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Abstract: Detecting the unintended adverse reactions of drugs (ADRs) is a crucial concern in pharma-
cological research. The experimental validation of drug–ADR associations often entails expensive
and time-consuming investigations. Thus, a computational model to predict ADRs from known
associations is essential for enhanced efficiency and cost-effectiveness. Here, we propose BiMPADR,
a novel model that integrates drug gene expression into adverse reaction features using a message
passing neural network on a bipartite graph of drugs and adverse reactions, leveraging publicly
available data. By combining the computed adverse reaction features with the structural fingerprints
of drugs, we predict the association between drugs and adverse reactions. Our models obtained high
AUC (area under the receiver operating characteristic curve) values ranging from 0.861 to 0.907 in an
external drug validation dataset under differential experiment conditions. The case study on multiple
BET inhibitors also demonstrated the high accuracy of our predictions, and our model’s exploration
of potential adverse reactions for HWD-870 has contributed to its research and development for
market approval. In summary, our method would provide a promising tool for ADR prediction and
drug safety assessment in drug discovery and development.

Keywords: drug discovery; adverse drug reaction prediction; message passing neural network;
BET inhibitor

1. Introduction

Adverse drug reactions (ADRs), according to the WHO, are any harmful or unin-
tended responses to a medication occurring at normal doses used for disease prevention,
diagnosis, or treatment [1]. Adverse drug reactions (ADRs) pose a substantial challenge
in contemporary drug discovery and are a major contributor of illness and mortality in
healthcare [2]. ADRs have been identified as the fourth leading cause of death in the
United States. Annually, statistics show that nearly 100,000 fatalities are attributed to
adverse drug reactions (ADRs) resulting from the use of medications at their recommended
dosages [3–5]. ADRs also impose a significant financial burden on public health systems.
Studies have shown that the incremental total cost per patient attributed to ADRs ranges
from approximately EUR 702 to EUR 7318 [6,7]. Moreover, ADRs play a prominent role
in the failure of drug research. Safety-related concerns are responsible for 35% of drug
failures in Phase I and 28% in Phase II, significantly impacting the progression to the
drug submission stage [8,9]. The identification of ADRs for numerous drugs often occurs
several years after their market introduction. Each year, the FDA withdraws drugs from
the market due to adverse effects, with prominent instances including Vioxx, Fen-Phen,
and Rosiglitazone [9,10]. Hence, early evaluation of potential drug adverse reactions is
vital to minimize health risks for participants and to reduce drug development costs.

The conventional approach to predicting ADRs typically entails researchers engaging
in pharmacological experiments or conducting clinical observations. These processes
require numerous in vitro screening and in vivo preclinical animal studies. Even though
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these methods are time-intensive and resource-heavy, numerous ADRs of novel drugs
frequently remain undiscovered [11,12]. In recent years, there has been significant progress
in the development of computational prediction methods, particularly deep learning
techniques, for predicting drug adverse reactions using drug-related databases.

A commonly used group of methods for predicting adverse drug reactions involve
treating the problem as the inference of missing connections within a bipartite network
that links drugs and side effects. Cami et al. (2011) developed a model named PPNs
(predictive pharmacosafety networks), which integrates the network structure formed by
known adverse drug event (ADE) relationships with specific drug information and adverse
event data to predict potential unidentified ADEs [13]. Zhang et al. (2016) investigated the
prediction of potential drug side effects by utilizing two recommender methods and inte-
grating their proposed approaches with existing methods to develop ensemble models [14].
Galeano et al. (2018) proposed a recommender system that predicts drug side effects for
marketed drugs using collaborative filtering algorithms [15]. Lin et al. (2013) proposed a
network-based external link prediction method that utilizes the neighborhood of a drug in
a bipartite network to infer potential adverse drug reactions [16].

Another group of widely adopted methods employ multisource data to predict the
associations between drugs and adverse reactions. Yamanishi et al. (2012) presented a drug
side effect prediction approach that integrates chemical and biological spaces based on
kernel regression models [17]. Liu et al. (2012) utilized five machine learning algorithms for
predicting adverse drug reactions by leveraging the chemical, biological, and phenotypic
properties of drugs [18]. Zhang et al. (2015) proposed a feature selection-based multi-label
k-nearest neighbor method, which adopts ensemble learning techniques to combine various
drug related features [19]. Ding et al. (2018) identified drug–side effect associations using
a combination of a semi-supervised model and multiple kernel learning. Their approach
enabled the integration of multiple sources of drug-related information, including the
known relationships between drugs and side effect terms [20].

Although previous methods have yielded promising predictive outcomes, they en-
counter challenges when applied to new drugs with limited pre-existing information.
Specifically, the approach relying on known neighbor nodes in the constructed heteroge-
neous graph fails to predict the potential adverse drug reactions (ADRs) for such scenarios.
Moreover, the early stages of drug development mainly offer information on the chemical
structure of the drug candidate, while certain biological information cannot be incorpo-
rated into the prediction model. Consequently, these methods do not provide prediction
frameworks suitable for new drug molecules.

Obviously, there are also methods developed for predicting adverse reactions of new
drugs. Pauwels et al. (2011) employed a sparse canonical correlation analysis model that
relied on chemical structures to predict potential drug side effects [21]. Niu et al. (2015)
developed a web service called DSEP, which utilizes chemical substructures to predict
potential adverse drug reactions (ADRs) without relying on other factors [22]. Dimitri
et al. (2017) introduced DrugClust, a method that clusters drugs based on their features
and subsequently predicts side effects using Bayesian scores [23]. Ping Xuan et al. (2022)
explored the effective utilization of graph structures and attribute information in drug-
related data for predicting drug side effects. By considering the relationships between
drugs, drug features, and side effect labels, they proposed a novel approach to enhance the
accuracy of side effect prediction [24].

However, these methods exhibit limitations, including the random allocation of drug–
adverse reaction pairs into training and testing sets. This approach leads to the inadvertent
use of information from test set drugs during training and a deficiency in external validation.
Furthermore, these methods have not fully utilized the potential of drug gene expression
profile data. Some studies indicate that drug-induced alterations in gene expression may
contribute to systemic off-target effects and subsequent adverse effects [25–28]. This
highlights the potential significance of transcriptomic data, where alterations in gene
expression can act as early markers of toxicity. These changes are frequently detectable
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before the appearance of histopathological or clinical signs, offering crucial insights into
drug adverse reactions [29].

To overcome the limitations of the previously mentioned methods, we propose BiM-
PADR, a deep learning framework designed for predicting adverse drug reactions (ADRs)
in new drugs. We hypothesized that compounds with similar structures are likely to
elicit analogous adverse reactions. Differential gene expression levels can lead to different
adverse reactions. Our framework incorporates a binary network-based message passing
neural network that integrates drug expression signatures related to each ADR into its
feature representation. These features are subsequently merged with compound structural
data, represented by fingerprints, and a fully connected neural network is utilized to predict
the associations between drugs and ADRs. Extensive evaluations on various representa-
tive datasets confirm the high accuracy of our method. Furthermore, the performance on
external validation data showcases the utility of our model as a highly valuable tool for
predicting ADRs in new drugs.

2. Results and Discussion
2.1. Performance on Different Datasets

We present all the results of our model in Table 1, which includes the performances on
the training set, test set, and external validation dataset. It can be observed that regardless
of the fingerprint used, the model consistently demonstrates stable and satisfying predictive
performances across all four data sources. In the case of the external validation dataset,
the AUC exceeds 0.85. The Precision of the model in the test set can reach 0.785~0.855. In
purely external validation, the Precision drops slightly because this part of the data uses
extremely unbalanced data. However, the AUC considers the overall performance of the
classifier at different thresholds, not just the accuracy at a single threshold. Therefore, the
AUC is still relatively high when the Precision is low, indicating that the model still has a
good sorting ability when distinguishing between majority and minority classes; it does
not affect the effect of our model in clinical application.

Table 1. The summary of model performance.

Dataset CS
Train Test External Validation

AUC Precision ACC AUC Precision ACC AUC Precision ACC

GEn-
ADReCS

ECFP2 0.948 ±
0.015

0.839 ±
0.032

0.877 ±
0.017

0.873 ±
0.018

0.796 ±
0.034

0.802 ±
0.015

0.861 ±
0.026

0.177 ±
0.028

0.77 ±
0.053

MACCS 0.958 ±
0.007

0.844 ±
0.016

0.889 ±
0.009

0.879 ±
0.019

0.798 ±
0.028

0.808 ±
0.015

0.871 ±
0.016

0.178 ±
0.017

0.774 ±
0.033

PubChem 0.97 ±
0.008

0.869 ±
0.017

0.907 ±
0.013

0.894 ±
0.01

0.815 ±
0.019

0.819 ±
0.007

0.874 ±
0.007

0.193 ±
0.012

0.802 ±
0.019

GEn-
SIDER

ECFP2 0.975 ±
0.012

0.89 ±
0.027

0.923 ±
0.025

0.898 ±
0.009

0.853 ±
0.011

0.831 ±
0.012

0.903 ±
0.003

0.109 ±
0.007

0.849 ±
0.013

MACCS 0.983 ±
0.01

0.898 ±
0.028

0.937 ±
0.021

0.906 ±
0.006

0.852 ±
0.017

0.84 ±
0.003

0.903 ±
0.007

0.106 ±
0.013

0.842 ±
0.024

PubChem 0.98 ±
0.011

0.892 ±
0.034

0.928 ±
0.027

0.909 ±
0.013

0.847 ±
0.003

0.84 ±
0.015

0.902 ±
0.003

0.105 ±
0.005

0.844 ±
0.01

GEt-
ADReCS

ECFP2 0.95 ±
0.024

0.852 ±
0.03

0.882 ±
0.032

0.878 ±
0.019

0.807 ±
0.027

0.803 ±
0.023

0.872 ±
0.015

0.188 ±
0.015

0.805 ±
0.015

MACCS 0.96 ±
0.014

0.842 ±
0.032

0.888 ±
0.022

0.877 ±
0.012

0.788 ±
0.029

0.798 ±
0.017

0.868 ±
0.01

0.168 ±
0.02

0.768 ±
0.042

PubChem 0.966 ±
0.011

0.873 ±
0.029

0.908 ±
0.018

0.877 ±
0.013

0.813 ±
0.019

0.801 ±
0.019

0.863 ±
0.01

0.189 ±
0.019

0.808 ±
0.029

GEt-
SIDER

ECFP2 0.982 ±
0.007

0.897 ±
0.024

0.934 ±
0.017

0.913 ±
0.008

0.849 ±
0.02

0.842 ±
0.009

0.907 ±
0.005

0.107 ±
0.013

0.85 ±
0.023

MACCS 0.989 ±
0.005

0.917 ±
0.014

0.951 ±
0.01

0.91 ±
0.006

0.86 ±
0.01

0.842 ±
0.008

0.905 ±
0.007

0.11 ±
0.006

0.859 ±
0.012

PubChem 0.99 ±
0.005

0.918 ±
0.016

0.951 ±
0.012

0.91 ±
0.005

0.865 ±
0.013

0.837 ±
0.011

0.907 ±
0.002

0.114 ±
0.008

0.864 ±
0.013



Molecules 2024, 29, 1784 4 of 17

To further explore the factors influencing the model’s performance and its applicability
range, we depict the results of the model under different input conditions (AUC on the
external validation dataset) using a box plot in Figure 1. The following results can be
derived from the analysis:
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Figure 1. AUC of the external validation dataset under different conditions: (A) different compound
fingerprint selections; (B) different drug cell line expression data selections; (C) different adverse
reaction selections.

2.1.1. Performance on Different Fingerprints

Different types of drug fingerprints may have different calculation methods and
thus different representational capabilities. Based on the results shown in Figure 1A, we
observed that the choice of different compound fingerprints as drug structural features
during model training did not significantly impact the model’s performance. Therefore,
we can conclude that the widely applied fingerprints that represent compound structural
features can be effectively utilized in our model without excessive consideration of specific
fingerprint selection or conversion. This finding also highlights the robustness of our model
in handling diverse types of compound data.

2.1.2. Performance on Different GE

Accurate prediction results can be obtained regardless of the type of cell line used for
modeling, but the shorter length of the box plot from Figure 1B for normal cell lines indicates
greater stability in the results. It can be inferred that certain gene perturbations after drug
treatment may lead to the occurrence of adverse reactions, and these perturbations are
relatively similar between normal and tumor cell lines. Therefore, in the absence of gene
expression data from normal cell lines, gene perturbation data from tumor cell lines can
also be widely applicable in adverse reaction prediction research.

2.1.3. Performance on ADR Selection

When we selected all adverse reactions from SIDER, the AUC was above 0.9, while
choosing adverse reactions that appeared in the ADReCS dataset resulted in an AUC of
around 0.86 (Figure 1C). One possible reason for this result could be that there is less associ-
ation between the adverse reactions provided by ADReCS and the 978 core landmark genes,
with most associations being filled with zeros. Another reason could be that constructing a
dataset by directly selecting all adverse reactions from SIDER provides more drug–adverse
reaction pairs, a larger sample size, and a better fitting of the model. Whether the initial
information related to adverse reaction genes contributes to the prediction needs to be
further explored through ablation experiments.

2.2. Ablation Study

We conducted ablation experiments to explore the impact of the selection of initial
information related to adverse reactions and the application of the MPNN module on the
predictive performance of the model. Since the choice of different compound fingerprints
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had a minimal impact on the model, we did not consider the role of fingerprints in this part
of this study.

To explore whether using ADR–gene association information as the initial input feature
can improve the model’s performance, we conducted two variant studies:

1. The first variant involved replacing the initial feature vectors of adverse reactions
with zero vectors, completely excluding the use of ADR–gene association information.

2. The second variant maintained the same input as the original model but only utilized
this information during the computation of attention coefficients in the binary network
information propagation, without incorporating the adverse reaction initial features
in the information update function, denoted as hvj = ReLU(mvj). The difference in
this process lies in the addition of a self-loop, where the original method is set to
TRUE, while the ablation experiments are set to FALSE.

Tables 2 and 3 present the results of the two ablation experiments in the external
dataset, and Figure 2 provides a comparison between our method and the results of the
ablation experiments. From Figure 2A, it can be observed that replacing the original features
with zero vectors did not significantly degrade the model’s performance. However, the
AUC values fluctuated more, and the stability slightly decreased under different conditions.
Figure 2B also demonstrates a similar trend, but when the sample size is sufficiently
large, such as when training the model using the GEn-SIDER and GEt-SIDER datasets, the
impact of adding self-loops is not substantial. Therefore, we can infer that the adverse
reaction–gene association information obtained from the ADReCS database can improve
the predictive accuracy and stability of the model to some extent. However, when a
particular adverse reaction does not exist in that database and we still want to understand
its likelihood of occurrence, we can use a zero feature vector as its input in the model.

Table 2. Ablation experiments for BiMPADR models without ADR–gene information.

Dataset
Train Test External Validation

AUC Precision ACC AUC Precision ACC AUC Precision ACC

GEn-ADReCS 0.953 ±
0.02

0.851 ±
0.033

0.887 ±
0.03

0.878 ±
0.018

0.804 ±
0.02

0.808 ±
0.017

0.864 ±
0.019

0.184 ±
0.018

0.789 ±
0.025

GEn-SIDER 0.984 ±
0.012

0.906 ±
0.034

0.939 ±
0.026

0.904 ±
0.009

0.855 ±
0.016

0.836 ±
0.006

0.904 ±
0.005

0.109 ±
0.01

0.849 ±
0.018

GEt-ADReCS 0.937 ±
0.026

0.823 ±
0.043

0.864 ±
0.032

0.871 ±
0.022

0.785 ±
0.035

0.8 ±
0.018

0.858 ±
0.026

0.167 ±
0.027

0.765 ±
0.052

GEt-SIDER 0.98 ±
0.017

0.897 ±
0.023

0.933 ±
0.026

0.911 ±
0.012

0.849 ±
0.012

0.843 ±
0.011

0.902 ±
0.01

0.103 ±
0.008

0.845 ±
0.016

Table 3. Ablation experiments for BiMPADR models without self-loop.

Dataset
Train Test External Validation

AUC Precision ACC AUC Precision ACC AUC Precision ACC

GEn-SIDER 0.978 ±
0.016

0.892 ±
0.028

0.927 ±
0.027

0.906 ±
0.009

0.852 ±
0.015

0.839 ±
0.007

0.903 ±
0.007

0.108 ±
0.01

0.848 ±
0.018

GEn-ADReCS 0.953 ±
0.027

0.851 ±
0.04

0.888 ±
0.037

0.875 ±
0.019

0.801 ±
0.023

0.805 ±
0.016

0.863 ±
0.02

0.182 ±
0.019

0.785 ±
0.03

GEt-SIDER 0.982 ±
0.012

0.903 ±
0.033

0.937 ±
0.022

0.914 ±
0.01

0.856 ±
0.025

0.844 ±
0.007

0.904 ±
0.01

0.11 ±
0.018

0.854 ±
0.029

GEt-ADReCS 0.951 ±
0.018

0.847 ±
0.031

0.886 ±
0.026

0.878 ±
0.014

0.803 ±
0.02

0.81 ±
0.012

0.864 ±
0.015

0.179 ±
0.017

0.788 ±
0.026
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In order to investigate whether the MPNN module effectively utilizes the gene expres-
sion information of drugs and its impact on model performance, we directly concatenated
the compound structure features with the adverse reaction–gene association features and
used a fully connected neural network (FCNN) for prediction. From Table 4 and Figure 3,
it can be observed that the predictive performance of the model significantly decreases
without utilizing the MPNN module to integrate the gene expression information of drugs
into the adverse reaction features. Additionally, compared to the original method, using a
dataset constructed with all adverse reactions from the SIDER database, although having
a larger sample size, yields poorer prediction results. This experiment demonstrates the
crucial role of drug-induced cell line gene expression information in predicting associations
between drugs and adverse reactions. Furthermore, the information integration method
used in our model effectively utilizes the relevant information.

Table 4. Ablation experiments for BiMPADR models without MPNN module.

Dataset
Train Test External Validation

AUC Precision ACC AUC Precision ACC AUC Precision ACC

GEn-SIDER 0.802 ±
0.011

0.719 ±
0.009

0.716 ±
0.008

0.649 ±
0.023

0.659 ±
0.03

0.608 ±
0.02

0.634 ±
0.007

0.038 ±
0.003

0.755 ±
0.032

GEn-ADReCS 0.877 ±
0.016

0.753 ±
0.024

0.775 ±
0.015

0.716 ±
0.01

0.667 ±
0.014

0.643 ±
0.01

0.7 ±
0.009

0.103 ±
0.005

0.712 ±
0.033

GEt-SIDER 0.798 ±
0.011

0.718 ±
0.012

0.713 ±
0.008

0.651 ±
0.019

0.67 ±
0.034

0.606 ±
0.016

0.638 ±
0.008

0.039 ±
0.003

0.771 ±
0.041

GEt-ADReCS 0.879 ±
0.019

0.755 ±
0.018

0.777 ±
0.015

0.717 ±
0.012

0.67 ±
0.017

0.642 ±
0.01

0.701 ±
0.01

0.1 ±
0.006

0.712 ±
0.037
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2.3. Performance of BiMPADR Compared with State-of-the-Art Methods

To ensure comparability between models, we select existing methods that can pre-
dict adverse reactions based solely on compound structure, including Pauwels’s method
(SCCA) [21] and DrugClust [23]. These two comparison methods and the predictive
performance of our model are shown in Table 5.

Table 5. Performance comparison of different approaches.

Dataset Method AUC Precision ACC

GEn-SIDER
DrugClust 0.6044 ± 0.0111 0.1877 ± 0.0177 0.9644 ± 0.003

SCCA 0.9131 ± 0.0002 0.0392 ± 0.0008 0.4814 ± 0.0121
BiMPADR 0.902 ± 0.003 0.105 ± 0.005 0.844 ± 0.01

GEn-Adrecs
DrugClust 0.615 ± 0.0169 0.2415 ± 0.0243 0.913 ± 0.0086

SCCA 0.8891 ± 0.0005 0.1091 ± 0.0014 0.5468 ± 0.0066
BiMPADR 0.874 ± 0.007 0.193 ± 0.012 0.802 ± 0.019

GEt-SIDER
DrugClust 0.6335 ± 0.0169 0.2087 ± 0.0283 0.9662 ± 0.0017

SCCA 0.9137 ± 0.0005 0.0381 ± 0.0009 0.4736 ± 0.0128
BiMPADR 0.907 ± 0.002 0.114 ± 0.008 0.864 ± 0.013

GEt-Adrecs
DrugClust 0.651 ± 0.0202 0.2498 ± 0.0195 0.9125 ± 0.0042

SCCA 0.8897 ± 0.0004 0.1061 ± 0.0005 0.5485 ± 0.0022
BiMPADR 0.863 ± 0.01 0.189 ± 0.019 0.808 ± 0.029

By comprehensive comparison, the AUC value of the SCCA algorithm is above 0.89,
slightly higher than that of the BiMPADR algorithm, 0.86, but its ACC value is only about
0.5, which is far lower than the predicted result of this model. The accuracy of the model
is also low, with a minimum of 0.38. The AUC value of the DrugClust algorithm is about
0.6, which is much lower than the other two methods. Although its Precision is relatively
high, we tend to pay more attention to the AUC index, which can reflect the ordering
ability in clinical practice. We randomly selected 50 drugs and 50 adverse reactions from
the predicted values of each method in GEn-SIDER datasets to draw heat maps, and the
results are shown in Figure 4. As can be seen from the graph, the SCCA and DrugClust
prediction results have multiple lines of identical data. This reflects a very big drawback of
the two control models; that is, multiple drugs often have the same predictive value vector,
and the prediction results of multiple drugs for each adverse reaction may be the same,
which greatly reduces the practicality of the prediction model in clinical research.
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2.4. Case Study

We performed a case study to evaluate the accuracy of our model’s novel predictions
by conducting a literature-based assessment of the newly identified associations. NHWD-
870 [30] is a novel and potent BET inhibitor intended for the treatment of various solid
tumors. We used the best performance model to predict the adverse reactions of NHWD-
870 and nine other BET inhibitors, Alobresib [31], INCB0576543 [32], Mivebresib [33],
Pelabresib [34], Birabresib [35], Molibresib [36], TEN010 [37], PLX51107 [38], and BMS-
986158 [39], that have undergone Phase I/II clinical trials. The selected drugs were not
present in our modeling dataset. The complete prediction results can be found in the
Supplementary Section S1. Figure 5 shows the number of adverse drug reactions with
predicted values higher than 0.99. From the graph, it can be observed that HWD-870 is
associated with fewer adverse reactions, and it has fewer reactions than BMS-986158.
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We present the top ten adverse reactions for each drug and validate the accuracy of
our predictions through the public verification of clinical trial research results on NIH
(https://ncbi.nlm.nih.gov/, accessed on 12 December 2023.). Additionally, the adverse
reactions on the blood and lymphatic systems recorded in the NIH are important factors
that affect the development and application of BET inhibitors. Therefore, we discuss the
predicted values obtained through our model for the blood and lymphatic systems-related
adverse reactions documented in the NIH. The results of BMS-986158 [39] are shown below,
which are most similar to NHWD-870. Other detailed results evidenced by the NIH can be
found in Supplementary Section S2.

https://ncbi.nlm.nih.gov/
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From Table 6, it can be observed that for BMS-986158, almost all predicted top ten
adverse reactions were found in the corresponding clinical reports’ adverse events. BMS-
986158 may potentially lead to rhabdomyolysis, although no supporting literature has
been found. Regarding BMS potentially causing hyperlipidemia, there is relevant research
suggesting that the BET inhibitor Apabetalone can lead to an increase in HDL-C, which
contradicts our predicted results. Therefore, we used our model to calculate the association
score between Apabetalone and hyperlipidemia, which resulted in a score of 0.46. Con-
sequently, BMS may have a higher cardiovascular risk compared to other BET inhibitors.
From Table 7, adverse reactions related to the blood and lymphatic systems also had
predicted values mostly exceeding 0.5, even reaching above 0.9.

Table 6. Evidence for the top ten predicted ADRs in example drugs.

Drug Name ADR Name Pred Value NCT Number

BMS-986158

Transaminases increased 0.998 NCT02419417
Rhabdomyolysis 0.998

Dermatitis 0.997 NCT02419417
Intermittent claudication 0.997 NCT02419417
Hypertriglyceridaemia 0.997

Hyperglycaemia 0.996 NCT02419417
Hyperlipidaemia 0.996

Upper respiratory tract infection 0.996 NCT02419417
Influenza-like illness 0.996 NCT02419417

Gastroenteritis 0.995 NCT02419417

Table 7. Blood and lymphatic system disorders ADRs recorded by NIH.

Drug Name ADR Name Pred Value NCT Number

BMS-986158

Anemia 0.991 NCT02419417
Leukopenia 0.983 NCT02419417

Lymphopenia 0.689 NCT02419417
Neutropenia 0.985 NCT02419417

Thrombocytopenia 0.991 NCT02419417

Since NHWD-870 is a structural modification of BMS, we provide an overview of
the adverse reactions produced by these two drugs in different organ systems, as shown
in Figure 6 (results of other drugs can be found in Supplementary Section S2). The more
clustered the points are at the top, the more likely the drug is to generate a greater number
of adverse reactions within that system. It can be observed that NHWD-870 exhibits
reduced adverse reactions in the blood and lymphatic system compared to BMS. However,
it may potentially cause more adverse reactions in the liver and renal system.

For HWD-870, we selected adverse reactions with predicted values > 0.99 and created
an association network shown in Figure 7 using the software ‘Cytoscape 3.6.1’. According
to our predictions, HWD-870 is associated with common blood and lymphatic system dis-
orders, such as Anemia, Thrombocytopenia, Coagulopathy, Neutropenia, and Leukopenia.
It may also cause other severe adverse reactions in different systems, such as Acute Renal
Failure, Upper Respiratory Tract Infection, and Hypertension.
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3. Materials and Methods
3.1. Datasets

In this study, we use four types of data sources: (1) ground truth for drug–ADR pair
labels, (2) gene expression profiling of the compounds (GE), (3) the chemical structure of
the compounds (CS), and (4) ADR–gene associations (AS).

We obtained the ADR labels from the SIDER 4.1 Database [40], which includes data
on medications available in the market and their reported ADRs obtained from public
documents. In the SIDER 4.1 version of the database, there are approximately 1430 drugs,
5868 ADRs, and 139,756 drug–ADR associations. The MedDRA concept type was used to
specify ADR terms and phrases. The preferred term (PT) level in SIDER was utilized as the
standard ADR vocabulary to avoid the semantic redundancy.

The Library of Integrated Network-based Cellular Signatures (LINCS) database has
a large collection of gene expression profiles that show how different human cell lines
respond to 20,413 compounds at the transcriptomic level [41,42]. Considering that adverse
reactions often occur within the normal organs of the human body, we categorized the
expression data of drugs into perturbations in normal/primary cell lines and tumor cell
lines, named GEn and GEt in our research. To avoid information redundancy, we selected
the strongest signatures for each drug, irrespective of the cell type, dosage, or time point,
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utilizing level 5 data. The signatures for the 978 directly measured landmark genes were
selected in this study.

The 2D chemical structures of small-molecule compounds are represented in the
SMILES format. SMILES strings for marketed drugs were collected from PubChem [43]
using PubChem Compound IDs from SIDER. Drug chemical structures were mapped
to three types of fingerprints: PubChem, MACCS, and ECFP using the PyBioMed [44]
Python library. PubChem fingerprints consist of 881 chemical substructures derived from
the PubChem database. MACCS fingerprints consist of 166 structural keys representing
molecular features. ECFP fingerprints capture local and global molecular features through
atom neighborhood enumeration and hashing. The fingerprint size used here is 1024 bits.

The ADReCS-Target [45] database offers extensive information regarding ADRs re-
sulting from drug interactions with proteins, genes, genetic variations, and gene–ADR
associations. There are 1156 ADRs, 8571 genes, and 2,443,256 gene–ADR pairs included.
We organized the associations between ADRs and the 978 landmark genes mentioned in
the LINCS database into a binary profile. If an ADR–gene association was documented in
the ADReCS-Target database, we marked that position as 1; otherwise, it was filled with 0.

The set of drugs have perturbations in the above two categories of cell lines, which
can be found in SIDER, which contains 656 and 766 compounds, respectively (duplicates
are avoided by taking the drug ids, which are unique). Drugs lacking gene expression
information in SIDER were considered as external validation data. The ADRs that are
observed with at least one drug are included. Therefore, the number of adverse reactions
left for further study corresponding to these two sets of drugs is 3616 and 3695, respectively.
Among these adverse reactions, 751 and 762 are also recorded in the ADReCS-Target
database. In the end, we obtained a total of four datasets with varying numbers of drugs
and adverse reactions (Figure 8 and Table 8).
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Figure 8. Overview of the datasets used in this study: (A) the drugs selected for this study; (B) the
adverse reactions selected for this study.

Table 8. Summary of datasets used in this study.

Dataset Number of Drugs Number of ADRs Number of Drugs in
External Dataset

GEn-SIDER 656 3616 774
GEn-ADReCS 656 751 774

GEt-SIDER 766 3695 664
GEt-ADReCS 766 762 664

3.2. Methods
3.2.1. MPNNs

Message passing neural networks [46] (MPNNs) are a class of general frameworks
used for supervised learning on graphs. They are commonly applied to undirected graphs,
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where node features are represented as xv and edge features as evw. The usage of such
models primarily consists of two stages: the message passing stage and the readout stage.
During the message passing stage, the model iteratively updates the hidden layer features
of each node, using an information function Mt and a vertex update function Ut, for
a total of T iterations. The updated hidden layer features ht

v for each node, based on
the information mt+1

v and the previous hidden layer features, can be expressed by the
following formula:

mt+1
v = ∑

w∈N(v)
Mt(ht

v, ht
w, evw) (1)

ht+1
v = Ut(ht

v, mt+1
v ) (2)

In the summation process, N(v) represents all neighboring nodes of the node v in
the graph. During the readout stage, a common readout function R is used to calculate a
feature vector based on the entire graph, according to the following formula:

ŷ = R(
{

hT
v

∣∣∣v ∈ G
}
) (3)

The message functions Mt, vertex update functions Ut, and readout function R are all
learned differentiable functions. We can define these functions according to our purposes.

3.2.2. Overall Schema of the Deep Learning Network

In our study, we defined the task of predicting the association between drugs and
adverse drug reactions (ADRs) as a binary classification problem. We extracted informative
features from both drugs and ADRs and utilized these features to train the model in order
to predict novel associations. Figure 9 shows the frame of our method. We generated the
features of ADRs via MPNNs and yielded a latent representation of drug fingerprints via
fully connected layers. After processing both the drug and ADR layers, we concatenated
these layers and constructed the fully connected layer, resulting in the output. Every layer
except the output layer was activated with the LeakyReLU function. The output layer was
activated with the sigmoid function to predict whether the drug and ADR interact.
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message transfer direction in the MPNN module. Solid arrows represent the transmission of drug 

Figure 9. The workflow and architecture of BiMPADR: (A) the model receives three parts of data,
chemical structures (CSs) used to encode the feature of drugs, drug-induced gene expression (GE),
and ADR–gene associations (ASs) used to encode the feature of ADRs through MPNN module;
(B) message transfer direction in the MPNN module. Solid arrows represent the transmission of drug
information to adjacent adverse reactions, while dashed arrows represent the self-transmission of
adverse reaction information.

3.2.3. MPNN Layer with ADR Embedding Vector

We can view the association network between drugs and adverse reactions as a
bipartite graph BG(U, V, E), where U represents the drug nodes in the graph; V represents
the adverse reaction nodes; ui and vj denote the i-th and j-th node in U and V, respectively;
i = 1, 2, . . . , M, j = 1, 2, . . . , N; E is a set of edges representing an association between a
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drug and an adverse drug reaction; e = {(u, v)|u ∈ U, v ∈ V}; and eij denotes the edge
between ui and vj. The gene expression feature matrix for drugs can be represented as Xu,

Xu ∈ RM×P, where
→
xui represents the gene expression feature vectors for each drug. The

initial input feature matrix for adverse reactions can be represented as Xv, Xv ∈ RN×Q,
where

→
xvj represents the initial feature vectors for each adverse reaction and hvj represents

the updated adverse reaction feature vectors after information propagation.
To apply the MPNN framework on the bipartite graph, appropriate information

functions and vertex update functions need to be selected for feature propagation and
aggregation among the nodes. For simplicity, we perform only one iteration, denoted as
T = 1. The process of propagating the gene expression information from drug nodes to
adverse reaction nodes’ feature representations can be defined as

mvj = ∑
ui∈Ne

vj

M(
→
xvj ,

→
xui ) (4)

hvj = U(
→
xvj , mvj) (5)

where Ne
vj

represents all nodes connected to node vj through edges in the bipartite graph
BG(U, V, E). We apply the GAT (Graph Attention Network) [47] to the process of informa-
tion propagation and aggregation, defining Wu ∈ RP×S and Wv ∈ RQ×S as two learnable
weight parameter matrices. The purpose is to linearly transform the input features of the
two types, aiming to acquire sufficient data representation capacity. Thus, our message
functions M and vertex update functions U can be expressed as

mvj = ∑ M(
→
xvj ,

→
xui ) = ∑ αui ,vjW

v →
xvj (6)

hvj = U(
→
xvj , mvj) = Wv →

xvj + ReLU(mvj) (7)

where αui ,vj represents the attention coefficients, indicating the importance of a node to
node vj. It can be calculated using the following formula, where σ is the non-linear function

LeakyReLU and
→
α ∈ R2S:

αui ,vj =
exp(ρ(

→
α

T[
Wu →

xui

∣∣∣∣∣∣Wv →
xvj

]
))

∑uk∈Ne
vj

ρ(
→
α

T[
Wu →

xuk

∣∣∣∣∣∣Wv →
xvj

]
)

(8)

3.3. Experimental Setting

We employ 5-fold cross-validation to assess the performance of our models. The
cross-validation folds are stratified based on drugs, ensuring that all experiments involving
a particular drug are either entirely in the training set or completely in the test set. This
setup enables our models to predict the side effects of previously unseen drugs during
testing. To tackle data imbalance in the training datasets and test datasets, we consider all
confirmed drug–adverse reaction associations as positive samples, and we randomly select
unobserved associations as negative samples in a 1:1 ratio. In external validation datasets,
we predict all possible associations between drugs and adverse events.

We utilize the binary cross-entropy [48] (BCE) loss function to measure the discrepancy
between predicted and true labels. An Adam optimizer [49] is used for training the neural
networks. Additionally, we incorporate regular dropout to the hidden layer units in the
MLP decoder, which helps to prevent overfitting and encourages the model to learn more
robust and generalizable representations.

We measure the prediction performance using three criteria: the AUC, Precision, and
ACC, which are widely used for drug indication prediction tasks. Let P and N represent
the counts of positive and negative instances in the dataset, respectively. TP, FN, TN, and
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FP denote the counts of true positives, false negatives, true negatives, and false positives in
the predictions. The following performance metrics are defined:

Precision =
TP

TP + FP
(9)

ACC =
TP + TN

P + N
(10)

Our method is implemented in Python 3.7.13 and PyTorch 1.7.1. We use a Random
Search to determine the hyperparameters. The batch size is set to be 10,000, and the Adam
optimizer is used with a learning rate of 1 × 10−4. We set the dropout rate for this work to
0.2. We allow the model to run for 300 epochs at most for all datasets. The best-performing
model is selected at the epoch giving the best AUC score on the test set, which is then used
to evaluate the final performance on the external validation set.

4. Conclusions

We developed a novel ADR detection model named BiMPADR based on a bipartite
message passing neural network. Our model achieved information fusion across drug gene
expressions and ADR–gene association information. The proposed model conducted the
integration of drug expression information and gene–ADR association information, enrich-
ing the practical significance provided by each adverse reaction feature vector. Extensive
experiments have shown that our model achieves an excellent performance in the task of
drug–ADR prediction under different conditions. Furthermore, we conducted external
validation to confirm the potential applicability of our approach to new drugs. Case studies
provide concrete examples that validate the practical utility of our approach. It will assist
pharmacists and healthcare providers in comprehending the potential risks of drug side
effects and addressing the problem of underreporting spontaneous reports. In future work,
we intend to employ geometric deep learning techniques to extract compound structural
features and better utilize compound information to further enhance the predictive perfor-
mance of our model. Additionally, we aim to identify suitable methods for assessing the
contribution of genes to the occurrence of each adverse reaction.
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across 3616 adverse drug reactions. Table S1: Evidence for the top ten predicted ADRs. Table S2:
Blood and lymphatic system disorder ADRs recorded by NIH and related literature. Figure S1:
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cited in supplementary files.
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