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Abstract: Mn4+-doped red-light-emitting phosphors have become a research hotspot that can ef-
fectively enhance photosynthesis and promote morphogenesis in plants. Herein, the red phosphor
La3Mg2NbO9:Mn4+ was synthesized through the solid-state reaction method. The effects of adding
H3BO3 and a charge compensator R+ (R = Li, Na, K) on the crystal structure, morphology, quantum
efficiency, and luminous performance of the La3Mg2NbO9:Mn4+ phosphor were systematically ana-
lyzed, respectively. The results showed that adding H3BO3 flux and a charge compensator improved
the quantum efficiency and luminescence intensity. The emission intensity of the phosphor was
enhanced about 5.9 times when Li+ was used as the charge compensator, while it was enhanced about
240% with the addition of H3BO3 flux. Remarkably, it was also found that the addition of H3BO3

flux and a charge compensator simultaneously improved the thermal stability at 423 K from 47.3% to
68.9%. The prototype red LED fabricated using the La3Mg2NbO9:Mn4+,H3BO3,Li+ phosphor exhib-
ited a perfect overlap with the phytochrome absorption band for plant growth. All of these results
indicate that the La3Mg2NbO9:Mn4+,H3BO3,Li+ phosphor has great potential for use in agricultural
plant lighting.

Keywords: phosphor; charge compensator; H3BO3; plant growth lamp

1. Introduction

Fluorescent conversion white-light-emitting diodes (WLEDs) are rapidly replacing
traditional illuminant sources with their superior intense brightness, longevity, energy-
saving properties, environmental protection, and simple processes, and are gradually
becoming mainstream products in the lighting market [1–4]. Currently, the mainstream
WLEDs in the market obtain white light by compounding Y3Al5O12:Ce3+ yellow phosphor
with InGaN blue LED chips [5,6]. Nevertheless, it is hard for them to satisfy the basic needs
of high-quality indoor lighting and backlighting display due to their shortage of red light.
Complementing the red emission by adding red phosphor is an effective way to solve the
above problems. At present, there are two main types of commercialized red phosphors
for WLEDs: Eu2+-activated nitride red phosphors, represented by CaAlSiN3:Eu2+, and
Mn4+-activated fluoride red phosphors, represented by K2SiF6:Mn4+ [7,8]. However, both of
these are limited in their widespread application due to the decrease in quantum efficiency
caused by the partial overlap of their excessively broad absorption bands with the emission
peaks of the yellow phosphor, as well as the high costs of their synthesis processes due to
the need for high-temperature and high-pressure conditions [9–11]. Therefore, finding a
high-efficiency red phosphor is a top-priority mission nowadays.

Light plays a pivotal role in plant growth, wherein the essential light requirements in
the blue (400–480 nm), red (600–680 nm), and far-red (680–780 nm) regions are responsible
for photosynthesis, phototropism, and photomorphogenesis, respectively [12,13]. As a
transition metal ion, Mn4+ has plentiful reserves and a low price compared with traditional
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rare-earth luminescence centers [14]. In a suitable crystal structure, Mn4+ ions with a
3d3 electron configuration can emit bright light, and the emission spectrum is mainly
concentrated in the red/far-red wavelength range of 620–740 nm [15,16]. Compared with
fluoride phosphors, Mn4+-activated oxide phosphors with better chemical stability that
are synthesized without the highly corrosive HF have drawn much attention in terms of
WLEDs, plant illumination, and infrared illumination [17]. To realize a multi-functional
Mn4+ phosphor, the choice of an optimum host material, which immediately decides
the external electric fields, luminescent properties, and thermal stability of the synthetic
phosphor, is essential. Recently, niobate has aroused the enthusiasm of researchers in
the fields of luminescence, photocatalysis, and optical information storage. Jeong Seog
Kim et al. (1999) reported the perovskite-type structure La3Mg2NbO9 (LMN), which has
been widely studied. In this paper, compound LMN was selected as the luminescent
host, which can be prepared easily with cheap raw materials including Mg2(OH)2CO3,
La2O3, and Nb2O5. Compared with traditional aluminates, tellurites, etc., niobates have
many advantages, such as their affluent crystalline environment, excellent thermal stability,
and environmentally friendly experimental methods [18]. To our knowledge, in all of the
published literature, relevant developments in the use of the Mn4+-doped LMN phosphor
have not yet been studied.

In this work, we designed and synthesized LMN:xMn4+, LMN:0.6%Mn4+,yH3BO3
(LMN:Mn4+,yB), LMN:0.6%Mn4+,9%B,5%Li+ (LMN:Mn4+,B,Li+), LMN:0.6%Mn4+,9%B,
5%Na+ (LMN:Mn4+,B,Na+), and LMN:0.6%Mn4+,9%B,5%K+ (LMN:Mn4+,B,K+) phosphors
and studied in detail the influence of H3BO3 and charge compensator R+ on the crystal
structures, morphology, quantum efficiency, and luminescent properties of these LMN:Mn4+

phosphors. Adding H3BO3 flux and a charge compensator improved the quantum efficiency
and luminescence intensity. In addition, the thermal stability of the fluorescent materials at
423 K increased simultaneously. Also, we demonstrated the potential of these phosphors
to enhance sunlight harvesting by fabricating a prototype red LED. All of these results
suggest that the LMN:Mn4+,B,Li+ phosphor shows great potential for use in the production
of agricultural plants.

2. Results and Discussion
2.1. Structural Property Analysis

The X-ray powder diffraction (XRD) patterns of LMN:xMn4+ and the standard cards
(PDF#53–0302) are illustrated in Figure 1a. To analyze the effects of H3BO3 and the charge
compensator on the crystal structure, the phases of the LMN:Mn4+,yB (0.03 ≤ y ≤ 0.15) and
LMN:Mn4+,B,R+ (R = Li, Na, K) samples were also tested, as depicted in Figure 1a. All of
the characteristic peaks corresponded to the standard cards, indicating that the structural
effect of these dopants (Mn4+, Li+, Na+, K+, and H3BO3) on the matrix was not significant.
Additionally, the phosphors with H3BO3 exhibited a higher intensity of XRD patterns,
revealing that H3BO3 can improve the crystallinity of the host. The ionic radii for Mn4+

(CN = 6; CN: coordination number), La3+ (CN = 8), Mg2+ (CN = 6), and Nb5+ (CN = 6)
are 0.53 Å, 1.16 Å, 0.72 Å, and 0.64 Å, respectively [19]. When introducing Mn4+ into the
LMN matrix, Mn4+ ions preferentially replace Nb5+ ions due to the similarity of their ionic
radii. In order to obtain further information on the crystal structure of these samples, the
LMN, LMN:Mn4+, LMN:Mn4+,B, and LMN:Mn4+,B,Li+ samples were subjected to Rietveld
refinement by using the general structure analysis system (GSAS) method, as presented
in Figure 1b–e. The low residual factors of Rwp, Rp, and χ2 mean the refinement results
are credible [20]. The detailed refined results for LMN, LMN:Mn4+, LMN:Mn4+,B, and
LMN:Mn4+,B,Li+ are shown in Table 1, which shows that these synthesized samples are
classified as the monoclinic system and correspond to the P21/n space group. Furthermore,
the cell parameters of LMN remained almost unchanged, except for minor shrinkage after
the addition of H3BO3. According to the refinement results, the crystal structure of LMN is
shown in Figure 1f. It is observed that only one La cation site with a Wyckoff position is
connected to eight oxygen ions to form the LaO8 octahedron. In addition, Mg and Nb at the
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same site link with six oxygen ions to form the MgO6/NbO6 polyhedron, which connects
with the LaO8 polyhedron through sharing the same site.
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Figure 1. (a) XRD patterns of LMN:xMn4+ , LMN:Mn4+ ,yB, and LMN:Mn4+ ,B,R+ (R = Li, Na,
K) phosphors. Rietveld refinement profiles for (b) LMN; (c) LMN:Mn4+ ; (d) LMN:Mn4+ ,B;
(e) LMN:Mn4+ ,B,Li+ . (f) The crystal structure of LMN.

Table 1. The final crystallography parameters and detailed refinement results for the LMN,
LMN:Mn4+, LMN:Mn4+,B, and LMN:Mn4+,B,Li+ samples.

Sample LMN LMN:Mn4+ LMN:Mn4+,B LMN:Mn4+,B,Li+

Space group P21/n P21/n P21/n P21/n
Symmetry monoclinic monoclinic monoclinic monoclinic

a, Å 7.960988 7.957217 7.953043 7.958700
b, Å 5.663982 5.658432 5.659001 5.655400
c, Å 5.618457 5.615722 5.617241 5.616400

V, Å3 252.93 252.85 253.03 252.88
Z 4 4 4 4

α = γ ◦ 90 90 90 90
β ◦ 89.95 89.98 89.92 89.96
Rwp 14.6 12.6 12.1 11.3
Rp 11.8 10.3 11.2 9.2
χ2 2.67 1.83 2.01 1.93

Shape and morphology can have an effect on the performance of luminescent materi-
als. Thus, the scanning electron microscopy (SEM) images of LMN:Mn4+, LMN:Mn4+,B,
and LMN:Mn4+,B,Li+ are shown in Figure 2a–c. As is obvious, the LMN:Mn4+ phosphor
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shows an irregular polyhedron morphology and micro-granularity with a particle size of
approximately 2–5 µm. The surface morphology shows that the grain shape is significantly
more anisotropic and less agglomerated after the introduction of the H3BO3 [21]. The
melting of H3BO3 can enhance the sliding and rotation of the particles, promoting contact
between the particles and particle growth and thus increasing the size of the particles [22].
In addition, it is widely known that phosphors with a regular morphology can improve
paste properties, improve the filler density, and enhance phosphor luminescence perfor-
mance [23]. Moreover, the elemental distributions of La, Mg, Nb, O, and Mn shown in
Figure 2d clearly show that the constituent elementals are uniformly distributed in the
LMN:Mn4+,B,Li+ powder.
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2.2. Electronic Properties

The electronic structural characteristics of matrix materials have a significant impact on
luminescent materials. In order to gain insight into its electronic properties, the electronic
energy band structure of LMN was studied using the Cambridge Sequential Total Energy
Package (CASTEP) module. As shown in Figure 3a, the top of the valence band (VB) located
at point Γ compares with the bottom of the conduction band (CB) located at point D. This
result indicates that the LMN matrix is an indirect bandgap semiconductor and its energy
gap (Eg) is 4.237 eV, which indicates that it is sufficient for the energy level of Mn4+ to
be the luminescent material [24]. The maps of the partial and total density of states are
given in Figure 3b, which can help to understand the band structure component deeply.
Compared with other atoms, the p orbital of Nb and O make the most contributions to the
CB, which indicates that electronic orbitals within the NbO6 octahedron are rather discrete.
Thus, the Mn4+ ions doped at the Nb5+ site would also have a high possibility to generate
and obtain free carriers through the CB [25].

Figure 3c depicts the diffuse reflectance spectra (DRS) of the LMN host, LMN:Mn4+,
LMN:Mn4+,B, and LMN:Mn4+,B,Li+. At 450~800 nm, the LMN presents a high-reflectance
plateau, while at 200~450 nm, the reflectance of the LMN decreases sharply because of
host absorption. Compared with the host material, the LMN:Mn4+, LMN:Mn4+,B, and
LMN:Mn4+,B,Li+ samples show more prominent absorption peaks around 300 nm, which
resulted from the O2−→Mn4+ charge transfer band (CTB). Additionally, two wide peaks are
observed from 350 to 550 nm, which belong to the 4A2g→4T1g and 4A2g→4T2g transitions of
the Mn4+ ions, respectively [26]. Furthermore, LMN:Mn4+,B,Li+ shows the most prominent
absorption, followed by the LMN:Mn4+,B sample and the LMN:Mn4+ sample. Based on
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the DRS of the LMN host and the theory given by Kubelka–Munk, the Eg can be estimated
with the following equation [27]:

[hν(R∞)] n = A(hν− Eg) (1)

where h, ν, and A denote the absorption factor, Planck constant, and constant, respectively.
n = 1/2 or 2 indicates that the sample is an indirect or direct bandgap semiconductor [28].
According to the results in Figure 3a, LMN is an indirect bandgap semiconductor, so the
value of n is 1/2. The curve of [hν(R∞)]1/2 versus the photon energy of the LMN host is
shown in Figure 3d, and the calculated value of Eg is 4.30 eV, which is close to the result of
the theoretical calculation (4.237 eV).
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2.3. Optical Luminescence Properties of Samples

The photoluminescence excitation (PLE) spectra of the LMN:Mn4+ phosphor, which
are composed of two broad excitation bands in the range of 250–600 nm, are shown in
Figure 4a. The one located at 348 nm compares with the other located at 504 nm. In addition,
the PLE spectra can be fitted using the Gaussian distribution method to form four character-
istic bands peaking around 504, 417, 367, and 318 nm, which can be attributed to 4A2g→4T2g,
4A2g→2T2g, 4A2g→4T1g transitions of the Mn4+ ions and the CTB of O2−→Mn4+, respec-
tively [29]. As depicted in Figure 4b, the dependence of photoluminescence (PL) spectra for
LMN:xMn4+ (0.15% ≤ x ≤ 0.9%) is excited at 348 nm. The LMN:xMn4+ phosphors exhibit
a deep-red luminescence attributed to the 2Eg→4A2g spin-forbidden transition of the Mn4+

ions centered at 708 nm. Furthermore, as the concentration of the Mn4+ ions increases, the
PL spectra show the same peak pattern and position except for different intensities. The
inset of Figure 4b demonstrates that the luminous intensity ascends and then descends
with the doping concentration of Mn4+ ions from 0.15% to 0.9%. The optimal luminescence
concentration is 0.6% due to the concentration quenching effect [30].
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To improve the luminescence properties, the flux of H3BO3 powders with different
doping contents were added to the LMN:Mn4+ sample. As shown in Figure 5a, the PL
spectra of LMN:Mn4+,yH3BO3 (y = 0, 3%, 6%, 9%, 12%, and 15%) phosphors were systemat-
ically studied. Except for the luminous intensity, no notable changes were detected with the
concentration of H3BO3 changing from 3% to 15%. However, compared to the LMN:Mn4+

sample, the luminescence intensity of all doped H3BO3 phosphors significantly improved.
Doping with H3BO3 can reduce the sintering temperature, enhance the crystallinity of
the sample, and increase the luminous intensity [31]. The variation in luminescence in-
tensity with different concentrations of H3BO3 is shown in the illustration of Figure 5a.
Furthermore, the best dopant concentration of H3BO3 was 9%. The LMN:Mn4+,B,R+

(R = K, Na, Li) phosphors were successfully synthesized, which can assist researchers with
exploring the improvement of luminescent properties. As shown in Figure 5b, it is noted
that doping with K+, Na+, and Li+ ions enhances the luminous intensity when comparing
the PL spectra of LMN:Mn4+,B. In our opinion, the main reason for such a result comes
from the charge balance. The ionic radii of K+, Li+, and Na+ are similar to that of Nb5+, so
R+ (R = K, Na, Li) will be replaced by Nb5+ to form [Mn4+-R+] pairs. And these [Mn4+-R+]
pairs can interrupt the adverse energy transfer among neighboring Mn4+ ions to increase
the luminescence intensity [32]. Accordingly, the luminous intensity of LMN:Mn4+,B can be
enhanced through using K+, Na+, and Li+ co-doping ions to improve the charge compensa-
tion. It is noteworthy that when Li+ ions were doped into LMN:Mn4+B, the luminescence
intensity of the Li+ ions was intensified much more than that of the K+/Na+ ions. These out-
comes likely stemmed from the fact that [Mn4+-Li+] interrupts the energy transfer between
Mn4+ ions more efficiently than the ionic substitution between K+ and Na+. Specifically,
the luminescence intensity of the LMN:Mn4+ sample is considered a regular standard, as
shown in Figure 5c, and the luminescent strength of LMN:Mn4+,B,Li+ can increase up
to 1420%, while the LMN:Mn4+,B, LMN:Mn4+,B,K+, and LMN:Mn4+,B,Na+ samples can
increase up to 240%, 420%, and 600%, respectively. The energy level diagram of Mn4+ in
the octahedral coordination situation is further described using a Tanabe–Sugano diagram.
This energy level transition process of LMN:Mn4+ is matched well with the above results,
as depicted in Figure 5d. In general, the crystal field strength (Dq) and Racah parameters
(B, C) are calculated as follows [33]:

Dq = E
(

4 A2g → 4T2g

)
/10 (2)

Dq

B
=

15(x− 8)
x2 − 10x

(3)
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x =
E(4 A2g → 4T1g)− E(4 A2g → 4T2g)

Dq
(4)

E(2Eg → 4 A2g)

B
=

3.05C
B

+ 7.9− 1.8B
Dq

(5)

Molecules 2024, 29, x FOR PEER REVIEW 7 of 15 
 

 

xx

x

B

Dq

10

)8(15
2 −

−
=

 
(3) 

q

gggg

D

TAETAE
x

)()( 2

4

2

4

1

4

2

4 →−→
=

 
(4) 

2 4

2E( ) 3.05 1.8
7.9

g g

q

E A C B

B B D

→
= + −  (5) 

According the above equations, the results of Dq, B, and C values for Mn4+ in the LMN 

are 1984.1, 724.1, and 2911.3 cm−1. Generally speaking, when Dq/B is greater than 2.1, the 

dopant ions are generally considered to be in a strong crystal field environment [34]. Here, 

the Dq/B value is calculated as 2.74, indicating that the Mn4+ ions are located in a strong 

crystal field. By using the same method, the Dq/B value of LMN:Mn4+,B,Li+ is calculated to 

be 2.83. These results demonstrate that the doping of H3BO3 and Li+ into the lattice of the 

LMN:Mn4+ phosphor can efficiently enhance the crystal field strength of Mn4+. 

 

Figure 5. The PL spectra for (a) LMN:Mn4+,yB and the relative point line diagram; and (b) 

LMN:Mn4+,B,R+ (R = K, Na, Li) phosphors. (c) The normalized luminescence intensity of different 

phosphors. (d) Tanabe–Sugano energy level diagram of a Mn4+ ion in the LMN host. 

To further investigate the effects of H3BO3 and the charge compensator, decay curves 

of the LMN:Mn4+, LMN:Mn4+,B, and LMN:Mn4+,B,R+ (R = K, Na, Li) phosphors were ob-

tained by monitoring at 708 nm, as depicted in Figure 6a. The experimental data of the 

decay curves were fitted using the following two-exponential function [35]: 

)exp()exp( 22110  tAtAII −+−+=  (6) 
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(R = K, Na, Li) phosphors. (c) The normalized luminescence intensity of different phosphors. (d) Tanabe–
Sugano energy level diagram of a Mn4+ ion in the LMN host.

According the above equations, the results of Dq, B, and C values for Mn4+ in the LMN
are 1984.1, 724.1, and 2911.3 cm−1. Generally speaking, when Dq/B is greater than 2.1, the
dopant ions are generally considered to be in a strong crystal field environment [34]. Here,
the Dq/B value is calculated as 2.74, indicating that the Mn4+ ions are located in a strong
crystal field. By using the same method, the Dq/B value of LMN:Mn4+,B,Li+ is calculated
to be 2.83. These results demonstrate that the doping of H3BO3 and Li+ into the lattice of
the LMN:Mn4+ phosphor can efficiently enhance the crystal field strength of Mn4+.

To further investigate the effects of H3BO3 and the charge compensator, decay curves
of the LMN:Mn4+, LMN:Mn4+,B, and LMN:Mn4+,B,R+ (R = K, Na, Li) phosphors were
obtained by monitoring at 708 nm, as depicted in Figure 6a. The experimental data of the
decay curves were fitted using the following two-exponential function [35]:

I = I0 + A1 exp(−t/τ1) + A2 exp(−t/τ2) (6)
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where I(t) and I0 are the intensities at time t and t = 0, respectively. A1 and A2 are constants,
and τ1 and τ2 are the fast and slow lifetimes, respectively. Based on these fitting parameters,
the average lifetime τ can be estimated using the following formula:

τ =
(

A1τ1
2 + A2τ2

2
)

/(A1τ1 + A2τ2) (7)
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Na, K) phosphors. (b) Excitation line of BaSO4 and the emission spectra of LMN:Mn4+, LMN:Mn4+,B,
and LMN:Mn4+,B,Li+ phosphors.

Therefore, the average luminescence lifetimes of LMN:Mn4+, LMN:Mn4+,B, and
LMN:Mn4+,B,R+ (R = K, Na, Li) are evaluated to be 0.847 ms, 0.863 ms, 0.901 ms, 0.883 ms,
and 0.975 ms, as depicted in Table 2. Based on the XRD structural analysis, lattice shrinkage
also solidifies the structural rigidity, thereby inhibiting non-radiative transitions [36]. The
results show that a more efficient fluorescence lifetime can be acquired from adding H3BO3
into LMN:Mn4+. Additionally, the lifetimes of LMN:Mn4+,B,R+ (R = K, Na, Li) are similar
and larger than those of LMN:Mn4+,B, suggesting that the doping of R+ (R = K, Na, Li) ions
can efficiently decrease the feasibility of non-radiative transitions of Mn4+ ions.

Table 2. Lifetimes and internal quantum efficiency values of the LMN:Mn4+, LMN:Mn4+,B, and
LMN:Mn4+,B,R+ (R = Li, Na, K) phosphors.

Sample Lifetime (ms) α abs (%) IQE (%)

LMN:Mn4+ 0.847 44.2 43.3
LMN:Mn4+,B 0.863 58.5 50.2

LMN:Mn4+,B,Li+ 0.975 67.3 61.7
LMN:Mn4+,B,Na+ 0.883 60.0 52.1
LMN:Mn4+,B,K+ 0.901 62.2 55.6

In addition, the internal quantum efficiency (IQE) levels of the LMN:Mn4+, LMN:Mn4+,B,
and LMN:Mn4+,B,Li+ phosphors were measured and are shown in Figure 6b and Table 2.
The IQE value and absorption coefficient (α abs) can be acquired using the following
equation [37]:

η =

∫
Ls∫

ER −
∫

Es
(8)

αabs =

∫
ER −

∫
Es∫

ER
(9)

where LS is the spectral intensity of PL, ES is the spectral intensity of the PLE with the
sample, and ER is the spectral intensity of the PLE without it in the integrating sphere.
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Figure 6b shows that the α abs values of the LMN:Mn4+, LMN:Mn4+,B, and LMN:Mn4+,B,Li+

phosphors were computed to be 44.2%, 58.5%, and 67.3%. Meanwhile, the IQE val-
ues of the LMN:Mn4+ phosphors were improved remarkably from 43.3% to 50.2% for
LMN:Mn4+,B and 61.7% for LMN:Mn4+,B,Li+. Compared with the LMN:Mn4+ phos-
phor, LMN:Mn4+,B and LMN:Mn4+,B,Li+ had a higher quantum yield, which was mainly
due to the strong absorption of the phosphors to the 348 nm band. In addition, the ob-
tained results are superior to that for several red phosphors including Li2MgTiO4:Mn4+

(IQE = 32%) [29], Li6SrLa2Sb2O12:Mn4+ (IQE = 17%) [33], Sr3NaSbO6:Mn4+ (IQE = 56.2%) [38],
Sr3LiSbO6:Mn4+ (IQE = 52.3%) [39], SrAl3BO7:Mn4+ (IQE = 32%) [40], and Ba2SrWO6:Mn4+

(IQE = 51.5%) [41]. According to these excellent results from the LMN:Mn4+,B,Li+ sample,
this phosphor shows great possibilities for practical applications in LEDs.

2.4. Thermal Stability Analysis of Phosphors

An important indicator of phosphor commercialization potential is thermal stabil-
ity. Subsequently, Figure 7a–c show the thermal quenching of LMN:Mn4+, LMN:Mn4+,B,
and LMN:Mn4+,B,Li+ and their emission spectra at higher temperatures. In addition,
Figure 7d–f display the corresponding contour maps of the thermal evolution of these
samples excited at 348 nm from 298 K to 473 K. The relevant emission intensity of these
samples exhibits a typical decreasing trend with the increase in temperature. This phe-
nomenon is consistent with the thermal quenching effect found in most oxide phosphor
systems doped with Mn4+ [42]. Figure 7g depicts that the luminescence intensity of
LMN:Mn4+, LMN:Mn4+,B, and LMN:Mn4+,B,Li+ can maintain 47.3%, 66.7%, and 68.9%
of the initial intensity at 423 K. The results show that the doping of H3BO3 and Li+

ions significantly improved the thermal stability of the materials, which further demon-
strates the effectiveness of the above-described H3BO3 and Li+ ion doping in reducing
the probability of non-radiative transitions [43]. As shown in Table 3, the results from the
LMN:Mn4+,B,Li+ sample display greater thermal stability compared to some other up-to-date
studies of Mn4+-doped oxide phosphors, such as Sr2LuTaO6:Mn4+ (I423 K/I298 K = 25%) [9],
SrLa2Al2O7:Mn4+ (I423 K/I298 K = 43%) [34], CaY0.5Ta0.5O3:Mn4+ (I423 K/I298 K = 50%) [44],
CaLaLiTeO6:Mn4+ (I423 K/I298 K = 63%) [45], Mg3Ga2SnO8:Mn4+ (I423 K/I298 K = 50%) [46],
Cs2NbOF5:Mn4+ [47], and Li6SrLa2Sb2O12: Mn4+ [48].

Table 3. Recent thermal stability of Mn4+-activated phosphors.

Sample Thermal Stability at 423 K Ea (eV) Ref

Sr2LuTaO6:Mn4+ 25% 0.29 [8]
SrLa2Al2O7:Mn4+ 43% 0.27 [34]

CaY0.5Ta0.5O3:Mn4+ 50% 0.138 [44]
CaLaLiTeO6:Mn4+ 63% 0.219 [45]

Mg3Ga2SnO8:Mn4+ 50% 0.255 [46]
Cs2NbOF5:Mn4+ 61% 0.261 [47]

Li6SrLa2Sb2O12:Mn4+ 50% 0.307 [48]
LMN:Mn4+ 47.3% 0.149 This work

LMN:Mn4+,B 66.7% 0.198 This work
LMN:Mn4+,B,Li+ 68.9% 0.223 This work

In general, the activation energy (Ea) is the distance from the bottom of the 4T2 energy
level to the intersection of the 4T2 and 4A2 energy levels [49]. Figure 7i illustrates that, in the
conformational coordinate scheme, the 4T2 and 4A2 energy levels intersect the activation
energy. As the temperature increases, electrons situated in the 4T2 energy level cross
the energy barrier of the activation energy to jump to the 4A2 energy level and make a
non-radiative transition to the ground, resulting in luminescence quenching [50]. The Ea
is calculated using the following Arrhenius equation for further analysis of the thermal
quenching effect [51]:

IT =
I0

1 + c exp[−(Ea/KT)]
(10)
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Figure 7. Temperature-dependent PL spectra and the corresponding contour maps of the thermal
evolution of (a,d) LMN:Mn4+, (b,e) LMN:Mn4+,B, and (c,f) LMN:Mn4+,B,Li+. (g) Relative inte-
grated intensity as a function of the temperature. (h) Thermal quenching activation energy of these
phosphors. (i) Configurational coordinate diagram for the Mn4+ ions (The black dashed arrow
represents the transition process generated by heating and the red dashed arrow represents the
non-radiative transition).

Using this Arrhenius formula, the activation energies were calculated for each sample.
The results were 0.149 eV for LMN:Mn4+, 0.198 eV for LMN:Mn4+,B, and 0.223 eV for
LMN:Mn4+,B,Li+, as depicted in Figure 7h. Apparently, the larger the Ea, the better the
thermal stability of the phosphors.

2.5. Potential Applications

The color coordinate is an important index for fluorescent materials. Based on
the results of emission spectrum data excited at 348 nm, the Commission International
deI’Eclairage (CIE) color coordinates for the LMN:Mn4+,B,Li+ phosphor were calculated
to be (0.7306, 0.2693). Figure 8a shows that CIE chromaticity coordinates are located
in the deep-red region and the coordinates are located at the edge of the CIE plot, in-
dicating that this phosphor has a high color purity. The inset of Figure 8a shows the
electronic photographs of the non-doped LMN host and the LMN:Mn4+, LMN:Mn4+,B, and
LMN:Mn4+,B,Li+ red phosphors exposed to daylight and 365 nm UV light. Compared to
the matrix material, the deep-red emission from the other samples under 365 nm UV lamps
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can be clearly observed with the naked eye, and LMN:Mn4+,B,Li+ shows the strongest
luminescence intensity. This result indicates that the LMN:Mn4+,B,Li+ phosphor as a red-
light-emitting phosphor for WLEDs shows good prospects. For evaluating the availability
of the LMN:Mn4+,B,Li+ phosphor in practical applications, we successfully combined this
phosphor with a 410 nm chip to fabricate an LED. Figure 8b depicts the electroluminescence
(EL) spectrum of the LED driven at a current of 20 mA. It can be observed that the PL
spectrum contains two broadband peaks: a red emission band located in the 600–750 nm
range and a blue emission band centered at 410 nm. The inset of Figure 8b also shows that
the photo of the LED light driven with a 20 mA current illuminates a bright red emission.
In plants, the chlorophylls A and B and the phytochromes PR and PFR are vital for plant
growth [52]. Figure 8b also shows the absorption spectra of these four major phytochromes.
Notably, the PL spectra of the red LED perfectly overlap with the phytochrome absorption
band for plant growth. These results confirm that the LMN:Mn4+,B,Li+ phosphor can be
efficiently used to prepare red LEDs for plants.
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Figure 8. (a) CIE chromaticity coordinates diagram of (i) the LMN host and (ii) LMN:Mn4+,
(iii) LMN:Mn4+,B, and (iv) LMN:Mn4+,B,Li+ phosphors; (b) EL spectrum of the red LED device
driven by a 410 nm chip compared with the absorption spectra of plants to natural light.

3. Materials and Methods
3.1. Preparation of Materials and LEDs

The LMN:xMn4+, LMN:Mn4+,yB, and LMN:Mn4+,B,R+ (R = Li, Na, K) phosphors were
obtained through the solid-state method. La2O3 (99.99%), Mg2(OH)2CO3 (A.R. (Analytical
Reagent)), Nb2O5 (A.R.), MnCO3 (A.R.), H3BO3 (A.R.), Li2CO3 (A.R.), Na2CO3 (A.R.), and
K2CO3 (A.R.) were the starting materials, purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). The samples were weighed according to the
molar ratio of La2O3:Mg2(OH)2CO3:Nb2O5 = 3:0.8:1. In addition, H3BO3 was employed
as the cosolvent source and Li2CO3, Na2CO3, and K2CO3 were employed as the charge
compensators added into the LMN:xMn4+ phosphors. The raw materials were mixed
and ground thoroughly for 30 min using an agate mortar. After completely grinding the
materials, the obtained mixed powder was transferred to an alumina crucible and heated to
450 ◦C at a rate of 10 ◦C/min in an air atmosphere. Then, the evenly mixed materials were
moved from the crucible to calcine at 1350 ◦C for 8 h in a muffle furnace. Eventually, these
harvested products could be obtained to make the following characterizations. A red pc-
LED device for planting was fabricated using the as-prepared LMN:Mn4+,B,Li+ phosphors
and a 410 nm blue LED chip. Following a typical fabrication process, the phosphors were
uniformly mixed with silicone resin A and B (A:B = 1:1) in agate mortar, and the resulting
mixture was coated onto LED chips. The packaged device was cured at 75 ◦C for 6 h to
form pc-LED devices.
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3.2. Characterization of Materials

The crystalline structures of these harvested products could be identified using XRD
patterns using a Bruker D8 Advance diffractometer (Billerica, MA, USA) with Cu-Kα

(λ = 0.15406 Å) radiation. The morphology and elemental investigations were examined
by using scanning electron microscopy (Hitachi S-4800 SEM, Tokyo, Japan). The UV–
Vis–NIR DRS were detected through using a Hitachi UV–Vis–NIR spectrophotometer
(UH4150). The PL, PLE, temperature-dependent emission spectra, and luminescence
decay curves were obtained using an Edinburgh fluorescence spectrophotometer (FLS1000,
Livingston, UK) with a 450 W xenon irradiation source. The IQE was tested with the
same FLS1000 instrument using an integrating sphere. The Cambridge Sequential Total
Energy Package (CASTEP, VASP, Version 6.1.0) was adopted to carry out the density
functional theory (DFT) calculations within the generalized gradient approximation. The
EL performances of the pc-LED devices were measured using a photoelectric measuring
system (HAAS 2000, Hangzhou, China) with an integrating sphere.

4. Conclusions

In summary, LMN:xMn4+, LMN:Mn4+,yB, and LMN:Mn4+,B,R+ (R = K, Na, Li) phos-
phors were obtained through a solid-state method. The physicochemical properties of these
phosphors were studied in terms of their structural, elemental, morphological, electronic,
and optical characteristics. The XRD results showed that LMN:Mn4+,B,Li+ had a monoclinic
structure and corresponded to the P21/n space group. The DRS showed the Eg of LMN,
which matched well with the density functional theory. The phosphors exhibited two wide
excitation bands from 250 to 600 nm, which originated from the CTB of the O2−→Mn4+ and
4A2g→4T2g, 4A2g→2T2g, 4A2g→4T1g transitions in the Mn4+ ions. Under 348 nm excitation,
the LMN:Mn4+ phosphor exhibited a deep-red emission centered at 708 nm because of
the 2Eg→4A2g transition in the Mn4+ ions. To enhance the luminescence intensity of the
LMN:Mn4+ sample, H3BO3 and a charge compensator were added, and the results showed
that the quantum efficiency and luminescence intensity were improved effectively. In
addition, the thermal stability of the LMN:Mn4+,B,Li+ phosphor had been significantly
improved through the doping with H3BO3 and Li+ ions. Impressively, the prototype
red LED fabricated with the LMN:Mn4+,B,Li+ phosphor exhibited perfect overlap with
the phytochrome absorption band for plant growth. All in all, these results demonstrate
that the LMN:Mn4+,B,Li+ phosphor can be effectively applied in indoor artificial lighting
for plants.
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