.2	_
	Euphorbia Factor L1 (68)		12.7	-
	Deoxy Euphorbia Factor L1 (79)		47.0	_
	Euphorbia Factor L2 (80)		16.2	-
	Euphorbia Factor L3 (69)		15.0	_
	Euphorbia Factor L7a (81)		44.4	-
	Euphorbia Factor L7b (82)	- Griess assay — RAW264.7 cells stimulated	23.9	
	Euphorbia Factor L8 (83)	- LPS -	30.3	_ [60
	Euphorbia Factor L9 (74)	NO	11.2	- - -
	Euphorbia Factor L17 (84)		48.5	
	Euphorbia Factor L22 (85)		16.6	
	Euphorbia Factor L23 (86)		19.5	
	Euphorbia Factor L24 (87)		18.2	
	Euphorbia Factor L25 (88)		28.9	-
	Jolkinol A (89)	·	12.5	-
	Spiromaculatol A (90)		IC ₅₀ (μM) 23.1	- - [61]
	Spiromaculatol B (91)		17.4	
	Spiromaculatol C (92)	Griess assay	8.8	
	Euphomaculatoid B (93)	RAW264.7 cells — stimulated LPS NO	31.3	
	Euphomaculatoid D (94)		15.9	
	Spiropedroxodiol (95)		12.7	-
	Spiroinonotsuoxodiol (96)		20.6	_
	4-methyl-3,7-dihydroxy-7 ($8 \rightarrow 9$) <i>abeo</i> -lanost-24 (28) -en-8-one (97)		ID ₅₀ (nM/ear) 803	
	24-hydroperoxylanost-7,25-dien-3β-ol (98)		356.3	-
E. maculata	3-hydroxycycloart-25-ene-24-hydroperoxide (99)		301.7	
	3β-hydroxy-26-nor-9,19-cyclolanost-23-en-25- one (100)		558	
	Cicloart-23(24)-ene-36,25-hydroxy (101)	- Ear edema in induced	355.7	-
	(23 <i>E</i>)-3,25-dihydroxythirucalla-7,23-diene (102)	Ear edema in induced mouse by TPA	855	- [62
	(23Z)-3,25-dihydroxy-thyrucalla-7,23-diene (103)		1087	-
	Obtusifoliol (104)		87.7	_
	4α, 14α-dimethyl-5α-ergosta-7,9 (11), 24 (28) -trien-3β-ol (105)		363.1	-
	Gramisterol (106)		204	-
	Cycloeucalenol (107)		463.9	-

Species	Active Compounds	Biological Model	Results	Ref
	Neritriterpenol H (108)	Griess assav	All compounds	
	Neritriterpenol I (109)	RAW264.7 cells stimulated inhibited	inhibited IL-6	
	Neritriterpenol J (110)	LPS		
	Neritriterpenol K (111)			
	Neritriterpenol L (112)		Compliantian in a	64
E. neriifolia	Neritriterpenol M (113)	ELISA kits	dose-dependent manner	
	Neritriterpenol N (114)	-		
	11-Oxo-kansenonol (115)			
	Sooneuphanone B (116)	Criege access	% inhibition 20 (µg/mL) 58.4%	
	(23 <i>E</i>)-eupha- 8,23-diene-3β,25-diol-7-one (117)	RAW264.7 cells stimulated		[65]
	(+)-(24S)-eupha-8,25-diene-3β,24-diol-7-one (118)	LPS NO	27–39%	[]
	(24R)-eupha-8,25-diene-3β,24-diol-7-one (119)			
	Euphopepluanone N (120)	– Griess assay	Individual NO	[70]
	Euphopepluanone B (121)			
E. peplus	(2 <i>S*</i> , 3 <i>S</i> , 4 <i>R*</i> , 5 <i>R*</i> , 7 <i>S*</i> , 13 <i>R*</i> , 15 <i>R*</i>)–3, 5, 7,15-tetraacetoxy-9, 14-dioxojatropha-6(17), 11 <i>E</i> -diene (122)	RAW264.7 stimulated LPS	production	
	11E-diene-9, 14-dione (123)	- Inhibited generation of RT-qPCR analysis cytokines (II-6, IL-1β, TNF-α)		
	(11 <i>E</i> , 2 <i>S</i> , 3 <i>S</i> , 4 <i>R</i> , 5 <i>R</i> , 7 <i>S</i> , 13 <i>R</i> , 15 <i>R</i>)-3, 5, 7,15-tetraacetoxy-9, 14-dioxojatropha-6(17), 11 <i>E</i> -diene (122)		Inhibited generation of cytokines (II-6, IL-1β, TNF-α)	
	Spinacetin (124)	Paw edema induced by Carrageen	% Edema inhibition 79.22	[71]
E. pulcherrima	Patuletin (125)		89.01	
	Spinacetin (124)	Paw edema histamine	78.33	
	Patuletin (125)	model	94.00	
	Euphatexols C (126)		IC ₅₀ (μM) 22.30	
E resinifera	Euphatexols D (127)	Griess assay RAW264.7 cells stimulated	48.04	[72]
2110011190111	Euphatexols E (128)	- LPS	21.89	
	Euphatexols F (129)	-	38.15	
	Euphatexols G (130)		41.15	
	(1 <i>S</i> , 2 <i>R</i> , 5 <i>R</i> , 6 <i>S</i> , 7 <i>R</i> , 8 <i>R</i> , 10 <i>R</i> , 11 <i>S</i>)-4-oxo-2- methoxy-6-angeloyloxy-pesudoguai-8,12-olide (131)	$\begin{array}{c} \text{IC}_{50} \ (\mu\text{M}\\ 6.46 \end{array} \\ \hline \\ \text{Griess assay}\\ \text{BV-2 stimulated LPS}\\ \text{NO} \end{array} \\ \hline \hline \\ \hline \\ 0.41 \end{array}$	IC ₅₀ (μM) 6.46	[77]
E. thymifolia	Minimolide B (132)		15.32	
	4-oxo-2-ethoxy-6-tigloyloxy-pesudoguai-8,12- olide (133)		7.15	
	6-O-angeloylplenolin (134)		0.41	
	6-O-tigloyl-11,13-dihydrohelenalin (135)	-	0.54	
E analli 1.''	Ioll/inol: Jo P (124)	Griess assay RAW264.7 stimulated LPS NO	IC ₅₀ (μM) 3.84	
E. Wallichii	JOIKINOIIDE B (136)	ELISA assay IL-6 TNF-α	IC ₅₀ (μM) >4 >16	[82]

Species	Active Compounds	Biological Model	Results	Ref.
		Griess assay RAW264.7 stimulated LPS NO	IC ₅₀ (μM) 3.84	
E. wallichii	E. wallichii Wallkaurane A (137)	ELISA assay	The production of inflammatory cytokines (IL-6 and TNF-α)	[83]
		Western blot	Increased the expression of the antiapoptotic marker Bcl-2. Decreased the expression of iNOS and COX-2	

J774.A1 cells macrophages isolated from ascites of female mice with reticulum cell sarcoma; RAW264.7 cells are a macrophage-like, Abelson leukemia virus-transformed cell line derived from BALB/c mice; BV-2 cells are a unique type of microglial cells derived from C57/BL6 murine; Griess assay is a colorimetric method for the quantitative analysis of nitrites; CCK-8 assay: Cell Counting Kit-8 using WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt); LPS: Lipopolysaccharide or endotoxin is the major component of the outer membrane of Gram-negative bacteria; DDR1: Discoid in domain receptor 1; TPA: 12-O-Tetradecanoylphorbol-13-acetate; NO: nitric oxide; IL-1β: Proinflammatory cytokine 1β; IL-6: Proinflammatory cytokine 6; TNF-α: tumor necrosis factor α; NF-kβ: Nuclear Factor enhancer of kappa light chains of activated B cells; iNOS: Inducible Nitric Oxide Synthase; SOD: Superoxide Dismutase; sEH: Soluble Epoxide Hydrolase; RT-qPCR: Quantitative real-time PCR.

In Figures 1–10 are shown the structures of the compounds that evaluated their anti-inflammatory activity.

Figure 1. Structures of compounds isolated from E. antiquorum.

Figure 2. Structures of compounds isolated from *E. atoto* and *E. ebracteolata*.

Figure 3. Structures of compounds isolated from *E. fischeriana* and *E. formasana*.

Figure 4. Structures of compounds isolated from *E. helioscopia* and *E. kansuensis*.

Figure 5. Structures of compounds isolated from *E. kansui*.

Figure 6. Structures of compounds isolated from E. lathyris.

Figure 7. Structures of compounds isolated from *E. maculata*.

Figure 8. Structures of compounds isolated from E. neriifolia.

Figure 9. Structures of compounds isolated from *E. peplus* and *E. pulcherrima*.

Figure 10. Structures of compounds isolated from *E. resinifera*, *E. thymifolia*, and *E. wallichii*.

In Table 3 is shown the anti-cancer activity of the compounds obtained from 27 species of *Euphorbia*.

Species	Compounds	Biological Model	Result	Ref
	3α,7α,12α-trihydroxyisopimara-8(14), 15-diene (Alatavnol A) (138)	MTT assay MCF7 A549	IC ₅₀ (μg/mL) 14.327 12.033	
E. alatavica	Helioscopinolide A (49)	HeLa MCF7	23.802 33.476	[16]
	Jolkinolide E (139)	MCF7	22.066	
E. balsamifera	Kampferol-3,4'-dimethyl ether (140)	MTT assay HePG2 MCF7	IC ₅₀ (μM) 42.67 44.90	[20]
E. dendroides	23 <i>R/S</i> -3β-hydroxycycloart-24-ene-23- methyl ether (141)	MTT assay HepG2 Huh-7 KLM-1 1321N1 HeLa	$\begin{array}{c} \mathrm{IC}_{50}\;(\mu\mathrm{M})\\ 20.67\\ 16.24\\ 22.59\\ 25.99\\ 40.50 \end{array}$	[21]
	24-methylene cycloartan-3β-ol (142)	HepG2 Huh-7 KLM-1 1321N1 HeLa	10.93 7.42 21.48 12.32 13.68	[1]

 Table 3. The cytotoxic activity of the compounds obtained from 27 species of *Euphorbia*.

Species	Compounds	Biological Model	Result	Ref
		HepG2	12.81	
	Cycloart-23-ene-3β,25-diol	Huh-7	< 0.47	
	monoacetate (143)	KLM-1	22.48	
_		1321N1	25.17	
		HepG2	12.72	-
	20 budrowy avaloant 22 ava 25	Huh-7	< 0.44	
E. dendroides	sp-nyuroxy-cycloart-25-ene-25	KLM-1	< 0.44	[01]
	metryretter (144)	1321N1	0.63	[21]
		HeLa	3.7	
		HepG2	15.54	-
	24D/C 20 hardware 25	Huh-7	16.33	
	$24K/5-3\beta$ -nydroxy-25-	KLM-1	22.38	
	methylenecycloartan-24-ol (145)	1321N1	13.53	
		HeLa	>4.52	
	12-taraxast-3β, 19, 21 (α)-triol (146)		IC 50 (µM)	
E donticulata	Cycloartane-3 25-diol (147)	 MTT assay 	12.2	[22]
<i>L.</i> иеписишии		– DU-145	27.5	[22]
	Cycloartane-3,24, 25-triol (148)		18.3	
	Euphebracteolatin C (149)	CCK-8 assay	$IC_{50} \mu M$	
		HepG2	14.29	
		MCF7	34.81	
		A549	40.85	_
		HepG2	23.69	
	Euphebracteolatin D (150)	MCF7	28.62	
		A549	39.25	[23]
		HepG2	38.96	-
	Euphebracteolatin E (151)	MCF7	29.67	
	1 , , ,	A549	36.27	
		HepG2	12.33	-
	Euphorpekone B (152)	MCF7	25.29	
		A549	38.82	
E. ebracteolata		MTS assav	IC ₅₀ (µM)	
		HL-60	5.2	
		SMMC-7721	3.8	[05]
	Jolkinolide B (136)	A549	11.9	[25]
		MCF-7	16.2	
		SW480	10.2	
		MTT assav	IC ₅₀ (µM)	
	Euphoroid B (153)	A549	22.87	
		A549	28.7	-
		MCF-7	28.57	[26]
	Euphoroid C (154)	Lovo	27.0	[20]
		HepG2	28.0	
	Jolkinolide A (155)	A549	18.56	-
		MTT assav	$IC_{=0}$ (IIM)	
	12-deoxyphorbol-13-(9Z,12Z)-	HeLa	3.54	
F fischeriana	octadecadienoate (156)	HepG2	8.32	[28]
носнетини	12-deoxyphorbal 12	Hela	5 72	_ [40]
	dimethylpentadecapoate (157)	HenC?	11 45	
	unneury pertadecatioate (157)	TiepG2	11.40	

Species	Compounds	Biological Model	Result	Ref
		MTT Assay	IC ₅₀ (µM)	
		MDA-MB-231	21.8	
		HCT-15	28.57	
	Euphonoid H (158)	RKO	20.46	
		C4-2B	5.52	
		C4-2B/ENZR	4.16	
		MDA-MB-231	7.95	-
		HCT-15	12.45	[29]
	Euphonoid I (159)	RKO	8.78	
		C4-2B	4.49	
		C4-2B/ENZR	5.74	
	Raserrane A (160)	C4-2B	34.09	-
	$\mathbf{P}_{\mathbf{r}}$ = \mathbf{P} (1(1))	C4-2B	23.34	-
	Raserrane B (161)	C4-2B/ENZR	36.98	
		MTT assay	IC ₅₀ (μM)	
		HepG2	17.59	
	Fischerianin A (162)	A375	21.46	
	Fischenanni A (102)	HL-60	15.59	
		K562	14.99	
		HeLa	13.24	_
		HepG2	11.23	_ [31]
	Fischerianin B (163)	A375	18.34	
		HL-60	12.82	
		K562	17.82	
		HeLa	5.31	
T (1 1 1		HepG2	14.47	
E. fischeriana		A375	13.34	
	Langduin A (164)	HL-60	20.18	
		K562	13.28	
		HeLa	19.36	_
		HepG2	16.55	-
		A375	9.64	
	Langduin A6 (165)	HL-60	21.03	
		K562	8.46	
		HeLa	11.57	
		MTT assay	IC ₅₀ (μM)	
		C4-2B	9.18	
	Euphonoid A (166)	C4-2B/ENZR	9.70	
		HCT-15	18.3	
		RKO	16.2	_
		C4-2B	13.4	
	Euphonoid B (167)	C4-2B/ENZR	11.1	
		RKO	35.1	_
		C4-2B	17.7	
	Euphonoid C (168)	C4-2B/ENZR	15.2	[32]
		HCT-15	13.4	_
		RKO	21.3	-
		C4-2B	9.23	
	Furtheneoid D (160)	C4-2B/ENZR	15.1	
		HCT-15	23.2	
		RKO	34.4	_
	Eurhanaid E (170)	C4-2B	16.1	-
	Eupnonoia E (170)	CA 2B/ENIZP	22.1	

Species	Compounds	Biological Model	Result	Ref
		C4-2B	24.9	
	Euphonoid F (171)	C4-2B/ENZR	40.1	
		C4-2B	18.1	_
	Euphonoid G (172)	C4-2B/ENZR	20.1	
		C4-2B	7.39	_
		C4-2B/ENZR	9.20	
	Euphonoid H (158)	HCT-15	19.0	
		RKO	22.9	
		C4-2B	cal Model Result $4-2B$ 24.9 /ENZR 40.1 $4-2B$ 18.1 /ENZR 20.1 $4-2B$ 7.39 /ENZR 20.1 $4-2B$ 7.39 /ENZR 9.20 TT-15 19.0 KO 22.9 $4-2B$ 16.3 /ENZR 16.4 TT-15 28.2 KO 42.1 $4-2B$ 2.85 /ENZR 2.42 TT-15 15.2 MB-231 14.5 $4-2B$ 2.22 /ENZR 5.39 TT-15 12.6 KO 15.3 MB-231 8.81 $4-2B$ 10.1 /ENZR 16.1 $4-2B$ 10.1 /ENZR 14.0 $4-2B$ 12.3 /ENZR 14.0 $4-2B$ 4.43 /ENZR 4.43 /ENZR 4.95 /ENZR 4.9	
	Pasorrano B (161)	C4-2B/ENZR		
	Rasellane D (101)	HCT-15	28.2	
		RKO	Result Result 24.9 40.1 18.1 20.1 7.39 9.20 19.0 22.9 16.3 16.4 28.2 42.1 2.85 2.42 15.2 14.5 2.22 5.39 12.6 15.3 8.81 10.1 16.1 12.3 14.0 4.43 5.89 47.9 35.8 30.7 4.95 4.27 25.6 23.3 23.8 14.2 29.9 20.1 37.1 33.1 36.2 26.2	
		C4-2B	2.85	_
	11 and the starburg lide $\mathbf{P}(172)$	C4-2B/ENZR	2.42	
	11-oxo-edracteolatanolide D (1/3)	HCT-15	15.2	
		MDA-MB-231	4DA-MB-231 14.5	
		C4-2B	2.22	_
		C4-2B/ENZR	5.39	
	Caudicifolin (174)	HCT-15 12.6		
		RKO	15.3	
		MDA-MB-231	8.81	_
		C4-2B	10.1	
	Jolkinolide A (155)	C4-2B/ENZR	16.1	
		C4-2B 12.3	_	
	17-hydroxyjolkinolide B (175)	C4-2B/ENZR	14.0	
E. fischeriana		C4-2B	4 43	[32]
		C4-2B/ENZR	5.89	
	Jolkinolide B (136)	C4-2B/ENZR 5.39 HCT-15 12.6 RKO 15.3 MDA-MB-231 8.81 C4-2B 10.1 C4-2B/ENZR 16.1 C4-2B/ENZR 14.0 C4-2B/ENZR 5.89 HCT-15 47.9 RKO 35.8 MDA-MB-231 30.7 C4-2B/ENZR 4.95 C4-2B/ENZR 4.27 HCT-15 25.6	47.9	
	, , , , , , , , , , , , , , , , , , ,	RKO	$\begin{array}{c} 2.85\\ 2R & 2.42\\ 15.2\\ 31 & 14.5\\ \hline \\ 2.22\\ 2R & 5.39\\ 12.6\\ 15.3\\ 331 & 8.81\\ \hline \\ 10.1\\ 2R & 16.1\\ \hline \\ 12.3\\ 2R & 14.0\\ \hline \\ 2R & 14.0\\ \hline \\ 2R & 14.0\\ \hline \\ 35.8\\ 31 & 30.7\\ \hline \\ 2R & 4.27\\ 35.8\\ 31 & 30.7\\ \hline \\ 2R & 4.95\\ \hline \\ 2R & 4.27\\ 25.6\\ 23.3\\ \hline \\ 31 & 23.8\\ \hline \\ 14.2\\ \hline \\ 2R & 29.9\\ \hline \\ 20.1\\ \hline \\ 2R & 37.1\\ \hline \end{array}$	
		MDA-MB-231	30.7	
		C4-2B	4.95	-
	Methyl-8,11-3-dihydroxy-12-	C4-2B/ENZR	4.27	
	oxo-ent-abietadi-13,15(17)-ene-16-oate	HCT-15	25.6	
	(176)	RKO	23.3	
		MDA-MB-231	23.8	
		C4-2B	14.2	_
	7-dehydroabietanone (177)	C4-2B/ENZR	29.9	
		C4-2B	20.1	
	Abieta-8,11,13-triene (178)	C4-2B/ENZR	37.1	
	15-hydroxydehydroabietic acid (179)	C4-2B	33.1	_
	$(4\alpha S, 10\alpha S)$ -1,2,3,4,4 α ,10 α -hexahydro-	C4 2B	26.2	
	$1,1,4\alpha$ -trimethyl-7-(1-	C4-2D C4-2R /ENI7D	30.Z	
	methyl)phenanthrene (180)	C4-2D/ EINZIK	20.2	
	2-phenanthrenyl] ethanone (181)	C4-2B	34.0	_
	$(4\beta S,8\alpha S)$ -2-phenanthrenecarboxylic acid,4 β ,5,6,7,8,8 α ,9,10-octahydro-3- hydroxy-4 β ,8,8-trimethyl-methyl ester (182)	C4-2B	23.1	
		C4-2B	21.9	_

Species	Compounds	Biological Model	Result	Ref
	Araucarol (184)	C4-2B C4-2B/ENZR	19.2 34.3	
	Araucarone (185)	C4-2B C4-2B/ENZR HCT-15	16.0 24.1 47.1	-
	Ent-3β, (13S)-dihydroxyatis-16- en-14-one (186)	C4-2B C4-2B/ENZR	13.2 25.3	-
	Ent-(13 <i>R</i> ,14 <i>R</i>)-13,14-dihydroxyatis-16-en- 3-one (187)	C4-2B C4-2B/ENZR HCT-15	18.8 15.2 39.2	-
	Ent-atis-16-ene-3,14-dione (188)	C4-2B	26.7	-
	Ent-(13 <i>S</i>)-13-hydroxyatis- 16-ene-3,14-dione (189)	C4-2B	30.5	[32]
	3-oxoatisane-16α,17-diol (190)	C4-2B C4-2B/ENZR	23.7 29.1	_
	3α-hydroxy-ent-16-kauren (191)	C4-2B	26.2	_
E. fischeriana	Ent-kaurane-3β,16β,17-triol (192)	C4-2B/ENZR HCT-15	21.7 28.1	
	Ent-16β-H-3-oxokauran-17-ol (193)	C4-2B C4-2B/ENZR	22.8 20.1	-
	Ent-kaurane-3-oxo-16β,17-diol (194)	C4-2B C4-2B/ENZR HCT-15	17.0 23.0 43.2	
	Fischerianoid A (195)	MTT assay MM-231 SMMC-7721 HEP3B	IC ₅₀ (μM) 12.10 32.48 15.95	
	Fischerianoid B (196)	HL-60 MM-231 HEP3B SW-480	28.78 9.12 8.50 35.52	_ [33] _
	Fischerianoid C (197)	MM-231 HEP3B	25.45 27.34	
	13β-O-propanoyl-5α-O-methylbutanoyl- 7α,13β-O-diacetyl-17α-O-nicotinoyl-14- oxopremyrsinane (198)	MTT assay MDA-MB-231 MCF-7	IC ₅₀ (μM) 10.8 22.2	
	3β -O-propanoyl-5α-O-benzoyl-7α,13β, 17α-O-triacetyl-14-oxopremyrsinane (199)	MDA-MB-231 MCF-7	22.2 27.8	-
E. gedrosiaca	3β - <i>O</i> -propanoyl-5α- <i>O</i> -isobutanoyl- 7α,13β,17α- <i>O</i> -triacetyl-14- oxopremyrsinane (200)	MDA-MB-231	24.5	[35]
	3β - <i>O</i> -propanoyl-5α- <i>O</i> -isobutanoyl- 7α,13β- <i>O</i> -diacetyl-17α- <i>O</i> -nicotinoyl-14- oxopremyrsinane (201)	MDA-MB-231	27.3	-
	2,5,7,10,15-O-pentaacetyl-3-O-propanoyl- 14-O-benzoyl-13,17-epoxy-8-myrsinene (202)	MDA-MB-231	33.7	_
E. glomerulans	Euphoglomeruphane H (203)	MTT assay MCF-7/ADR	IC ₅₀ (μM) 39.3	[36]

Species	Compounds	Biological Model	Result	Ref
E. grandicornis	Hexyl(<i>E</i>)-3-(4-hydroxy-3- methoxyphenyl)-2-propenoate (204)	MTT assay MCF-7 HCC70	IC ₅₀ (μM) 23.41 29.45	[37]
- 8	6-Angeloyloxy-20-acetoxy-13- isobutanoyloxy-4,9-dihydroxytiglia-1,6- dien-3-one (205)	MTT assay A549	Cell viability (%) 49.2	[38]
	Eupha-8,24-dien-3β-ol (Euphol) (206)	SRB assay MCF-7 MCF-7ADR	IC ₅₀ (μM) 26.25 27.77	
	Cycloartenyl acetate (207)	MCF-7 MCF-7ADR	25.3 18.56	
E. grantii	Cycloartenol (208)	MCF-7 MCF-7ADR	23.73 15.6	[39]
	Epifriedelinyl acetate (209)	MCF-7 MCF-7ADR	26.18 19.04	
	Euphylbenzoate (210)	MCF-7 MCF-7ADR	3.47 3.22	
		Flow cytometry	The death is induced by apoptosis	
	Euphohelinoid A (211)	SRB assay HepG2 HeLa HL-60 SMMC-7221	$\begin{array}{c} \text{IC}_{50} \ (\mu\text{M}) \\ 24.3 \\ 28.4 \\ 18.6 \\ 29.6 \end{array}$	
	Euphohelinoid B (212)	HepG2 HeLa HL-60 SMMC-7221	10.2 9.3 8.1 9.8	
	Euphohelinoid D (213)	HeLa HL-60 SMMC-7221	34.5 34.1 30.1	
	Euphohelinoid F (214)	HepG2 HeLa HL-60 SMMC-7221	12.5 14.1 13.3 11.1	
E. helioscopia	Euphornin L (215)	HepG2 HeLa HL-60 SMMC-7221	22.8 25.7 13.1 14.3	[41]
	Helioscopianoid O (216)	HeLa HL-60 SMMC-7221	26.2 18.2 19.5	
	Euphoscopin I (217)	HepG2 HeLa HL-60 SMMC-7221	24.1 29.7 14.3 18.7	
	Euphoscopin J (218)	HepG2 HeLa HL-60 SMMC-7221	14.9 13.7 12.4 15.0	

Species	Compounds	Biological Model	Result	Ref
		HepG2	23.3	
		HeLa	29.2	
	Euphoscopin B (219)	HI -60	20.2	[41]
		SMMC-7221	27.1	
E haliocconia		MTT assau	IC ₋₀ (uM)	
L. neuoscopia	Europalida E (220)	MCE 7	$1C_{50}$ (µ1VI)	
	Euphenonolide F (220)	NICF-7	9.3	
		PANC-1	10.7	[42]
	Fundationality (001)	MCF-7	9.8	
	Euphelionolide L (221)	PANC-1	10.3	
			IC ₅₀ (µM)	
	Euphypenoid A (222)	MII assay		
	1 71 ()	HC1-116	12.8	
	20(S) 24(R)-20 24-epoyy-24-			-
E humaricifalia	20(3)/24(R)-20/24-epoxy-24-	HCT-116	26.8	[42]
г. пурепсиони				[43]
	(23E)-25-methoxycycloart-23-en-	HCT-116	7.4	
	3-one (224)			_
	Isomotiol (225)	HCT-116	CT-116 7.4 CT-116 10.6 T assay IC ₅₀ (μM) RKO 3.70 AMB-231 4.15 x375 8 8.27 iCT-15 14.7	
		MTT assay	IC ₅₀ (µM)	
		RKO	3.70	
		MDAMB-231	4 15	
		A 375.8	8 27	
		HCT-15	14.7	
E. kansuensis	Euphorboside A (226)	HCT 15 /5 EU	14.7	[45]
	-	AC1-13/3-FU	15.0	
		A349	16.2	
		A549/CDDP	16.4	
		HepG2	18.8	
		HepG2/DOX	33.2	
		MTT Assay	IC ₅₀ (µM)	
	Wilfoside KIN (227)	HepG2	12.55	
		MCF7	>20	
		Hap C2	19.61	-
	Cynsaccatol L (50)	MCF7	>20	
		INICF7	>20	-
	Kanesulone A (228)	HepG2	18.24	
	Runesulone II (220)	MCF7	>20	
	$3\beta.7\beta.15\beta$ -triacetyloxy- 5α -benzovloxy-			-
	$2\alpha.8\alpha$ -dihydroxyiatropha-6(17) 11F-	HepG2	18.26	
	diene-9, 14-dione (229)	MCF7	>20	
		II CO	. 20	-
E. kansui		HepG2	>20	[47]
		MCF7	17.12	[47]
	13-hydroxyingenol-3-(2 3-	GSC3	1.67	
	dimethylhutanoate)-12-dodocanoato (220)	GSC12	2.75	
	anneury iouanoate/-15-uouecanoate (250)	293T	21.93	
		HAC	19.23	
		T98G	16.77	
		GSC-3	8.89	-
	Euphol (206)	GSC-12	13.0	
			4 71	-
		GSC-3	4./1	
	T 11/201	GSC-12	3.25	
	Lucidal (231)	2931	21.07	
		HAC	30.22	
		T98C	20.77	

Species	Compounds	Biological Model	Result	Ref
E. kopetdaghi	14-Nicotinyl-3,5,10,15,17-pentaacetyl-8- isobutanovl-cyclomyrsinol-7- one	MTT assay MCF-7	IC ₅₀ (μM) 38.10	[49]
1 0	(Kopetdaghinane A) (232)	OVCAR-3	51.23	
E. lactea	Friedelan-3β-ol (233)	HN22 Flow cytometry	It induced an S-phase cell cycle arrest	[50]
		Tumour induced by Mouse 4T1 in BALB/c	Imour induced byDecreased theMouse 4T1 ingeneration of IL- β ,BALB/cIL- 6 , TNF- α	
	Euphorbia Factor L1 (68)	ELISADownregulated DDR1 protein expression and immuno-reactivity in SHI miceWestern blotNo differences were detected in CD4+, CD8+, CD49b+ T cells, and Tregs between the DDR1-OE group and the DDR1-OE+EFL1 groupMTT assayIC ₅₀ (µM) 9.43 HenG2	[51]	
	()	Western blot Flow cytometry	No differences were detected in CD4+, CD8+, CD49b+ T cells, and Tregs between the DDR1-OE group and the DDR1-OE+EFL1 group	[~~]
	15β-hydroxy-5α-acetoxy-3α-benzoyloxy- 7β-nicotinoyloxylathyol (234)	MTT assay MCF-7 HepG2	IC ₅₀ (μM) 9.43 13.22	[57]
E. lathyris	Euphorbia Factor L2 (80)	MTT assay KB KB-VIN	IC ₅₀ (μM) 33.2 7.2	
	Euphorbia Factor L3 (69)	A549 MDA-MB-231 KB KB-VIN MCF-7	14.6 31.6 7.9 8.0 25.9	
	Euphorbia Factor L8 (83)	A549 MDA-MB-231 KB KB-VIN MCF-7	11.8 24.4 17.7 16.9 23.8	[58]
	Euphorbia Factor L9 (74)	A549 MDA-MB-231 KB KB-VIN MCF-7	6.7 21.9 6.1 5.7 8.4	
	Euphorbia Factor L24 (87)	MTT assay HCT116 MCF-7 786-0 HepG2	$\begin{array}{c} \text{IC}_{50} \ (\mu\text{M}) \\ 6.44 \\ 8.43 \\ 15.3 \\ 9.32 \end{array}$	[59]
E. microsphaera	(3aR,4S,4aS,5R,7aS,9aS)-5-hydroxy-5,8- dimethyl-3-methylene-2-oxo- 2,3,3a,4,4a,5,6,7,7a,9a-decahydroazuleno [6,5-b] furan-4-yl acetate (Aryanin) (235)	MTT assay MCF7 24 h 72 h	IC ₅₀ (μg/mL) 13.81 49.35	[63]

Species	Compounds	Biological Model	Result	Ref
	Neritriterpenols A (236)	MTT assay Hep G2	IC ₅₀ (μM) 25.9	
	(+)-(24R)-36 24 25-tribydroxyeuph-8-en-	WiDR	47.2	-
	7-one (Neritriterpenol B) (237)	HepG2	44.0	
	· · · · · · · · · · · · · · · · · · ·	A E 40		-
	Novitritormonal E (228)	A549 Widdr	45.7	
	Nertifierpenoi E (238)	HenC2	Result IC_{50} (μ M) 25.947.244.045.732.335.939.448.936.625.520.537.623.820.832.315.220.417.130.712.212.823.317.98.0IC_{50} (μ M)8.69.14.99.23.84.57.55.73.16.49.5IC_{50} (μ M)13.715.570.01	
		Tiep02	55.7	-
	(+)-(23R,24R)-epoxy-3α,25- dihydroxyeuph-8-en-7-one (Neritriterpenol F) (239)	HepG2	39.4	
	(+)-(24 <i>R</i>)-24,25-dihydroxyeuph-8-en-3,7-	WiDR	48.9	-
	dione (Neritriterpenol G) (240)	HepG2	36.6	
		1	2E E	-
	(23E)-eupha-8,23-diene-3β,25-diol-7-one	WIDP	23.5	
	(117)	HepG2	37.6	[65]
		Tiep02	57.0	-
		A549	23.8	
	$(+)-(24S)$ -eupha-8,25-diene-3 β ,24-diol-7-	WiDR	20.8	
	one (118)	MCF7	32.3	
		HepG2	15.2	-
		A549	20.4	
	(24R)-eupha-8,25-diene-3β,24-diol-7-one	WiDR	17.1	
E. neriifolia	(119)	MCF7	30.7	
		HepG2	12.2	
		A549	12.8	-
		WiDR	23.3	
	Sooneuphanone B (116)	MCF7	17.9	
		HepG2	8.0	
		SRB assav	IC _{TO} (uM)	
	Phonerilin B (241)	A 549	86	
	Thohermit D (241)	HL-60	9.1	
		A E 40	1.0	-
	Phonerilin E (242)	A549	4.9	
		HL-60	9.2	-
	Phonerilin F (243)	A549	3.8	[(()]
	1 Honermit 1 (243)	HL-60	4.5	[00]
		A549	7.5	-
	Phonerilin H (244)	HL-60	5.7	
	20-O-diacetyl-ingenol (245)	HL-60	3.1	-
		A549	6.4	-
	7,12-O-diacetyl-8-O-tigloylingol (246)	HL-60	9.5	
		MTT access	$IC_{-1}(\dots M)$	
	Ent-atisane-3x 16x 17-trial (217)	HenC?	$1250 (\mu M)$	
	$E_{11}^{-ausanc-5u,10u,17-0101}(247)$	HenG2/Adr	15 57	
		Tiep02/Tui	10.07	. [67]
	(4 <i>R</i> ,5 <i>S</i> ,8 <i>S</i> ,9 <i>R</i> ,10 <i>S</i> ,13 <i>R</i> ,16 <i>S</i>)-			
	ent- 16α ,17-dihydroxy-19-	HepG2	0.01	
	tigioyloxykauran-3-one (248)			
		MTT assay	IC ₅₀ (µM)	
		L5178Y-PAR	42.3	
E. pedroi	Spiropedroxodiol (95)	L5178Y-MDR	46.8	[68]
	-	Colo205	16.8	_
		C 1 200		

Species	Compounds	Biological Model	Result	Ref
	β-sitostenone (249)	Colo 205 Colo320	46.6 21.3	
E. pedroi	Cycloart-23-ene-3β,25-diol (250)	L5178Y-PAR Colo 205 Colo320 MRC-5	49.4 16.7 31.6 12.9	[68]
-	Helioscopinolide E (251)	L5178Y-PAR	32.9	
	(11 <i>R</i> ,12 <i>S</i>)-2,11,12-trihydroxy-ent- isopimara-1,7,15-trien-3-one (252)	CCK8 method U-937 LOVO	IC ₅₀ (μM) 25.1 27.7	
	Isopimara-7,15-dien-3β-ol (253)	K-562	0.87	
	Eupneria R (254)	U-937 LOVO	30.5 27	
	Euphodane A (255)	U-937 LOVO K-562	5.9 26.8 32.2	
E. pekinensis	Euphodane B (256)	U-937 LOVO	36.7 35.03	[69]
	Euphodane C (257)	U-937 LOVO K-562	24.5 39.3 31.3	
-	Euphodane D (258)	U-937 LOVO	25.1 29.7	
	Jolkinol B (259)	U-937 LOVO K-562	3.6 8.44 25.3	
E. saudiarabica	Glutinol (260)	MTT assay MCF-7 Flow cytometry	IC ₅₀ (μM) 9.83 Induced apoptosis	[73]
E. schimperiana	3,30-di-O-methylellagic acid (261)	MTT assay PC3	IC ₅₀ (μg/mL) 5.5	[74]
E. sororia	Euphosorophane I (262)	P-gp ATPase activity assay	This compound reversed P-gp-mediated MDR cell (multidrug resistance) by inhibiting the ABCB1 drug efflux function in drug-resistant MCF-7/ADR cells	[75]
E. stracheyi	3-O-benzoyl-20-deoxymgenol (263)	MTT assay HL-60 A-549 SMMC-7721 MCF-7 SW480	IC ₅₀ (μM) 10.5 21.47 18.36 18.82 16.25	[76]

Species	Compounds	Biological Model	Result	Ref
	Tirucadalenone (264)	MTT assay K562	IC ₅₀ (μg/mL) 22	[78]
	Euphol (206)	MTT assay U87-MG U373 U251 GAMG SW1088 SW1783 SNB19 RES186 RES259 KNS42 UW479 SF188 HCB2 HCB149	$\begin{array}{c} \mathrm{IC}_{50}\;(\mu\mathrm{M})\\ 26.41\\ 30.48\\ 29.01\\ 8.73\\ 27.12\\ 19.62\\ 31.05\\ 16.70\\ 10.34\\ 19.94\\ 15.26\\ 5.98\\ 11.66\\ 21.68\end{array}$	[79]
E. tirucalli	Euphol (206)	MTS assay T47D MDA-MB-231 MDA-MB-468 BT20 HS587T MCF-7 MCF7/AZ JHU-O22 HN13 SCC25 SCC4 SCC14 FADU SW480 SW620 CO115 HCT15 HT29 SK-CO-10 DLD1 LOVO DIFI Caco2 U87-MG U373 U251 GAMG SW1088 SW1783 RES186 RES259 KNS42 UW479 SF188 PC-3 LNCaP T24 5637	$\begin{array}{c} \mathrm{IC}_{50} \ (\mu\mathrm{M}) \\ 38.89 \\ 9.08 \\ 30.89 \\ 8.96 \\ 18.15 \\ 18.76 \\ 33.42 \\ 26.35 \\ 8.89 \\ 6.65 \\ 19.82 \\ 15.81 \\ 20.17 \\ 5.79 \\ 10.02 \\ 9.58 \\ 5.47 \\ 6.52 \\ 17.53 \\ 2.56 \\ 11.49 \\ 11.38 \\ 35.19 \\ 26.41 \\ 30.48 \\ 29.01 \\ 8.73 \\ 27.12 \\ 19.62 \\ 16.70 \\ 10.34 \\ 19.94 \\ 15.26 \\ 5.98 \\ 11.95 \\ 1.41 \\ 30.72 \\ 4.83 \end{array}$	[80]

Species	Compounds	Biological Model	Result	Ref
		MCR	7.40	
		DAOY	5.72	
		ONS76	21.72	
		JEG3	16.65	
		A431	17.79	Ref [80]
		H292	13.25	
		SKMES1	25.62	
		A549	11.01	
		SK-LU-1	22.83	
		SIHA	24.74	
		CASKI	24.74	
		C33A	21.32	
		HELA	17.55	
		KYSE30	3.52	
		KYSE70	8.77	
		KYSE270	10.71	
	Furthal (206)	KYSE410	4.35	[00]
F (!	Euphol (208)	Mia PaCa-2	8.46	[00]
E. tirucalli		PANC-1	21.47	[80]
		PSN-1	3.71	
		BXPC-3	5.47	
		Capan-1	16.33	
		COLO858	14.02	
		COLO679	8.93	[80]
		A375	9.67	
		WM1617	16.32	
		WM9	9.67	
		WM852	7.61	
		WM278	27.46	
		WM35	12.40	
		WN793	5.96	
		SKMEL-37	10.07	
		PA-1	7.97	
		SW626	30.40	
		MTT assay	IC ₅₀ (μM)	
E. umbellata	Euphol (206)	K-562	34.44	[81]
	*	HL-70	39.98	_

carboxymethoxyphenyl)- 2-(4-sulfophenyl)- H-tetrazolium; SRB: sulforhodamine B assay; 5637: carcinoma from the urinary bladder; 1321N1: astrocytoma (malignant gliomas); 293T: clone derivative of the human embryonic kidney (HEK) 293 cell line; A375: melanoma; A431: squamous carcinoma; A549: lung cancer; A549/CDDP: Cisplatin resistance in lung cancer; BT20: breast cancer; BXPC-3: pancreatic adenocarcinoma; C33A: cervical cancer; C4-2B: prostate cancer; C4-2B/ENZR: prostate cancer enzalutamide resistant; Caco2: colon cancer; Capan-1: pancreatic adenocarcinoma; CASKI: epithelial cell from the cervix with epidermoid; CO115: colon carcinoma in vitro from solid xenografts; Colo205: colon carcinoma; Colo320: colon carcinoma; COLO679: skin melanoma; COLO858: skin melanoma; DAOY: medulloblastoma; DIFI: colorectal cancer; DLD1: colorectal adenocarcinoma; DU-145: prostate cancer; FADU: hypopharyngeal carcinoma; GAMG: glioblastoma; GSC12: glioma; GSC3: glioma; H292: pulmonary mucoepidermoid carcinoma; HAC: ovarian adenocarcinoma; HCB149: immortalized glioma; HCB2: Primary Glioma; HCC70: epithelial cell from primary ductal carcinoma; HCT116: colon cancer; HCT-15: colorectal adenocarcinoma; HCT-15/5-FU 5-: Fluorouracil Resistance in Colon Cancer; HeLa: Cervix Adenocarcinoma; HEP3B: hepatoma; HepG2: Hepatocarcinoma; HepG2/Adr: hepatoblastoma adriamycin resistant; HepG2/DOX: hepatoblastoma doxorubicin resistant; HL-60: promyelocytic leukemia; HL-70: lymphoblast promyeolocytic leukemia; HN13: squamous cell carcinoma of the oral tongue; HS587T: carcinoma of the breast; HT1376: urinary bladder carcinoma; HT29: colorectal adenocarcinoma; Huh-7: hepatoma; JEG3: choriocarcinoma; JHU-O22: Laryngeal carcinoma; K562: chronic myelogenous leukemia; KB: epithelial carcinoma; KB-VIN: epithelial carcinoma vincristine resistant; KLM-1: pancreatic cancer; KNS42: glioma; KYSE270: esophageal squamous carcinoma; KYSE30: squamous carcinoma; KYSE410: esophageal carcinoma; KYSE70: esophageal carcinoma; L5178Y-MDR: lymphoma multidrug resistant; L5178Y-PAR: lymphoma parental; LNCaP: prostate carcinoma; Lovo: prostate carcinoma; MCF-7: breast cancer; MCF-7ADR: breast cancer adriamycin resistant; MCF7/AZ: breast cancer; MCR: bladder cancer; MDA-MB-231: human breast cancer cell line; MDA-MB-468: breast cancer; Mia PaCa-2: pancreas carcinoma; MM-231: breast cancer; MRC-5: lung fibroblast

(breast cancer); ONS76: medulloblastoma; OVCAR-3: ovarian adenocarcinoma; PA-1: ovarian teratocarcinoma; PANC-1: pancreatic carcinoma; PC-3: prostatic adenocarcinoma; PSN-1: pancreatic carcinoma; RES186: glioma; RES259: glioma; RKO: colon carcinoma; SCC14: head and neck squamous cell carcinoma cell lines; SCC-25: tongue squamous cell carcinoma; SCC4: tongue squamous cell carcinoma; SF188: glioblastoma; SIHA: uterine squamous cell carcinoma; SK-CO-10: colon cancer; SK-LU-1: lung adenocarcinoma; SKMEL-37: melanoma; SKMES1: lungs squamous cell carcinoma; SMMC-7721: hepatocellular carcinoma; SNB19: glioblastoma; SW1088: brain astrocytoma; SW1783: brain astrocytoma; SW480: colon cancer; SW620: colorectal cancer; SW626: ovary adenocarcinoma; T24: urinary bladder carcinoma; T47D: breast cancer; T98G: glioblastoma; U251: glioblastoma; U373: glioblastoma astrocytoma; U87-MG: glioblastoma; U-937: histiocytic lymphoma; UW479: glioma; WiDR: colorectal adenocarcinoma; WM1617: melanoma; WM278: melanoma; WM35: melanoma; WM852: melanoma; WM9: melanoma; WN793: melanoma.

In Figures 11–19 are shown the structures of the compounds that evaluated their cytotoxic activity.

Figure 11. Structures of compounds isolated from *E. alatavica*, *E. balsamifera*, *E. dendroides*, and *E. denticulata*.

Figure 12. Structures of compounds isolated from E. ebracteolata.

Figure 13. Cont.

Figure 13. Structures of compounds isolated from *E. fisheriana*.

Figure 14. Structures of compounds isolated from *E. gedrosiaca, E. glomerulans, E. grandicornis,* and *E. grantii.*

Figure 15. Structures of compounds isolated from *E. helioscopia*.

Figure 16. Structures of compounds from E. hypericifolia, E. kansuensis, E. kansui, and E. kopetdaghi.

Figure 17. Structures of compounds isolated from E. lactea, E. lathyris, E. microsphaera, and E. neriifolia.

Figure 18. Structures of compounds isolated from *E. pedroi* and *E. pekinensis*.

Figure 19. Structures of compounds isolated from *E. saudiarabica*, *E. schimperiana*, *E. sororia*, *E. stracheyi*, and *E. tirucalli*.

2. Discussion

At present, the study of natural products obtained from medicinal plants continues to be of great interest because they provide a wide range of compounds with pharmacological activity against diseases, such as cancer, diabetes, and cardiovascular and chronic respiratory diseases, which, according to the World Health Organization (WHO), are the leading causes of mortality worldwide [84]. Furthermore, these diseases involve acute and chronic inflammatory processes. For this reason, it is of great importance to conduct reviews of scientific studies that provide an overview of the molecules isolated from plants used in traditional medicine, such as those of the *Euphorbia* genus. In this review, 68 studies were collected and analyzed regarding the anti-cancer and anti-inflammatory effects of 264 compounds isolated from 36 species of the *Euphorbia* genus. The anti-inflammatory activity of 104 compounds was evaluated for NO inhibition on macrophages or BV-2-cells stimulated with LPS using the Griess assay. Also, we found that compounds 97–107 have been investigated through vivo studies on ear edema in mice induced with TPA or paw edema induced with carrageenan or histamine. The cytotoxic activity of 147 secondary metabolites was evaluated against human cancer cell lines. Both activities, anti-inflammatory and cytotoxic effects, were evaluated only in 14 metabolites isolated from *E. kansuensis* and *E. alatavica* (49), *E. kansui* (50), *E. lathyris* (68, 69, 74, 80, 83, 87), *E. maculate* and *E. pedroi* (95), *E. nerifolia* (116, 117, 118, 119), and *E. wallichii* and *E. fisheriana* (136).

Some species of the genus *Euphorbia* produce latex, also known as "milky sap." These latexes are characterized by containing a variety of compounds with pharmacological activities [85]. In Table 1 is shown that the latexes obtained from *E. resinifera* and *E. umbellata* were extracted with methanol and a solution of 1% H₂SO₄, respectively. From the methanol extract of *E. resinifera*, latexes were isolated Euphatexols C (126), Euphatexols D (127), Euphatexols E (128), Euphatexols F (129), and Euphatexols G (130); all of them had anti-inflammatory activity (Table 2) [72]. From the latex of *E. umbellata* was obtained Euphol (206); its cytotoxic activity was evaluated on the K-562 and HL-70 cancer cell lines (Table 3) [81].

The compounds included in this review are terpenes (95%), of which 159 are diterpenes, especially abietanes and lathyranes; also, other diterpenes classes have been isolated from plants of the *Euphorbia* genus, such as labdanes (1–3, 255–258), abietanes (35, 36, 49, 136, 149–155,158–161, 166–171,173–190, 195–197, 220, 221, 247, 253, 254), lathyranes (9–11, 68–89, 230, 234, 259), jatrophanes (120–123, 204, 211–219, 228, 229, 262), rosanes (15–21, 138), atisanes (7, 8), kauranes (137, 172, 191–194, 248), beyeranes (4–6), ingenanes (24, 25, 57–67, 241–243, 245, 263), daphnanes (162–165), tiglianes (26, 37, 48, 156, 157), premyrsinanes (198–201), and ingols (12–14, 244, 246).

Abietanes, rosanes, atisanes, beyeranes, and kauranes are characterized by three fused rings of six members, and some carbons are substituted with carbonyl or hydroxyl groups (264). Frequently, an olefin bond is found in the structure (Figure 20) [86].

Figure 20. Hidrocarbon skeleton of *Euphorbia* diterpene classes.

Tiglianes, daphnanes, and ingenanes are characterized by a tetracyclic fused ring. Tiglianes usually have a configuration trans of the fusion of rings A and B and cis for the fusion of rings B and C. Daphnane diterpenoids have a tricyclic skeleton and the fusion of the rings A and B and B and C is trans [86]. Ingenanes diterpenes belong to the polycyclic diterpenoids related to daphnanes and tiglianes [87]; these diterpenes frequently contain hydroxyl and carbonyl groups and double bonds.

Lathyranes, jathropanes, and ingol are macrolides. Lathyranes diterpenes have a fused trycyclic system (5/11/3 members). Jathropanes have a bycyclo [9.3.0] pentadecane skeleton without a ring of cyclopropane. Ingol diterpenes are a subgroup of lathyranes characterized by a 5/11/3 carbon ring system with a 4,15-epoxy ring [88]. Their structure can contain hydroxyl, carbonyl, and ester groups and an olefin bond.

Labdanes are byciclic diterpenes with a branched six-carbon side chain [89]. Premyrsinanes are diterpenes with a [5-7-6-3] tetracyclic ring system [90].

These types of diterpenes show several pharmacological activities, some of which might be used clinically to treat health problems, such as cancer and inflammation [91].

Different researchers have found many diterpenes have anti-inflammatory activity through the inhibition of NF- $\kappa\beta$ activation [86]; also, they diminish in macrophages stimulated with LPS, the production of TNF- α , NO, PGE2, the expression of COX-2, and iNOS mRNA [14].

For example, the factors L3 and L9 diminished the production of NO in LPS-stimulated macrophages by 61.85% and 63.68%, respectively. Also, both compounds had cytotoxic activity against BK (IC₅₀ values of 7.9 and 6.1 μ M, respectively) and BK-VIN (IC₅₀ values of 8 and 5.7 μ M, respectively) [58]. The compounds 1, 2, 70, and 137 promoted the suppression of iNOS expression and consequently decreased inflammation [17,54,83]. iNOS is the enzyme primarily responsible for the release of NO in inflammatory processes.

In another study, it was determined that the compounds Bisfischoid A and B (27, 28) isolated from *E. fischeriana* inhibited the activity of the soluble enzyme epoxide hydrolase (sEH) [30], and the compounds 29–34 obtained from *E. formosana* inhibited azurophilic degranulation of neutrophils [34]. On the other hand, compounds 70, 122, 123, and 137 diminished the levels of pro-inflammatory cytokines IL-1 α , IL-6, and TNF- α [54,70,83]. The compounds 70 and 137 also inhibited the activation of COX-2 [54,83].

The compounds 18, 57, 61, and 69 suppressed NF- $\kappa\beta$, which is a light polypeptide gene enhancer in B cells produced and expressed by macrophages stimulated with LPS [53–55,60]; it promotes vasodilation and vascular permeability of blood vessels, facilitating the formation of edema and the recruitment of inflammatory cells around an injury [92]. For this reason, the compounds that decreased the levels of this polypeptide are candidates to be used in the treatment of inflammation.

Cynsaccatol L (50) isolated from *E. lathyris* shows the highest effect on the inhibition of the production of NO for macrophages stimulated with LPS. This compound regulated the levels of TNF- α and IFN- γ and promoted the phagocytosis of macrophages of the M2 subtype [46]

Cancer is a multifaceted ailment arising from mutations in cell proliferation. Interestingly, chronic inflammation has also been identified as a potential precursor to cancer in certain instances. The onset of cancer-promoting inflammation often precedes the formation of tumors. Notable examples of this connection can be found in certain conditions, such as *Helicobacter*-induced gastritis, chronic hepatitis, inflammatory bowel disease, and schistosomiasis-induced bladder inflammation. These conditions elevate the risk of developing several types of cancer, including, for example, colorectal, liver, stomach, and bladder cancer [93].

Many *Euphorbia* species contain compounds with cytotoxic activity. The mechanism of action of several types of diterpenoids has been investigated, and the results show that these compounds could have cytotoxic activity via induction of apoptosis through the suppression of IL-6-induced and STAT3 activation, the inhibition of topoisomerase II, and the impedance of NF- $\kappa\beta$ activation [86].

The cytotoxic activity was evaluated mainly in the following cell lines: HepG2, MCF-7, C4-2B, CA2B/ENZR, A549, HL-60, HeLa, and more. Table 3 shows that the best cytotoxic effect on an MTT assay was obtained with 142–144 from *E. dendroides* on Huh-7, 156–159,

163, 173, 174, and 176 from *E. fischeriana* on HeLa, C4-2B, and CA-2B/ENZR, 210 from *E. grantii* on MCF7 and MCF7/ADR, 226 from *E. kansuensis* on RKO and MDA-MB-231, 230–231 from *E kansui* on GSC3, 242–243, 245, and 248 from *E. neriifolia* on A549, HL-60, and HepG2, 253 and 259 from *E. pekinensis* on K-562 and U-937, and 206 from *E. tirucalli* on DLD1, LNCaP, 5637, KYSE30, KYSE410, and P5N-1. Also, 136 isolated from several *Euphorbia* species demonstrated cytotoxic activity against HL-60, SMHC-7721, C4-2B, and C4-2B/ENZR.

The compounds factor L1 and Euphosorophane I were evaluated with tests other than cytotoxicity in cancer cell lines [51,75]. Euphosorophane I (262) inhibited the function of transmembrane P-glycoprotein (P-gp), which has the function of an energy-dependent "drug pump." Its overexpression promotes multidrug resistance (MDR). This effect was tested on drug-resistant MCF-7/ADR cells; it was found that compound 262 exhibited a P-gp-mediated MDR reversal [75].

The anti-cancer activity of factor L1 was studied in in vivo and in vitro models. This molecule presented cytotoxic and antitumor activity downregulating DDR1 in the tumor of SHI mice. This compound avoids anti-liver metastasis. Factor L1, Euphylbenzoate, and Glutinol induced cell death through apoptosis [39,51,73].

Factor L2 had a potent cytotoxic activity on A549 and induced apoptosis via the mitochondrial pathway, promoting the release of cytochrome C and the activation of caspase 3 and 9 [94]

3. Methods

The literature search of documents and reviews on the anti-inflammatory and cytotoxic studies of the different species of *Euphorbia* was conducted in the PubMed, Springer, Science Direct, and Google Scholar online databases. The recovered information that is presented was published in the last 5 years. Only studies on isolated compounds were considered. Different in vivo models were used to establish anti-inflammatory activity. With respect to the cytotoxic activity, different in vitro colorimetric methods were used, as well as different cancer cell lines (murine, human, and resistant). Table 1 shows the species, the collection place, the part of the plant, and the bioactive extract studied to isolate the active compounds.

4. Conclusions

In summary, plants of the *Euphorbia* genus are a source of compounds with antiinflammatory and anti-cancer activities. Furthermore, different compounds shown in this review might lead to possible new therapies for inflammation and cancer to increase the options for the treatment of inflammatory diseases that afflict the world. Thirty-six species of *Euphorbia* were studied, and the specie that predominated was *E. lathyris*, which was researched in ten studies.

One hundred forty-one compounds included in this review have anti-inflammatory activity; one hundred forty-three natural products have anti-cancer effects; and ten molecules present both activities.

This review shows that 159 diterpenes were isolated from the *Euphorbia* genus, including 55 abietanes, 27 lathyranes, 17 ingenanes, 16 jathropanes, 8 rosanes, 7 kauranes, 7 labdanes, 5 tiglianes, 5 permyrsinanes, 4 daphnanes, 3 beyeranes, 2 atisanes, and 3 others.

Cynsaccatol (50) isolated from *E. lathyris* shows the greatest effect on the inhibition of the production of NO for macrophages stimulated with LPS. (4R,5S,8S,9R,10S,13R,16S)-ent- 16α ,17-dihydroxy-19-tigloyloxykauran-3-one (248) and Euphorbia factors L1 and L3 have good cytotoxic activity. These results show that the compounds 50, 68, 69, and 248 are promising to develop new drugs.

Author Contributions: Conceptualization, S.P.-G. and N.C.-X.; methodology, S.R.-J.; software, S.R.-J., D.O.S.-S. and L.S.-P.; validation, S.R.-J., S.P.-G. and N.C.-X.; investigation, S.R.-J., M.G.V.-C., D.O.S.-S., J.P.-R., L.S.-P., S.P.-G. and N.C.-X.; data curation, S.P.-G. and S.R.-J.; writing—original draft preparation, S.P.-G., M.G.V.-C. and D.O.S.-S.; writing—review and editing, S.P.-G. and N.C.-X.; visualization,

M.G.V.-C., D.O.S.-S. and L.S.-P.; supervision, S.P.-G. and N.C.-X. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- González-Costa, M.; Padrón-González, A.A. La inflamación desde una perspectiva inmunológica: Desafío a la Medicina en el siglo XXI. *Rev. Haban Cienc. Méd.* 2019, 18, 30–44. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519x2019000100030&lng=es&nrm=iso (accessed on 25 February 2024).
- Kumar, V.; Abbas, A.K.; Fausto, N.; Mitchell, R.N. Robbins Basic Pathology, 10th ed.; McGraw-Hill Interamericana: New York, NY, USA, 2018; pp. 31–68.
- 3. Yang, H.Z.; Wang, J.P.; Mi, S.; Liu, H.Z.; Cui, B.; Yan, H.M.; Lu, W. TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury. *Am. J. Pathol.* **2012**, *180*, 275–292. [CrossRef]
- Oscanoa-Espinoza, T.; Lizaraso-Soto, F. Antiinflamatorios no esteroides: Seguridad gastrointestinal, cardiovascular y renal. *Rev. Gastroenterol. Perú* 2015, 35, 63–71. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1022-512920 15000100007&lng=es (accessed on 25 February 2024).
- 5. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003, 3, 23–35. [CrossRef] [PubMed]
- 6. Fernandes, J.V.; Cobucci, R.N.; Jatobá, C.A.; Fernandes, T.A.; de Azevedo, J.W.; de Araújo, J.M. The Role of the Mediators of Inflammation in Cancer Development. *Pathol. Oncol. Res.* **2015**, *21*, 527–534. [CrossRef] [PubMed]
- Campos-Xolalpa, N.; Alonso-Castro, Á.J.; Sánchez-Mendoza, E.; Zavala-Sánchez, M.A.; Pérez-Gutiérrez, S. Cytotoxic activity of the chloroform extract and four diterpenes isolated from Salvia ballotiflora. *Rev. Bras. Farmacogn.* 2017, 27, 302–305. [CrossRef]
- 8. Virshette, S.J.; Patil, M.K.; Somkuwar, A.P. A review on medicinal plants used as anti-inflammatory agents. *J. Pharmacogn. Phytochem.* **2019**, *8*, 1641–1646.
- 9. Schlaepfer, L.; Mendoza, E.J.A. Las Plantas Medicinales en la Lucha Contra el cáNcer, Relevancia Para México. *Rev. Mex. Cienc. Farm.* **2010**, *41*, 18–27. Available online: https://www.redalyc.org/articulo.oa?id=57916060003 (accessed on 25 February 2024).
- 10. Bittner, M.; Alarcón, J.; Aqueveque, P.; Becerra, J.; Hernández, V.; Hoeneise, M.; Silva, M. Estudio químico de especies de la familia Euphorbiaceae en Chile. *Bol. Soc. Chil. Quim.* **2001**, *46*, 419–431. [CrossRef]
- 11. Amtaghri, S.; Akdad, M.; Slaoui, M.; Eddouks, M. Traditional uses, pharmacological, and phytochemical studies of *Euphorbia*: A review. *Curr. Top. Med. Chem.* **2022**, *22*, 1553–1570. [CrossRef]
- Li, Y.N.; He, J.; Zhang, J.; Shi, Y.X.; Guo, L.B.; Peng, Z.C.; Xu, J.K. Existing knowledge on *Euphorbia fischeriana* Steud (Euphorbiaceae): Traditional uses, clinical applications, phytochemistry, pharmacology and toxicology. *J. Ethnopharmacol.* 2021, 275, 114095. [CrossRef]
- Martínez, G.M.; Jiménez, R.J.; Cruz, D.R.; Juárez, A.E.; García, R.; Cervantes, A.; Mejía, H.R. Los géneros de la familia Euphorbiaceae en México. (Parte A). *An. Inst. Biol.* 2002, 73, 155–196. Available online: https://www.redalyc.org/articulo.oa?id=40073205 (accessed on 25 February 2024).
- 14. Xu, Y.; Tang, P.; Zhu, M.; Wang, Y.; Sun, D.; Li, H.; Chen, L. Diterpenoids from the genus *Euphorbia*: Structure and biological activity (2013–2019). *Phytochemistry* **2021**, 190, 112846. [CrossRef] [PubMed]
- 15. Zhao, H.; Sun, L.; Kong, C.; Mei, W.; Dai, H.; Xu, F.; Huang, S. Phytochemical and pharmacological review of diterpenoids from the genus *Euphorbia* Linn (2012–2021). *J. Ethnopharmacol.* **2022**, *298*, 115574. [CrossRef]
- 16. Rozimamat, R.; Hu, R.; Aisa, H.A. New isopimarane diterpenes and nortriterpene with cytotoxic activity from *Euphorbia alatavica* Boiss. *Fitoterapia* **2018**, 127, 328–333. [CrossRef] [PubMed]
- 17. Choodej, S.; Hanthanong, S.; Aree, T.; Pudhom, K. Diterpenoids from the aerial parts of *Euphorbia antiquorum* and their efficacy on nitric oxide inhibition. *Phytochemistry* **2020**, *180*, 112523. [CrossRef] [PubMed]
- 18. An, L.; Liang, Y.; Yang, X.; Wang, H.; Zhang, J.; Tuerhong, M.; Li, D.; Wang, C.; Lee, D.; Xu, J.; et al. NO inhibitory diterpenoids as potential anti-inflammatory agents from *Euphorbia antiquorum*. *Bioorg. Chem.* **2019**, *92*, 103237. [CrossRef] [PubMed]
- 19. Zhao, H.; Duan, R.J.; Kong, C.H.; Dai, H.F.; Mei, W.L.; Xu, F.Q.; Huang, S.Z. Two new anti-inflammatory trachylobane diterpenoids from *Euphorbia atoto*. J. Asian Nat. Prod. Res. 2023, 1–7. [CrossRef]
- 20. Aljubiri, S.M.; Mahgoub, S.A.; Almansour, A.I.; Shaaban, M.; Shaker, K.H. Isolation of diverse bioactive compounds from *Euphorbia balsamifera*: Cytotoxicity and antibacterial activity studies. *Saudi J. Biol. Sci.* **2021**, *28*, 417–426. [CrossRef]
- 21. Hassan, A.R.; Ashour, A.; Amen, Y.; Nagata, M.; El-Toumy, S.A.; Shimizu, K. A new cycloartane triterpene and other phytoconstituents from the aerial parts of *Euphorbia dendroides*. *Nat. Prod. Res.* **2022**, *36*, 828–836. [CrossRef]

- Shamsabadipour, S.; Zarei, S.M.; Ghanadian, M.; Ayatollahi, S.A.; Rahimnejad, M.R.; Saeedi, H.; Aghaei, M. A New Taraxastane triterpene from *Euphorbia Denticulata* with cytotoxic activity against prostate cancer cells. *Iran. J. Pharm. Res.* 2018, 17, 336–342. [PubMed]
- 23. Ding, K.; Zhang, Y.Y.; Yang, T.; Lian, W.W.; Xia, C.; Wang, W.P.; Zhang, W.K.; He, J.; Xu, J.K. New rosane diterpenoids and their analogs from *Euphorbia ebracteolata* Hayata. *Chem. Biodivers.* **2023**, *20*, e202300013. [CrossRef]
- 24. Chun, J.; Mah, S.Y.; Kim, Y.S. Anti-inflammatory effect of ebractenoid f, a major active compound of *Euphorbia ebracteolata* Hayata, through inhibition of nuclear Factor-κB activation. *Plants* **2023**, *12*, 2845. [CrossRef] [PubMed]
- 25. Ma, Y.L.; Tang, X.H.; Yuan, W.J.; Ding, X.; Di, Y.T.; Hao, X.J. Abietane diterpernoids from the roots of *Euphorbia ebracteolata*. *Nat. Prod. Bioprospect.* **2018**, *8*, 131–135. [CrossRef] [PubMed]
- 26. Han, C.; Peng, Y.; Wang, Y.; Huo, X.; Zhang, B.; Li, D.; Leng, A.; Zhang, H.; Ma, X.; Wang, C. Cytotoxic ent-Abietane-type diterpenoids from the roots of *Euphorbia ebracteolata*. *Bioorg. Chem.* **2018**, *81*, 93–97. [CrossRef] [PubMed]
- 27. Bai, J.; Huang, X.Y.; Liu, Z.G.; Gong, C.; Li, X.Y.; Li, D.H.; Hua, H.M.; Li, Z.L. Four new compounds from the roots of *Euphorbia ebracteolata* and their inhibitory effect on LPS-induced NO production. *Fitoterapia* **2018**, *125*, 235–239. [CrossRef] [PubMed]
- Ma, X.M.; Mo, L.Y.; Ren, Z.P.; Fan, X.N.; Sun, P.H.; Tian, H.Y.; Yang, N.; Zi, J.C. New abietane and tigliane diterpenoids from the roots of *Euphorbia fischeriana* and their cytotoxic activities. *J. Asian Nat. Prod. Res.* 2023, 25, 519–527. [CrossRef]
- 29. Zhu, Q.F.; Xu, G.B.; Liao, S.G.; Yan, X.L. Ent-Abietane diterpenoids from *Euphorbia fischeriana* and their cytotoxic activities. *Molecules* **2022**, *27*, 7258. [CrossRef]
- Sun, C.P.; Chang, Y.B.; Wang, C.; Lv, X.; Zhou, W.Y.; Tian, X.G.; Zhao, W.Y.; Ma, X.C. Bisfischoids A and B, dimeric entabietane-type diterpenoids with anti-inflammatory potential from *Euphorbia fischeriana* Steud. *Bioorg. Chem.* 2021, 116, 105356.
 [CrossRef]
- 31. Xie, R.; Xia, G.; Zhu, J.; Lin, P.; Fan, X.; Zi, J. Daphnane-type diterpenoids from *Euphorbia fischeriana* Steud and their cytotoxic activities. *Fitoterapia* **2021**, *149*, 104810. [CrossRef] [PubMed]
- 32. Yan, X.L.; Zhang, J.S.; Huang, J.L.; Zhang, Y.; Chen, J.Q.; Tang, G.H.; Yin, S. Euphonoids A-G, cytotoxic diterpenoids from *Euphorbia fischeriana*. *Phytochemistry* **2019**, *166*, 112064. [CrossRef]
- 33. Li, M.; He, F.; Zhou, Y.; Wang, M.; Tao, P.; Tu, Q.; Lv, G.; Chen, X. Three new ent-abietane diterpenoids from the roots of *Euphorbia fischeriana* and their cytotoxicity in human tumor cell lines. *Arch. Pharm. Res.* **2019**, *42*, 512–518. [CrossRef]
- 34. Lan, Y.H.; Chen, I.H.; Lu, H.H.; Guo, T.J.; Hwang, T.L.; Leu, Y.L. Euphormins A and B, new pyranocoumarin derivatives from *Euphorbia formosana* Hayata, and their anti-inflammatory activity. *Molecules* **2022**, 27, 1885. [CrossRef] [PubMed]
- 35. Yazdiniapour, Z.; Sohrabi, M.H.; Motinia, N.; Zolfaghari, B.; Mehdifar, P.; Ghanadian, M.; Lanzotti, V. Diterpenoids from *Euphorbia gedrosiaca* as potential anti-proliferative agents against breast cancer cells. *Metabolites* **2023**, *13*, 225. [CrossRef]
- Hasan, A.; Liu, G.Y.; Hu, R.; Aisa, H.A. Jatrophane Diterpenoids from *Euphorbia glomerulans*. J. Nat. Prod. 2019, 82, 724–734. [CrossRef] [PubMed]
- Kemboi, D.; Peter, X.; Langat, M.K.; Mhlanga, R.; Vukea, N.; de la Mare, J.A.; Noundou, S.X.; Krause, R.W.M.; Tembu, V.J. In vitro cytotoxic effects of chemical constituents of *Euphorbia grandicornis* Blanc against breast cancer cells. *Sci. Afr.* 2021, *14*, 90. [CrossRef]
- Tsai, J.Y.; Rédei, D.; Hohmann, J.; Wu, C.C. 12-Deoxyphorbol esters induce growth arrest and apoptosis in human lung cancer A549 cells via activation of PKC-δ/PKD/ERK signalling pathway. *Int. J. Mol. Sci.* 2020, 21, 7579. [CrossRef]
- Radi, M.H.; El-Shiekh, R.A.; El-Halawany, A.M.; Al-Abd, A.M.; Abdel-Sattar, E. In vitro cytotoxic study of *Euphorbia grantii* Oliv. aerial parts against MCF-7 and MCF-7ADR breast cancer cell lines: A bioactivity-guided isolation. ACS Omega 2023, 8, 18299–18305. [CrossRef]
- 40. Yang, H.Y.; Yao, W.; Huang, P.Z.; Xu, H.; Ma, Q.; Chen, X.; Chen, J.J.; Gao, K. Euphohelides A-C, ent-abietane-type norditerpene lactones from *Euphorbia helioscopia* and their anti-inflammatory activities. *J. Nat. Prod.* **2023**, *86*, 1003–1009. [CrossRef]
- 41. Lu, Y.B.; Luo, S.; Wang, Y.X.; Feng, Z.Y.; Gao, K.; Chen, J.J. Jatrophane diterpenoids with cytotoxic activity from the whole plant of *Euphorbia helioscopia* L. *Phytochemistry* **2022**, 203, 113420. [CrossRef]
- 42. Wang, W.P.; Jiang, K.; Zhang, P.; Shen, K.K.; Qu, S.J.; Yu, X.P.; Tan, C.H. Highly oxygenated and structurally diverse diterpenoids from *Euphorbia helioscopia*. *Phytochemistry* **2018**, 145, 93–102. [CrossRef]
- 43. Hu, R.; Sang, J.; Li, W.; Tian, Y.; Zou, M.F.; Tang, G.H.; Yin, S. Structurally diverse triterpenoids with cytotoxicity from *Euphorbia hypericifolia*. *Fitoterapia* **2021**, 151, 104888. [CrossRef]
- 44. Xue, L.Y.; Chen, B.L.; Yuan, F.Y.; Zhu, Q.F.; Zhang, X.; Lin, Y.; Long, Q.D.; Liao, S.G. Six new tigliane diterpenoids with anti-inflammatory activity from *Euphorbia kansuensis*. *Arab. J. Chem.* **2022**, *85*, 103807. [CrossRef]
- 45. Yan, X.L.; Sang, J.; Zhang, X.; Lin, Y.; Long, Q.D.; Zhu, Q.F.; Liao, S.G. Euphorboside A, a cytotoxic meroterpenoid glycoside with an unusual humulene-phloroglucinol skeleton from *Euphorbia kansuensis*. *Fitoterapia* **2021**, *153*, 104966. [CrossRef]
- Feng, X.; Li, J.; Li, H.; Chen, X.; Liu, D.; Li, R. Bioactive C21 steroidal glycosides from *Euphorbia kansui* promoted HepG2 cell apoptosis via the degradation of ATP1A1 and inhibited macrophage polarization under co-cultivation. *Molecules* 2023, 28, 2830. [CrossRef]
- Li, J.C.; Li, S.Y.; Tang, J.X.; Liu, D.; Feng, X.Y.; Rao, K.R.; Zhao, X.D.; Li, H.M.; Li, R.T. Triterpenoids, steroids and other constituents from *Euphorbia kansui* and their anti-inflammatory and anti-tumour properties. *Phytochemistry* 2022, 204, 113449. [CrossRef] [PubMed]

- 48. Zhang, J.S.; Weng, H.Z.; Huang, J.L.; Tang, G.H.; Yin, S. Anti-inflammatory ingenane diterpenoids from the roots of *Euphorbia kansui*. *Planta Med*. **2018**, *84*, 1334–1339. [CrossRef] [PubMed]
- 49. Riahi, F.; Dashti, N.; Ghanadian, M.; Aghaei, M.; Faez, F.; Jafari, S.M.; Zargar, N. Kopetdaghinanes, pro-apoptotic hemiacetialic cyclomyrsinanes from *Euphorbia kopetdaghi*. *Fitoterapia* **2020**, *146*, 104636. [CrossRef]
- Wongprayoon, P.; Leelasart, S.; Jantham, J.; Pootaeng-on, Y.; Oekchuae, S.; Limpachayaporn, P.; Rayanil, K.; Charoensuksai, P. A triterpenoid friedelan-3β-ol isolated from *Euphorbia lactea* exhibited cytotoxic activity against HN22 cells by inducing an S-phase cell cycle arrest. *J. Appl. Pharm. Sci.* 2022, *12*, 031–048. [CrossRef]
- Wang, W.; Liu, Y.; Xiong, L.; Sun, D.; Wang, H.; Song, Z.; Li, Y.; Li, H.; Chen, L. Synthesis of Lathyrol PROTACs and evaluation of their anti-inflammatory activities. J. Nat. Prod. 2023, 86, 767–781. [CrossRef]
- 52. Jiang, D.; Gao, X.; Tan, R.; Liu, X.; Zhu, Y.; Zhang, L. *Euphorbia* factor L1 suppresses breast cancer liver metastasis via DDR1mediated immune infiltration. *Aging* **2023**, *15*, 9217–9229. [CrossRef] [PubMed]
- 53. Shi, H.; Li, S.; Geng, Y.; Fan, H.; Zhang, R.; Zhang, Y.; Pan, J.; Song, G.; Ge, L.; Xie, T.; et al. *Euphorbia* factor L3 ameliorates rheumatoid arthritis by suppressing the inflammatory response by targeting Rac family small GTPase 1. *Bioengineered* **2022**, *13*, 10984–10997. [CrossRef]
- 54. Wang, Y.; Song, Z.; Guo, Y.; Xie, H.; Zhang, Z.; Sun, D.; Li, H.; Chen, L. Diterpenoids from the seeds of *Euphorbia lathyris* and their anti-inflammatory activity. *Bioorg. Chem.* 2021, 112, 104944. [CrossRef] [PubMed]
- 55. Zuo, Q.; Mu, H.Y.; Gong, Q.; Ding, X.; Wang, W.; Zhang, H.Y.; Zhao, W.M. Diterpenoids from the seeds of *Euphorbia lathyris* and their effects on microglial nitric oxide production. *Fitoterapia* **2021**, *150*, 104834. [CrossRef] [PubMed]
- 56. Wang, W.; Wu, Y.; Li, C.; Yang, Y.; Li, X.; Li, H.; Chen, L. Synthesis of new Lathyrane diterpenoid derivatives from *Euphorbia* lathyris and evaluation of their anti-inflammatory activities. *Chem. Biodivers.* **2020**, *17*, e1900531. [CrossRef] [PubMed]
- 57. Wang, J.X.; Wang, Q.; Zhen, Y.Q.; Zhao, S.M.; Gao, F.; Zhou, X.L. Cytotoxic Lathyrane-type diterpenes from seeds of *Euphorbia lathyris. Chem. Pharm. Bull.* **2018**, *66*, 674–677. [CrossRef] [PubMed]
- 58. Teng, Y.N.; Wang, Y.; Hsu, P.L.; Xin, G.; Zhang, Y.; Morris-Natschke, S.L.; Goto, M.; Lee, K.H. Mechanism of action of cytotoxic compounds from the seeds of *Euphorbia lathyris*. *Phytomedicine* **2018**, *41*, 62–66. [CrossRef]
- Wang, Q.; Zhen, Y.Q.; Gao, F.; Huang, S.; Zhou, X. Five new diterpenoids from the seeds of *Euphorbia lathyris*. *Chem. Biodivers*. 2018, 15, e1800386. [CrossRef]
- 60. Lee, J.W.; Jin, Q.; Jang, H.; Kim, J.G.; Lee, D.; Kim, Y.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Lathyrane-type diterpenoids from the seeds of *Euphorbia lathyris* L. with inhibitory effects on NO production in RAW 264.7 cells. *Chem. Biodivers.* **2018**, *15*, e1800144. [CrossRef]
- Xia, R.F.; Su, J.C.; Yu, J.; Zha, H.J.; Wu, J.L.; Fu, X.N.; Cai, Q.; Wan, L.S. Anti-inflammatory lanostane triterpenoids with rearranged spirobi[indene] scaffold and their biogenetically related analogues from *Euphorbia maculata*. *Phytochemistry* 2023, 211, 113682. [CrossRef]
- 62. Sun, Y.; Gao, L.L.; Tang, M.Y.; Feng, B.M.; Pei, Y.H.; Yasukawa, K. Triterpenoids from *Euphorbia maculata* and their antiinflammatory effects. *Molecules* 2018, 23, 2112. [CrossRef]
- 63. Azizi, K.; Hamedi, A.; Azarpira, N.; Hamedi, A.; Shahini, M.; Pasdaran, A. A new cytotoxic sesquiterpene lactone from *Euphorbia microsphaera* Boiss against human breast cancer (MCF-7) and human fibrosarcoma (HT1080) cells. *Toxicon* 2021, 202, 60–66. [CrossRef]
- 64. Chang, S.S.; Huang, H.T.; Wei, W.C.; Lo, I.W.; Lin, Y.C.; Chao, C.; Liao, G.Y.; Shen, Y.C.; Chen, J.J.; Li, T.L.; et al. Anti-inflammatory effect of euphane- and tirucallane-type triterpenes isolated from the traditional herb *Euphorbia neriifolia* L. *Front. Chem.* **2023**, *11*, 1223335. [CrossRef]
- Chang, S.S.; Huang, H.T.; Lin, Y.C.; Chao, C.H.; Liao, G.Y.; Lin, Z.H.; Huang, H.C.; Chun-Ling Kuo, J.; Liaw, C.C.; Tai, C.J.; et al. Neritriterpenols A-G, euphane and tirucallane triterpenes from *Euphorbia neriifolia* L. and their bioactivity. *Phytochemistry* 2022, 199, 113199. [CrossRef] [PubMed]
- 66. Yuan, G.; Jun-Su, Z.; Hong-Chun, L.; Yan, Z.; Wei-Hang, Y.; Qun-Fang, L.; Guan-Wu, W.; Jin-Xin, Z.; Jian-Min, Y. Phonerilins A–K, cytotoxic ingenane and ingol diterpenoids from *Euphorbia neriifolia*. *Tetrahedron* **2022**, *123*, 132955. [CrossRef]
- 67. Li, J.C.; Feng, X.Y.; Liu, D.; Zhang, Z.J.; Chen, X.Q.; Li, R.T.; Li, H.M. Diterpenoids from *Euphorbia neriifolia* and their related anti-HIV and cytotoxic activity. *Chem. Biodivers.* **2019**, *16*, e1900495. [CrossRef] [PubMed]
- 68. Ferreira, R.J.; Kincses, A.; Gajdács, M.; Spengler, G.; Dos Santos, D.J.V.A.; Molnár, J.; Ferreira, M.U. Terpenoids from *Euphorbia pedroi* as multidrug-resistance reversers. *J. Nat. Prod.* **2018**, *81*, 2032–2040. [CrossRef] [PubMed]
- 69. Chen, Y.Y.; Zeng, X.T.; Xu, D.Q.; Yue, S.J.; Fu, R.J.; Yang, X.; Liu, Z.X.; Tang, Y.P. Pimarane, abietane, and labdane diterpenoids from *Euphorbia pekinensis* Rupr. and their anti-tumor activities. *Phytochemistry* **2022**, 197, 113113. [CrossRef] [PubMed]
- 70. Li, Y.Y.; Yang, Y.; Sun, M.; Lu, Q.Y.; Pu, X.X.; Ran, X.; Li, D.M.; Wan, J.J.; Huang, J.Y.; Guan, S.P.; et al. Jatrophane polyesters from the leaves of *Euphorbia peplus* with anti-inflammatory activity. *Phytochem. Lett.* **2022**, *49*, 114–119. [CrossRef]
- Aljohani, A.S.M.; Alhumaydhi, F.A.; Rauf, A.; Hamad, E.M.; Rashid, U. In Vivo anti-inflammatory, analgesic, sedative, muscle relaxant activities and molecular docking analysis of phytochemicals from *Euphorbia pulcherrima*. *Evid-Based Complement*. *Altern*. *Med.* 2022, 2022, 7495867. [CrossRef]
- 72. Li, M.M.; Qi, Y.R.; Feng, Y.P.; Liu, W.; Yuan, T. Euphatexols C-G, five new triterpenoids from the latex of *Euphorbia resinifera*. J. *Asian Nat. Prod. Res.* 2022, 24, 311–320. [CrossRef] [PubMed]

- 73. Fantoukh, O.I.; Al-Hamoud, G.A.; Nasr, F.A.; Almarfadi, O.M.; Hawwal, M.F.; Ali, Z.; Alobaid, W.A.; Binawad, A.; Alrashidi, M.; Alasmari, F.; et al. Revisiting the flora of Saudi Arabia: Phytochemical and biological investigation of the endangered plant species *Euphorbia saudiarabica*. *Metabolites* 2023, 13, 556. [CrossRef] [PubMed]
- 74. Salha, M.A.; Khaled, M.; Samir, A.M.; Abdulrahman, I.A.; Kamel, H.S. Bioactive compounds from *Euphorbia schimperiana* with cytotoxic and antibacterial activities. *S. Afr. J. Bot.* **2021**, *141*, 357–366. [CrossRef]
- 75. Yang, H.; Mamatjan, A.; Tang, D.; Aisa, H.A. Jatrophane diterpenoids as multidrug resistance modulators from *Euphorbia sororia*. *Bioorg. Chem.* **2021**, *112*, 104989. [CrossRef]
- Zhu, H.; Ren, X.; Huang, Y.; Su, T.; Yang, L. Chemical constituents of *Euphorbia stracheyi* Boiss (Euphorbiaceae). *Metabolites* 2023, 13, 852. [CrossRef] [PubMed]
- 77. Liu, J.L.; Yu, M.; Liao, H.B.; Liu, T.; Tan, Y.H.; Liang, D.; Zhang, G.J. Sesquiterpenes and diterpenes from *Euphorbia thymifolia*. *Fitoterapia* **2019**, *139*, 104408. [CrossRef] [PubMed]
- Duong, T.H.; Beniddir, M.A.; Genta-Jouve, G.; Nguyen, H.H.; Nguyen, D.P.; Nguyen, T.A.; Mac, D.H.; Boustie, J.; Nguyen, K.P.; Chavasiri, W.; et al. Further terpenoids from *Euphorbia tirucalli*. *Fitoterapia* 2019, *135*, 44–51, Erratum in *Fitoterapia* 2021, 149, 104825. [CrossRef] [PubMed]
- Silva, V.A.O.; Rosa, M.N.; Miranda-Gonçalves, V.; Costa, A.M.; Tansini, A.; Evangelista, A.F.; Martinho, O.; Carloni, A.C.; Jones, C.; Lima, J.P.; et al. Euphol, a tetracyclic triterpene, from *Euphorbia tirucalli* induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. *Investig. New Drug* 2019, *37*, 223–237. [CrossRef]
- Silva, V.A.O.; Rosa, M.N.; Tansini, A.; Oliveira, R.J.S.; Martinho, O.; Lima, J.; Pianowski, L.F.; Reis, R.M. In vitro screening of cytotoxic activity of euphol from *Euphorbia tirucalli* on a large panel of human cancer-derived cell lines. *Exp. Ther. Med.* 2018, 16, 557–566. [CrossRef]
- Cruz, L.S.; de Oliveira, T.L.; Kanunfre, C.C.; Paludo, K.S.; Minozzo, B.R.; Prestes, A.P.; Wang, M.; Fernandes, D.; Santos, F.A.D.; Manda, V.K.; et al. Pharmacokinetics and cytotoxic study of euphol from *Euphorbia umbellata* (Bruyns) Pax latex. *Phytomedicine* 2018, 47, 105–112. [CrossRef]
- 82. Wang, Y.; Sun, D.; Jiang, Q.; Xiong, L.; Zhang, N.; Pan, Y.; Li, H.; Chen, L. Diterpenoids with anti-inflammatory activity from *Euphorbia wallichii*. *Phytochemistry* **2023**, 205, 113486. [CrossRef]
- Wang, Y.; Jiang, Q.; Sun, D.; Zhang, N.; Lin, Y.; Li, H.; Chen, L. Ent-kauranes and ent-atisanes from *Euphorbia wallichii* and their anti-inflammatory activity. *Phytochemistry* 2023, 210, 113643. [CrossRef]
- 84. WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 9 October 2023).
- 85. Benjamaa, R.; Moujanni, A.; Kaushik, N.; Choi, E.H.; Essamadi, A.K.; Kaushik, N.K. *Euphorbia* species latex: A comprehensive review on phytochemistry and biological activities. *Front. Plant Sci.* **2022**, *13*, 1008881. [CrossRef]
- 86. Vasas, A.; Hohmann, J. *Euphorbia* Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008–2012). *Chem. Rev.* 2014, 114, 8579–8612. [CrossRef]
- 87. Appendino, G. Ingenane Diterpenoids. Prog. Chem. Org. Nat. Prod. 2016, 102, 1–90. [CrossRef]
- 88. Zhang, Y.; Fan, R.Z.; Sang, J.; Tian, Y.J.; Chen, J.Q.; Tang, G.H.; Yin, S. Ingol diterpenoids as P-glycoprotein-dependent multidrug resistance (MDR) reversal agents from *Euphorbia marginata*. *Bioorg. Chem.* **2020**, *95*, 103546. [CrossRef]
- Zhang, F.; Ma, C.; Che, Q.; Zhu, T.; Zhang, G.; Li, D. Extending the Structural Diversity of Labdane Diterpenoids from Marine-Derived Fungus *Talaromyces* sp. HDN151403 Using Heterologous Expression. *Mar. Drugs* 2023, 21, 628. [CrossRef]
- 90. Yoshinaga, K.; Yokoshima, S. Convergent synthesis of the [5-7-6-3] tetracyclic core of premyrsinane diterpenes. *Org. Biomol. Chem.* **2023**, *4*, 724–727. [CrossRef]
- 91. Vela, F.; Ezzanad, A.; Hunter, A.C.; Macías-Sánchez, A.J.; Hernández-Galán, R. Pharmacological Potential of Lathyrane-Type Diterpenoids from Phytochemical Sources. *Pharmaceuticals* **2022**, *15*, 780. [CrossRef]
- Iwata, M.; Inoue, T.; Asai, Y.; Hori, K.; Fujiwara, M.; Matsuo, S.; Tsuchida, W.; Suzuki, S. The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. *Biochem. Biophys. Rep.* 2020, 23, 100790. [CrossRef]
- 93. Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. *Immunity* **2019**, *51*, 27–41. [CrossRef] [PubMed]
- 94. Lin, M.; Tang, S.; Zhang, C.; Chen, H.; Huang, W.; Liu, Y.; Zhang, J. Euphorbia factor L2 induces apoptosis in A549 cells through the mitochondrial pathway. *Acta Pharm. Sin. B* 2017, *7*, 59–64. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.