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Abstract: On the verge of a theranostic approach to personalised medicine, copper-64 is one of
the emerging radioisotopes in nuclear medicine due to its exploitable nuclear and biochemical
characteristics. The increased demand for copper-64 for preclinical and clinical studies has prompted
the development of production routes. This research aims to compare the (p,n) reaction on nickel-64
solid versus liquid targets and evaluate the effectiveness of [64Cu]CuCl2 solutions prepared by the two
routes. As new treatments for neurotensin receptor-overexpressing tumours have developed, copper-
64 was used to radiolabel Neurotensin (8-13) and Neuromedin N. High-quality [64Cu]CuCl2 solutions
were prepared using ACSI TR-19 and IBA Cyclone Kiube cyclotrons. The radiochemical purity after
post-irradiation processing reached 99% (LT) and 99.99% (ST), respectively. The irradiation of a solid
target with 11.8 MeV protons and 150 µAh led to 704 ± 84 MBq/µA (17.6 ± 2.1 GBq/batch at EOB). At
the end of the purification process (1 h, 90.90% activity yield), the solution for peptide radiolabelling
had a radioactive concentration of 1340.4 ± 70.1 MBq/mL (n.d.c.). The irradiation of a liquid target
with 16.9 MeV protons and 230 µAh resulted in 3.7 ± 0.2 GBq/batch at EOB, which corresponds to
an experimental production yield of 6.89 GBq.cm3/(g.µA)sat. Benefiting from a shorter purification
process (40 min), the activity yielded 90.87%, while the radioactive concentration of the radiolabelling
solution was lower (492 MBq/mL, n.d.c.). The [64Cu]CuCl2 solutions were successfully used for the
radiolabelling of DOTA-NT(8-13) and DOTA-NN neuropeptides, resulting in a high RCP (>99%) and
high molar activity (27.2 and 26.4 GBq/µmol for LT route compared to 45 and 52 GBq/µmol for ST
route, respectively). The strong interaction between the [64Cu]Cu-DOTA-NT(8-13) and the colon
cancerous cell lines HT29 and HCT116 proved that the specificity for NTR had not been altered, as
shown by the uptake and retention data.
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1. Introduction

Copper-64 is a radionuclide with great theranostic potential in nuclear medicine, con-
sidering its unique qualities. Its clinical utility in positron emission tomography imaging
(PET) was demonstrated while ongoing studies investigated the most effective therapeu-
tic applications based on this radionuclide. Depending on the clinical need, it serves in
ionic form, as copper chloride, or linked to a biospecific peptide carrier. This radioiso-
tope presents a complex decay scheme, which includes electron capture, beta minus, and
positron emissions. The low-energy positrons emitted (17.49%, max 0.653 MeV, mean
0.278 MeV) are excellent for positron emission tomography imaging, especially due to
a spatial resolution similar to fluorine-18, as determined by comparable average free
travel distance of positrons (0.70 mm in the case of copper-64 and 0.69 mm in the case
of fluorine-18) [1,2]. The lack of abundant gamma emissions (only 0.47%, 1.346 MeV) is
also an advantage since they can cause interferences that impact the image quality, as in
the case of other non-pure positron emitters such as bromine-76, yttrium-86, rubidium-82,
and iodine-124 [3]. The β− emission (38.48%, max 0.579 MeV, mean 0.190 MeV) offers the
possibility for targeted radionuclide therapy with a highly localised dose, in situ visualised
by the means of β+ (PET). Additionally, the electron capture events determine the emission
of Auger electrons (Auger L 0.84 keV, 58.0% and Auger K 6.54 keV, 22.62%) which increases
the radiotoxicity of the radioisotope when delivered inside the targeted cells, in particular
when the emitting radioisotope is trapped in the cell nucleus [1,4].

Copper, as a bioelement, is involved in numerous metabolic processes; therefore, its
trafficking, accumulation, and clearance are tightly controlled in normal health but are dis-
turbed in disease states such as dementia, cancer, inflammation, nutritional abnormalities,
and inherited diseases of copper metabolism [5,6]. Many cancer types exhibit increased
intra-tumoral copper uptake and/or altered systemic copper distribution. The understand-
ing that copper bioavailability serves as a limiting factor for multiple aspects of tumour
progression, including growth, angiogenesis, and metastasis, has prompted the develop-
ment of copper-specific chelators as therapies to inhibit these processes. The differentiated
uptake of copper ions by normal and tumour cells creates the potential for copper-64 to
image and quantify those processes and eventually exploit them for therapy [7].

Copper-64 can be administered as a [64Cu]CuCl2 solution, but it can also be carried by
biologically active molecules (peptides, antibodies, etc.), to highlight specific oncological
conditions or ensure the delivery of the radiotoxic compound for therapeutic purposes [8].

Commonly produced in a low to medium energy cyclotron by proton bombardment
of a nickel-64 target through (p,n) nuclear reaction, copper-64 can be obtained using either
a solid, metallic electrodeposited nickel-64 target or a liquid target, containing a dissolved
nickel-64 salt (usually nitrate) solution [9,10].

Each of the two routes has both advantages and limitations; the choice depends on the
particular needs of both the production and clinical sites involved, and also on the technical
capabilities. While the solid target route leads to higher activity and high specific activity
of [64Cu]CuCl2 solution, it requires a longer preparation time of the target and involves the
use of high molar hydrochloric acid in the post-processing steps. With the liquid targets,
there is no need for pre- or postprocessing of the target, and this route allows for an easier
process automation; however, lower activity and also lower production yields are expected.
The question is, if both routes are feasible for high-quality radiopharmaceutical preparation,
especially when the resulting solutions are used for radiolabelling of specific targeting
molecules. In our previous study we demonstrated the suitability of both liquid and
solid target approaches to radiolabel antibodies and nanobodies with comparable specific
activities and stability [11]. The present study was designed to optimise and compare
the radiolabelling processes of neuropeptides using [64Cu]CuCl2 prepared by solid and
liquid targets routes, respectively, and investigate the stability and affinity of the resulting
radiolabelled peptides.

Neurotensin (NT) and neuromedin N (NN) are two related, biologically active pep-
tides, synthesized by a common precursor in the mammalian brain and intestine/gut [12,13].
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Their regulatory activity acts through specific G-protein-coupled neurotensin receptors [14].
Neurotensin stimulates the proliferation in vitro of tumour cell lines originating from the
pancreas, prostate, astrocytes, and lung [15–17]. Neurotensin receptors were identified
and localised in tumour cells of Ewing’s sarcomas, meningiomas, astrocytomas, medul-
loblastomas, medullary thyroid cancers, and small cell lung cancers [18]. A pseudopeptide,
the smallest active fragment of neurotensin, Neurotensin(8-13) was developed to thwart
the rapid in vivo degradation of full-chain peptide, bearing changes which stabilise the
molecule against enzymatic degradation. NT(8-13) binds to the same sites, with a higher
affinity than NT does [19]. NN is a good marker of human colon cancer, in addition
to NT, and recent studies suggest it might exert an autocrine-positive effect on human
colon cancer growth [20]. Using NT(8-13) and NN as carriers of copper-64, we aim to
develop targeted radiopharmaceutical agents to diagnose and treat cancers overexpressing
neurotensin receptors.

2. Results
2.1. Copper-64 Production and Post-Irradiation Processing via Solid Target (ST) System

Figure 1a,b shows the nickel-64 complex solution used for electrodeposition; the colour
changed from intense blue to colourless, indicating the completion of the electrodeposition
of the nickel target. The resulting target is a compact metallic round chip (Figure 1c),
weighing 48 ± 1.3 mg, electrodeposited on the platinum support plate, part of the dedicated
shuttle (which serves for both transport and irradiation purposes). The process step yield
was 95–98%, determined by target weight compared with the mass of dissolved nickel.
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beam unit (µAh) was slightly increased, from 109 MBq to 117 MBq, respectively. Com-
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ceptable deviation, determined by the particular geometry of the ST installation, and beam 
(de)focussing. The results are shown in Table 1. 

  

Figure 1. The electrodeposition process of nickel-64: (a) starting solution (blue); (b) final solution
(colourless); (c) the resulted target (green circled) electrodeposited onto the irradiation shuttle.

Copper-64 (ST) production on the ACSI TR-19 cyclotron was achieved by increasing
the irradiation parameters as compared to our previously reported work [21]: 150 µAh
integrated beam current and higher extracted energy, of 14.2 MeV, corresponding to
11.8 MeV on target. Increasing the irradiation time from 4 h to 6 h, an average activ-
ity of 17.6 ± 2.1 GBq/batch (decay corrected at EOB) was obtained, slightly increasing the
production yield from 435 ± 35 MBq/µA to 704 ± 84 MBq/µA. The activity produced by
the integrated beam unit (µAh) was slightly increased, from 109 MBq to 117 MBq, respec-
tively. Compared to Monte Carlo simulations, the experimental data were conforming with
an acceptable deviation, determined by the particular geometry of the ST installation, and
beam (de)focussing. The results are shown in Table 1.
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Table 1. Comparison of the outcomes obtained with different irradiation parameters on the solid
target system for copper-64 production.

Parameters Previous Settings [21] New Settings

Proton energy (MeV) extracted/on target 14/11.6 14.2/11.8
Beam current (µA) 20 25
Beam time (hours) 4 6

Integrated beam current (µA·h) 80 150

Activity 1 (GBq)
Simulation 10.3 ± 0.5 21.6 ± 0.8
Experiment 8.7 ± 0.7 17.6 ± 2.1

1 activity corrected to EOB.

The dissolution and purification process steps, carried out on EDS and TADDEO-PRF
automated modules of the ALCEO system (Comecer), need 1 h to complete. The irradiated
target was dissolved in 6 M HCl, and the resulting solution was loaded onto an AG1-X8
anion-exchange column. The target material, nickel-64, as well as the metallic impurities
were washed from the column with 6 M and 4 M HCl. The final [64Cu]CuCl2 solution was
obtained by eluting copper-64 from the cartridge with 0.5 M HCl. The total volume of the
purified solution can be fractionated, by selecting the fraction with the highest radioactive
concentration (5–10 mL), or it can be used in a larger volume (up to 20 mL). At the end
of the process (1 h after EOB), the activity of the solution used for peptides radiolabelling
was 16.2 ± 0.8 GBq, which is equivalent to an activity yield (AY) of 90.90 % (including
decay and processing activity loss). These values correspond to 354.20 ± 1.95 MBq/mg of
nickel-64 target.

2.2. Copper-64 Production and Post-Irradiation Processing via Liquid Target (LT) System

Copper-64 (LT) production on the IBA Cyclone Kiube Variable Energy cyclotron and
the post-irradiation processing were previously published [11]. In brief, a 3–5 h irradiation
time of ~100 mg enriched nickel-64 with 16.9 MeV protons on target (extracted energy
18 MeV) led to an average activity of 3.7 ± 0.2 GBq at EOB, (above 12 MBq/µAh).

The purification method, conducted on an IBA Synthera Extention module, resulted
in less than 40 min to purified [64Cu]CuCl2 solution, with copper recovery yield of
94.15 ± 2.31%, corresponding to an activity yield (AY) of 90.87%.

2.3. Comparative Evaluation of the Neuropeptides Radiolabelling Using [64Cu]CuCl2 Prepared via
ST and LT

The [64Cu]CuCl2 solutions produced by the irradiation of solid (ST) or liquid target
(LT), respectively, were used to radiolabel the two neuropeptides derivatised with DOTA
bifunctional chelator [2,2′,2′′,2′′′-(1,4,7,10—tetraazacyclododecane—1,4,7,10—tetrayl) tetra-
acetic acid], namely DOTA-NT(8-13) and DOTA-NN. The solutions prepared by each of
the methods have the following specifications: radiochemical purity 100%, determined by
HPLC, radionuclidic purity ≥ 99.99%, determined by gamma spectrometry and half-life
estimation by dose calibrator decay measurements, of 12.4 ± 0.2 h.

Both ST and LT production processes provided solutions that underwent similar ra-
diolabelling procedures. The [64Cu]CuCl2 solutions were concentrated by evaporation
and underwent pH adjustment to 3.8–4.0 with ammonium acetate before being used for
peptide radiolabelling. Depending on the production method, different volumes of the
concentrated [64Cu]CuCl2 purified solution were used for radiolabelling the same quantity
of each neuropeptide (20 nmoles). Compared to the LT, which produced a solution with a
lower radioactive concentration of 492.5 ± 9.8 MBq/mL, the labelling solution obtained
using the ST had a concentration of 1340.4 ± 70.1 MBq/mL. Consequently, the volumes
used for radiolabelling were 1.00 mL and 1.75 mL for ST and LT routes, respectively. The
radiolabelling parameters for ST and LT experiments are presented in Table 2. The radio-
chemical purity (RCP) of the purified radiolabelled peptides [64Cu]Cu-DOTA-NT(8-13) and
[64Cu]Cu-DOTA-NN was assessed by using two distinct radio-HPLC systems, Shimadzu
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Prominence 20 A for ST and Agilent 1260 Infinity II systems for LT; the columns and assay
methods are described in detail in the Section 4. The radiochemical purity for both radiola-
belled peptides was ≥99.99%, as indicated by the radio-HPLC chromatograms for the ST
experiment (Figure 2a,b), where the corresponding retention times were tR = 9.467 min for
[64Cu]Cu-DOTA-NT(8-13) and tR = 10.894 min for [64Cu]Cu-DOTA-NN, respectively.

Table 2. Summary of radiolabelling parameters for solid target vs. liquid target experiments.

ST LT

Peptides DOTA-NT(8-13) DOTA-NN DOTA-NT(8-13) DOTA-NN
Quantity (nmol) 20 20

Radiolabelling pH 3.9 ± 0.1 3.9 ± 0.1
[64Cu]CuCl2 volume (mL) 1.00 ± 0.2 1.75 ± 0.25

[64Cu]CuCl2 activity (MBq) 1340.4 ± 70.1 861.8 ± 17.3
Temperature (◦C) 95 95

Reaction time (min) 25 25
Radiolabelling yield (%) 67.04 ± 2.68 78.15 ± 3.12 63.24 ± 2.53 61.22 ± 2.45

Radiochemical purity (%) 99.99% 99.99% 99.08% 99.28%
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Figure 2. Radio-HPLC chromatograms of ST preparations of purified (a) [64Cu]Cu-DOTA-NT(8-13)
solution and (b) [64Cu]Cu-DOTA-NN.

According to the analysis method used for LT experiments, the presence of small
quantities of free copper-64 can be seen after the purification of the radiolabelled solution,
signalled at the retention time tR = 0.28 min, while the peak related to the radiolabelled
peptides is highlighted at a retention time tR = 2.20 min, as can be seen in Figure 3a,b.
The chromatograms indicate that both radiolabelled peptides have a radiochemical purity
higher than 99%.
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Due to the higher radioactive concentrations employed in ST experiments, the radi-
olabelling resulted in slightly higher radiolabelling yields compared to LT experiments.
However, the resulting radiopharmaceuticals have excellent RCPs, of over 99% and high
molar activity of [64Cu]Cu-DOTA-NT(8-13) mean values being 27.2 and 45 GBq/µmol for
LT and ST respectively, and of [64Cu]Cu-DOTA-NN, ranging from 26.4 to 52 GBq/µmol for
LT and ST routes preparation, respectively.

2.4. In Vitro Study for Peptide Radiolabelling

We have established a real-time analysis of the peptide–receptor interaction, based
on 7 data points (about 35 min) for an uptake assessment, and a minimum of 7 data
points for a retention assay, based on our prior experiments [22]. The uptake profiles of
the radiolabelled peptides to cancer cells show rapid binding in the first minutes after
incubation with [64Cu]Cu-DOTA-NT(8-13) and [64Cu]Cu-DOTA-NN, respectively, but
at different signal amplitudes, as presented in Figure 4. The high uptake of neurotensin
derivative in the prostate (DU145) and colon (HT29 and HCT116) cancers was observed, and
as such was the uptake of neuromedin peptide in the colon (HCT116), demonstrating that
the radiolabelled peptides are suitable for the intended use. Furthermore, the high retention
of [64Cu]Cu-DOTA-NT(8-13) in colon cancer cells (HT29 and HCT116) is promising for
further investigations of this radiopharmaceutical for targeted theranostic. The uptake
of the 64Cu-radiolabelled peptides in fibroblasts suggests passive uptake, confirmed by
the lack of retention. A low or insignificant retention was also observed in the case of
[64Cu]Cu-DOTA-NT(8-13) with DU145 and of [64Cu]Cu-DOTA-NN with HT29, HCT116,
and DU145.
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3. Discussion

Both solid target and liquid target routes, comparatively tested for the production
of [64Cu]CuCl2 solution, present particular advantages that are important to consider for
selecting one of them. While the ST route led to higher activities, specific activities, and
higher efficacy of the irradiation process, in terms of activity produced per µA or µAh, the
LT runs with similar AY. As an advantage, LT proved to be more time efficient and cleaner
(due to an entirely closed process), and thus, could result in less exposure of the personnel.
The irradiation processes were conducted on very performant cyclotrons, allowing for the
selection of the optimal parameters and the best energy window of the nuclear reaction.
Both routes are fully automatised and require post-irradiation purification and recovery of
the highly enriched target material.

Compared with previously reported studies, the [64Cu]CuCl2 solutions were prepared
with higher activities and in higher radioactive concentrations [11,21]. For ST, the radioac-
tive concentration previously obtained was 90 ± 3.4 MBq/µAh (at EOB), while in this
study we increased it to 117.3 ± 14 MBq/µAh (at EOB). For LT, the activity produced was
increased from 2.8 ± 1.3 GBq (at EOB) to 3.7 ± 0.02 GBq, as reported in this study.

The quality of the solutions for the radiolabelling of peptides complies with the
required specifications in terms of radiochemical and radionuclidic purities; after the
necessary pH adjustment and concentration steps, they have comparable radioactive
concentrations (1340 MBq/mL on ST vs. 492 MBq/mL on LT), which made possible a
comparison of the radiolabelling capabilities. It is worth mentioning that except for the
time needed for solid target preparation (15–20 h, which can be scheduled at any time
before irradiation), the LT process duration is only 20 min shorter. The ST and LT share
the disadvantage of expensive target material, while the total effectiveness of each process
depends on particular setups and clinical needs.

At the end of the process (1 h in the case of ST and 40 min in the case of LT), the
[64Cu]CuCl2 solutions were successfully used for the radiolabelling of DOTA-NT(8-13) and
DOTA-NN neuropeptides, resulting in high RCP (>99%), and high molar activity (27.2 and
26.4 GBq/µmol for LT route compared to 45 and 52 GBq/µmol for ST route, respectively).
Their specificity was tested using the Ligand Tracer method on different tumour cell lines
and on fibroblasts. The strong interaction between the [64Cu]Cu-DOTA-NT(8-13) and
the colon cancerous cell lines is proven by the uptake and retention data. After uptake
stabilisation and washing with fresh medium, the peptide bonded to the receptors of the
HT29 and HCT116 cell lines maintained the activity on cells at levels comparable with
the uptake activities. The uptake of the peptides was also good for other peptide-cells
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combinations, when the washing caused the removal of a large portion of the radioactive
solution from cellular membranes. The uptake profiles of radiolabelled peptides to cancer
cells showed rapid binding in the first minutes after incubation with [64Cu]Cu-DOTA-
NT(8-13) and [64Cu]Cu-DOTA-NN, respectively, and confirmed a nonspecific uptake in
BJ fibroblasts.

4. Materials and Methods
4.1. Reagents and Equipment

The solid target material, isotopically enriched nickel-64 (99.53%) metallic powder
was purchased from Isoflex Company (San Francisco, CA, USA). The reagents used for the
preparation of the solid target were purchased as follows: ammonium chloride (≥99.9995%
purity), nitric acid (67–69%), and water from Honeywell-Fluka, TraceSELECT (Muskegon,
MI, USA); ultrapure hydrochloric acid and ammonium hydroxide (≥99.99%) from Sigma-
Aldrich (Steinheim, Germany). The electrodeposition was performed on a dedicated shuttle
manufactured by COMECER SpA (Castel Bolognese, Ravenna, Italy). In-house prepared
columns loaded with AG1-X8 ion exchange resin from Bio-Rad Laboratories (Hercules, CA,
USA) were used for purification.

For the liquid targets, enriched isotope nickel-64 was purchased from Fluidomica
(Cantanhede, Portugal) in the form of metallic powder with >95.0% enrichment. Water
(TraceSELECTTM, 99.9999999% metals basis) was obtained from Honeywell (Seelze, Ger-
many). Ready to use CU Resin and anion exchange resin (SAX) were purchased from
TrisKem International (Bruz, France).

The following were used in the peptide-labelling process: Neurotensin, short-chain 8-13,
DOTA-NT(8-13) (purity 95%) from Eurogentec, Belgium; Neuromedin N, DOTA-NN (purity
95%) from PolyPeptide Group (Limhamn, Sweden); sodium chloride (0.9%) from Hemofarm,
Serbia, ethanol (≥99.9%) from LiChrosol, Merck, Darmstadt, Germany; ultrapure water
(resistivity 18.2 MΩcm/25 ◦C, TOC ≤ 5 ppb, pyrogenic impurities < 0.001 EU/mL) was
freshly prepared with a Millipore Mili-Q Direct 8, from Millipore SaS, (Molsheim, France).
The purification was carried out using a Strata-X 33 µm RP cartridge (60 mg/3 mL) from
Phenomenex (Torrance, CA, USA), for the solid target experiment and a SPE Cartridge,
Oasis HLB Plus Extraction from Waters Corporation, (Etten-Leur, The Netherlands) for the
liquid target experiment, respectively.

The radiochemical purity (RCP) of the two radiolabelled peptides, [64Cu]Cu-DOTA-
NT(8-13) and [64Cu]Cu-DOTA-NN, was evaluated with a liquid chromatography technique:
radio-HPLC, using two different systems, equipped with a UV and gamma detector.

For the solid target experiment, HPLC analyses were carried out using a Shimadzu
Prominence 20 A (Shimadzu, Kyoto, Japan) equipped with a Flowstar LB 513 detector of
gamma radiation (Berthold Technologies GmbH & Co.KG., Bad Wildbad, Germany) and a
C18 reverse-phase chromatography column (Waters SunFire, 4.6 × 150 mm, 3.5 µm). The
analysis was performed using a gradient method at 1.0 mL/min flowrate. The solutions
used as mobile phase were water with 0.1% (v/v) TFA, and acetonitrile with 0.1% (v/v) TFA.

For the liquid target experiment, a radio-HPLC, Agilent 1260 Infinity II system,
equipped with UV detector, ELYSIA Raytest gamma radiation detector (Sockel 2 GABI
Nova, Elysia S.A., Straubenhardt, Germany), thermostat for column and a manual injector
was used to determine the radiochemical purity (RCP) of the radioactive solution. The
chromatographic column used in this case was a column with a reverse-phase separation
mechanism, Agilent Eclipse XDB-C18, 4.6 × 150 mm, with a particle size of 5 µm. The mo-
bile phase was composed of water with TFA and acetonitrile. The analysis was performed
in an isocratic gradient, with a flow rate of 3.5 mL/min.

Gamma-ray spectrometry method was used to determine the radioactive purity of
the final solution using an HPGe detector from Baltic Scientific Instruments (Latvia). In
order to determine the radioactive impurities and the characteristic 64Cu peaks (511 keV
and 1345 keV), a sample of 2 µL of [64Cu]CuCl2 was evaluated 24 h from EOB, with a dead
time of 0.7%.
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The in vitro affinity of the radiolabelled compounds for target receptors on the surface
of the cells was tested using the real-time receptor-ligand interaction monitoring system
Ligand Tracer Yellow (LigandTracer Ridgeview Instruments, Uppsala, Sweden). The
processed graphs were obtained using the dedicated TraceDrawer software, 1.6.1.

Three human tumours cell lines and a control normal cell line were tested: HT29 (colon
adenocarcinoma, ATCC product, catalogue number HTB-38, from BIO ZYME S.R.L., Cluj-
Napoca, Romania), HCT116 (colon carcinoma, ATCC product, catalogue number CCL-247,
from BIO ZYME S.R.L., Cluj-Napoca, Romania), DU145 (prostate carcinoma, CLS product,
catalogue number 300168, from CLS Cell Lines Service GmbH, Eppelheim, Germany), and
BJ (normal human skin fibroblast, ATCC product, catalogue number CRL-2522, from BIO
ZYME S.R.L., Cluj-Napoca, Romania) [23–26]. The cells were cultivated at 37 ◦C and 5%
CO2 in a DMEM culture medium (Gibco, ThermoFisher Scientific, Waltham, MA, USA)
supplemented with 10% FBS (Euroclone, Italy), and a stabilised Antibiotic Antimycotic
Solution (100×) (Sigma, Saint Louis, MO, USA) containing 10,000 units penicillin, 10 mg
streptomycin and 25µg Amphotericin B per mL. This culture medium will be further
designated as a complete culture medium.

4.2. Target Preparation of Solid and Liquid Targets
4.2.1. Preparation of Solid Target

A platinum well, which is part of the shuttle, was used for the electrodeposition of
enriched 64Ni (99.53%). Platinum was chosen due to its chemical resistance to concentrated
acids, allowing the use of high-concentrated HCl in the dissolution step of the irradiation
target without affecting the support. The outer body is made of aluminium, chemically
treated for anticorrosion, while the inner body is made of platinum. The platinum well
(D16 × 12 mm) is pressurised into the aluminium body so that the shuttle assembly acts as
a single component.

The 64Ni solution for the two targets was obtained by dissolving 100 mg of enriched
nickel-64 in concentrated HNO3 (60%), then evaporated to approximately 0.3 mL by heating.
After evaporation, 2 mL of the NH4Cl–NH4OH buffer solution and water were added to a
total volume of 10 mL. The pH of the final solution was adjusted to 9.30 ± 0.02 (at 25 ◦C)
with NH4OH (Figure 5).
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Figure 5. Preparation of 64Ni solution for electroplating: (a) nickel-64 dissolved in HNO3 (60%);
(b) evaporation step (c) final solution, further used for electroplating.

Half of the final solution was placed in the electrodeposition cell, part of the EDS
module, where the electroplating was performed at a current of 37 ± 2 mA for a minimum
of 15 to a maximum of 20 h to obtain a compact metallic target, without stalagmites or cracks.
The electrodeposition process is completed when the blue solution becomes colourless.
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4.2.2. Preparation of Liquid Target Solution

The nickel-64 solution was prepared by dissolving 200 mg nickel-64 metal form (95%
isotopic enrichment) in highly concentrated nitric acid (69%) at room temperature (RT).
The resulting solution had to be evaporated and redissolved in 10 mM nitric acid multiple
times to remove the excess of nitric acid from the original solution. The final irradiated
solution (10 mM nitric acid) has a pH ranging from 1.2 to 1.7 in a total volume of 2.7 mL.

4.3. Cyclotrons and Irradiation
4.3.1. Solid Target Irradiation

The production of copper-64 was achieved by the irradiation of the resulted solid
target on the TR-19 cyclotron (Advanced Cyclotron Systems Inc., Richmond, Canada),
installed at the Radiopharmaceutical Research Centre, Horia Hulubei National Institute
for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Romania (Figure 6). TR-19
series cyclotrons are accelerators for negative hydrogen ions, with external ion sources. The
energy range of the TR-19 proton beam, from 14 MeV to 19 MeV with a step of 100 keV, is
ideal for most of the PET radioisotopes production. The energy of the extracted beam can
be further degraded by using aluminium foils and Havar degradation windows, before
reaching the target surface.
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TR-19 can simultaneously extract two beams with intensities that vary independently,
using two extraction ports that are diametrically opposed, to irradiate liquid, solid and
gaseous targets, up to a total beam current of 300 µA. One of the ports can accommodate up
to four reaction chambers, while the second extraction port is equipped with two external
beam lines that can be switched remotely with a switching magnet [27].

The prepared target was sent to the solid target irradiation station installed on one
of the extension lines of the TR-19 cyclotron and sloped down through the automated
pneumatic transfer system (Figure 6b). Several simulations were performed in order to
establish the optimal parameters of the irradiation. We used Geant4 for simulations of
the nuclear reactions for 64Cu production, the code being implemented and validated, as
described in our previous work [21]. Following the simulations, the irradiation parameters
were set to an extracted energy of 14.2 ± 0.3 MeV, degraded to 11.81 ± 0.63 MeV on target
by using a 320 µm thickness aluminium foil, with a beam current of 25 ± 0.5 µA and an
irradiation beam time of 6 h.

4.3.2. Liquid Target Irradiation

The experiments were performed on the Cyclone® KIUBE VE (IBA, Louvain-la-Neuve,
Belgium) installed at the Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra,
Portugal (Figure 7). This accelerator is a variable-energy cyclotron delivering protons with
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energy ranging from 13 to 18 MeV. With eight output ports, KIUBE is one of the most
flexible systems, producing the widest range of radioisotopes used in PET imaging.
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The liquid target system was loaded with 2.7 mL of the dissolved nickel-64 solution.
The 18 MeV proton beam extracted was degraded down to 16.9 MeV on target by using
a 75 µm thickness niobium window. The beam current was 50–55 µA and the irradiation
time was adjusted according to the production needs.

4.4. Post-Irradiation Processing
4.4.1. Solid Target Dissolution and Purification

After irradiation, the shuttle was moved to the dissolution module using pneumatic
transfer. The target was dissolved in the dissolution station of the EDS module using
2 × 1.5 mL of 6 M HCl while heating each portion for 15 min at 90 ◦C. The resulted
crude solution was automatically transferred onto the separation column, installed in the
purification module PRF. Each column was prepared approximately 1 h prior to use by
loading 9 g of AG1-X8 resin. After dissolution, 30 mL of 6 M HCl were used to rinse
without heating the dissolution cell and transfer tubes. These portions are also sent to
the separation column to wash the nickel impurities. Next, 10 mL of 4 M HCl were used
to wash Co impurities from the column. Finally, the copper-64 solution was eluted from
the resin with 0.5 M HCl (Figure 8) in the form of [64Cu]CuCl2. The volume of the final
solution can be selected depending on which parameter is of interest: higher amount of
recovered activity (up to 19 mL) or higher specific activity (at least 3 mL), the latter variant
also benefiting from a shorter processing time.

4.4.2. Liquid Target Purification

After irradiation, the irradiated liquid target was automatically sent to the purification
module (IBA Synthera® Extension Module—Louvain-la-Neuve, Belgium), where the pro-
cess lasted 30 min. The purification process is a two-step method using CU resin (1 mL)
and SAX resin (2 mL), which were both preconditioned with water (10 mL)and 8 M HCl,
respectively, before being used. The irradiated solution (V = 2.7 mL, pH ± 1.5) was loaded
onto the CU resin (an oxime-based resin) from Triskem International (Bruz, France) after
being diluted with water to a pH > 2.5. Next, the resin was washed with 1 mM HNO3
(10 mL) to ensure the complete removal of all cobalt and nickel ions. Finally, the column
was eluted with 8 M HCl (2 mL). The solution eluted from CU resin was loaded onto a SAX
resin (AG1X8—2 mL) to convert copper into a ready-to-use labelling solution.
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4.5. Peptide Radiolabelling

The current study focused on the labelling of two neuropeptides used in molecular
imaging applications and conjugated with the DOTA chelator: Neurotensin(8-13), DOTA-
NT(8-13) and Neuromedin N, DOTA-NN. The binding of copper-64 to the peptide using a
macrocyclic bifunctional chelator was performed at 95 ◦C, 20–30 min reaction time. For
each 20 nmol of each peptide, 1–2 mL of [64Cu]CuCl2 solution (pH = 3.8–4.0, radioactive
concentration 500–1500 MBq/mL) were added.

After radiolabelling, the solution was purified using a Strata-X 33 µm RP cartridge,
to separate the radiolabelled peptide from other impurities (Figure 9). The radiolabelled
peptide was eluted with 1 mL of ethanol. The ethanol was further removed by evaporation
at 80◦ C to near dryness. After evaporation, the radiolabelled peptide was recovered with
1 mL physiological solution, the pH was checked and adjusted, if needed, to 7.0–7.5.
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4.6. In Vitro Uptake-Retention Assay

The method involves cell cultures (400,000 cells/sample) seeded in a marked de-
fined area of a 91 mm Petri dish placed at a 30◦ angle, 24 h before analysis. During data
acquisition, the Petri dish was placed in the device in the angled support and rotated
periodically to detect the radioactivity in two situations: the cell with the medium and
added radioisotope, and the medium with added radioisotope without cells. The calculated
difference between the activities measured in these two situations allows for the evaluation
of the quantity of radiolabelled compounds bonded to the cell receptors at regular inter-
vals [28]. The acquired data are presented in a graph that indicates signal intensity (counts
of radioactive decay per second) over time. The software takes into account the decay
of the radioisotope during acquisition. Radiolabelled peptides affinity for cell receptors
was analysed by adding a radioactive solution to the culture medium with an activity of
25 ± 5 MBq. The retention of the peptides in the cell lines was analysed by removing the
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medium, washing the cells with 1 mL of prewarmed complete culture medium, and adding
1 mL of fresh prewarmed complete culture medium.

5. Conclusions

Copper-64 can be produced in a high-quality [64Cu]CuCl2 solution using variable
energy cyclotrons with a (p,n) reaction, and either solid or liquid nickel-64 targets. The
radiochemical purity after post-irradiation processing reaches 99% (LT) and 99.99% (ST), re-
spectively, while radionuclide purity is above 99.9%. The irradiation of a solid target yields
to 117 MBq/µAh (17.6 ± 2.1 GBq/batch, decay corrected to EOB). The purification process
is completed within 1 h using an automated processing module with a 90.90% activity yield.
The resulted solution, with a high radioactive concentration (1340.4 ± 70.1 MBq/mL) was
used for neuropeptide radiolabelling. The irradiation of a liquid target with 16.9 MeV
protons yields to 12.4 MBq/µAh (3.7 ± 0.2 GBq/batch, decay corrected to EOB). Benefiting
from a shorter purification process of only 40 min, the activity yield is similar at 90.87%,
while the radioactive concentration of a radiolabelling solution is lower (492 MBq/mL).
The [64Cu]CuCl2 solutions prepared by the two routes were successfully used for the
radiolabelling of DOTA-NT(8-13) and DOTA-NN neuropeptides, resulting in high RCP
(>99%), and high molar activity (27.2 and 26.4 GBq/µmol for LT route compared to 45 and
52 GBq/µmol for ST route, respectively). Their specificity for NTR is confirmed by the
strong interaction between the [64Cu]Cu-DOTA-NT(8-13) and the colon cancerous cells
lines HT29 and HCT116, as shown by the uptake-retention curves. Neurotensin (8-13) and
Neuromedin N neuropeptides, will be further investigated as theranostic agents for cancers
overexpressing neurotensin receptors.
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