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Abstract: ZnO-CeO2 hollow nanospheres have been successfully synthesized via the hard tem-
plating method, in which CeO2 is used as the support skeleton to avoid ZnO agglomeration. The
synthesized ZnO-CeO2 hollow nanospheres possess a large electrochemically active area and high
electron transfer owing to the high specific surface area and synergistic effect of ZnO and CeO2.
Due to the above advantages, the resulting ZnO-CeO2 hollow spheres display high sensitivities of
1122.86 µA mM−1 cm−2 and 908.53 µA mM−1 cm−2 under a neutral environment for the selective
detection of dopamine and uric acid. The constructed electrochemical sensor shows excellent selectiv-
ity, stability and recovery for the selective analysis of dopamine and uric acid in actual samples. This
study provides a valuable strategy for the synthesis of ZnO-CeO2 hollow nanospheres via the hard
templating method as electrocatalysts for the selective detection of dopamine and uric acid.
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1. Introduction

Dopamine (DA) and uric acid (UA) are usually co-existing important biological
molecules in the human body, playing a crucial role in numerous physiological and patho-
logical features. Some metabolic disturbances in organisms are linked to unnormal levels
of DA and UA [1]. Therefore, monitoring DA and UA concentration levels simultaneously
is of great significance for analytical and diagnostic applications. DA is a significant neu-
rotransmitter that is closely linked to the regulation of mood and movement [2]. It has a
pivotal function in both the cardiovascular and central nervous systems. Abnormal DA
level often contributes to the development of serious illnesses like Parkinson’s disease and
schizophrenia [3,4]. UA is a significant by-product of purine metabolism and is commonly
present in human serum and biological fluids [5]. High concentrations of UA in body fluids
could cause myocardial damage, hyperuricaemia and other physiological disorders [6,7].
Consequently, it is vital to develop a convenient and highly efficient approach for the
selective detection of DA and UA. Compared to other detection methods such as chro-
matography, fluorescence and spectrophotometry, the electrochemical method offers the
advantages of high sensitivity, quick response times, cost-effectiveness, and convenience,
and has aroused more and more attention [8–10].

It is well known that DA and UA are simultaneously present in human body flu-
ids, and the oxidation peaks of DA and UA on bare electrodes are very close to each
other, resulting in severely overlapping oxidation potentials, which will affect the accu-
rate determination of DA and UA. Therefore, it is extremely essential to explore a kind
of suitable modified electrode material to improve the selectivity of DA and UA detec-
tion [11]. Electrode materials are the fundamental elements of electrochemical sensors.
Transition metal oxides are commonly utilized in sensing and adsorbent materials due
to their outstanding physicochemical characteristics, as evidenced by various academic
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investigations [12–14]. ZnO is a transition metal oxide with excellent electrocatalytic prop-
erties. Inherent defects such as interstitial zinc atoms and oxygen vacancies have electrical
conductivity and electrochemical properties. ZnO possesses favorable characteristics for
electrode materials, including chemical and structural stability, high electron density and
low cost. These advantages make it a promising option among electrode candidates [15].
For example, Ganesamurthi et al. fabricated NiO-ZnO composite microspheres to detect
harmful flavonoids in biological and botanical samples, achieving a minimum detection
limit of 11.0 nM [16]. In the study of Myndrul et al., ZnO tetrapods were modified on
MXene nanosheets to detect glucose in human sweat [17]. However, ZnO is prone to
inadequate dispersion and particle agglomeration, resulting in reduced electrochemical
active sites [18–20]. To solve this problem, hollow nanomaterials have attracted more and
more attention to enable increased specific surface areas and a large number of reaction
sites, and thus to lead to the superior electrochemical sensing property of the ZnO-based
materials [21–23].

In order to obtain uniform and controllable hollow-structured materials, the hard
templating method can be considered as a self-assembly process [24]. However, regret-
fully, pure ZnO hollow materials are still very difficult to synthesize due to its chemical
nature [25]. Therefore, CeO2 is introduced into the synthesis system for fabricating the
ZnO-based hollow nanospheres [24]. CeO2 possesses abundant oxygen vacancies and
high oxygen mobility [24]. Although CeO2 shows unsatisfactory electrocatalytic activity,
it could be utilized as an excellent co-catalyst in combination with ZnO to strengthen the
electrocatalytic activity [26]. In this strategy, resorcinol-formaldehyde (RF) resin spheres
were used as precursors, while CeO2 plays a crucial role for supporting ZnO to keep the
hollow structure after removing RF resin spheres. Besides the above essential role, CeO2
could also expedite electronic transmission between the electrode and the surface-modified
electrode material, thus acting as a desirable co-catalyst [27–29]. Hence, the amalgamation
of transition metal oxides with CeO2 renders CeO2 a suitable catalyst carrier, exploiting the
structural features and synergistic effects between transition metal oxides to enhance the
electrochemical efficiency of the sensor.

In this study, ZnO-CeO2 nanospheres with hollow structures were designed and
synthesized by combining sol-gel self-assembly and the hard-templating method. Through
the accurate regulation of RF resin spheres with ZnO and CeO2 precursors, RF@ZnO-CeO2
core-shell spheres were formed via the self-assembly process. After calcination at a high
temperature, ZnO-CeO2 hollow nanospheres were successfully synthesized by removing
the template of RF spheres. The as-obtained material was modified on a glassy carbon
electrode (GCE) to construct an enzyme-free sensor for the selective determination of DA
and UA. As expected, ZnO-CeO2/GCE was able to selectively detect DA and UA, and
was utilized with success in measuring DA and UA in real samples, demonstrating its
promising potential for practical applications.

2. Results and Discussion
2.1. Morphological Characterization and Synthesis Mechanism of ZnO-CeO2 Hollow Nanospheres

In this study, ZnO-CeO2 composite material with hollow structure was designed and
synthesized by hard-templating method. As shown in Figure 1A, the RF template with
uniform size was synthesized by resorcinol and HCHO, and the RF@ZnO-CeO2 core-shell
organic–inorganic complexes were formed by sol–gel and self-assembly deposition of Zn2+

and Ce4+ species on the RF template surface in certain proportions. ZnO-CeO2 hollow
nanospheres were formed by removing the template of RF resin spheres. Herein, the
morphologies of RF, RF@ZnO-CeO2 and ZnO-CeO2 were characterized by SEM. Notably,
RF spheres were smooth and possessed a consistent size with a distributed diameter of
approximately 400 nm (Figure 1B). However, after calcination at 500 ◦C, the diameters
decreased to 200−300 nm and the sphere surface was clearly rougher due to the RF template
removing and, further, the ZnO-CeO2 layer shrinking (Figure 1C,D). To further observe the
internal structure of the ZnO-CeO2 spheres in detail, TEM was employed with an element
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analysis of the ZnO-CeO2 layer. As shown in Figure 2A,B, it was evident that a hollow
structure appeared in the composite materials when the RF spheres were removed by
calcination at a high temperature of 500 ◦C. EDS elemental mapping (Figure 2C–E) shows
that hollow ZnO-CeO2 nanospheres exhibit a uniform distribution of the three elements,
Ce, Zn and O, which further reveals the successful synthesis of ZnO-CeO2 composites with
hollow structures.
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2.2. Structural and Compositional Characterization of ZnO-CeO2 Hollow Nanospheres

Phase composition in ZnO-CeO2 hollow nanospheres was further investigated by
XRD. As indicated in Figure 3, the XRD patterns provide essential information on the crystal
structure of ZnO-CeO2 nanospheres. Diffraction peaks were examined at 28.5◦, 33.1◦, 47.5◦

and 69.4◦, which corresponded to crystal planes of CeO2 crystal faces, including (111), (200),
(220) and (400) (JCPDS 43-1002). Additionally, diffraction peaks were observed at 31.7◦,
34.4◦, 36.3◦, 47.5◦, 56.6◦, 62.9◦, 66.4◦, 67.9◦, 69.1◦ and 72.6◦, which correspond to (100), (002),
(101), (102), (110), (103), (200), (112), (201) and (004) of ZnO (JCPDS 99-0111) [30,31]. There
were no redundant peaks in the XRD pattern of ZnO-CeO2 nanospheres, which indicated
that the purity of the hollow product was high and well controlled in the synthesis process.
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The valence states and electron configurations of elements in ZnO-CeO2 were further
studied by XPS. The full-scan spectra displayed in Figure 4A reveal the presence of four
elements in the synthesized functional composites: Zn, Ce, C and O. This finding corrob-
orated the EDS test results. Additionally, Figure 4B displays the Ce 3d spectrum. The
spectrum of Ce 3d exhibited eight discernible peaks, in which the peaks at 901.1, 907.8 and
916.7 eV were associated with 3d3/2 of Ce4+, and the peaks at 882.6, 888.8 and 898.6 eV were
associated with 3d5/2 of Ce4+. Furthermore, it was evident that the composite contains a
Ce4+/Ce3+ redox electric pair, as indicated by two distinctive peaks at 903.1 and 884.9 eV,
which originated from Ce3+ [31–33]. The high-resolution XPS spectrum of Zn 2p (Figure 4C)
shows two characteristic peaks at 1021.6 and 1044.6 eV, which could be related to the Zn
2p3/2 and Zn 2p1/2 orbits of Zn2+ [34]. The spectrum for O 1s is presented in Figure 4D,
with the O 1s peaks fitted from three peaks at 532.4, 530.8 and 529.8 eV. The O present in
the lattice, originating from ZnO and CeO2, was responsible for the peaks at 530.8 and
529.8 eV, and the adsorption of O2 on the surface of the material was accounted for by
the peak at 532.4 eV [27]. The results of XPS further suggested that ZnO-CeO2 composite
hollow nanospheres were successfully synthesized.

Nitrogen adsorption/desorption isotherms were carried out to further assess the
specific surface area of ZnO-CeO2 hollow nanospheres. As shown in Figure S1A, the
ZnO-CeO2 hollow spheres were demonstrated to own a type IV isotherm. ZnO-CeO2
hollow nanospheres had a specific surface area of roughly 45.46 m2 g−1. Compared with
ZnO (10.51 m2 g−1) and CeO2 (30.59 m2 g−1), ZnO-CeO2 hollow nanospheres showed
increased specific surface area. The higher specific surface area of the spheres mean that
more reactive active sites could be provided in the electrochemical process, implying a
boosted charge transfer velocity and an improved electrochemical oxidation performance.
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2.3. Electrochemical Performance of ZnO-CeO2 Hollow Nanospheres

In order to evaluate the hollow ZnO-CeO2 modified electrode’s capacity for charge
transfer, electrochemical impedance spectroscopy (EIS) was employed, as illustrated in
Figure 5 [35]. The surface characteristics of the modified electrode were examined by
using [Fe(CN)6]3−/4− as redox probe for analyzing the charge transfer capacity of the
electrode. As shown in Figure 5A, compared with ZnO and CeO2, the ZnO-CeO2/GCE
shows a lower Rct value. It is proved that the ZnO-CeO2 hollow nanospheres exhibit a
more excellent electron transfer property due to the high specific area and great synergistic
effect between ZnO and CeO2. The EIS of the GCE shows a lower Rct value compared
with the ZnO-CeO2/GCE electrode. This is because nafion was used for fixing ZnO-CeO2
hollow nanospheres on GCE, which would block the diffusion of [Fe(CN)6]3−/4− and
increase the Rct value of the ZnO-CeO2/GCE electrode [35,36]. CeO2, as a co-catalyst, can
accelerate the electron transfer among ZnO-CeO2/GCE due to abundant oxygen vacancies
of CeO2. As shown in Figure 5B, compared with the pure ZnO and CeO2, ZnO-CeO2 hollow
nanospheres exhibit the highest oxidation peak at 0.25 V and 0.4 V, respectively. This is in
accordance with the EIS results in Figure 5A, suggesting that the synergistic effect of CeO2
and ZnO could promote the charge transfer, enhance the conductivity and then improve
the electrocatalytic activity of ZnO-CeO2 hollow nanospheres. In this research, the effect of
different scanning rates on the detection of DA and UA by the ZnO-CeO2/GCE electrode
was tested by cyclic voltammetry in 0.1 M PBS (pH 7.0). As seen in Figure 5C,E, the peak
current of DA and UA increased progressively as the scanning rate increased. Within a
specific range, the peak current was proportional to the scanning rate. The peak current
of DA (Figure 5D) was related to the scanning rate, I = 0.7764υ − 14.6886 (R2 = 0.995). The
oxidation peak current of UA (Figure 5F) was directly proportional to the scanning rate,
I = 15.5942υ + 0.2405 (R2 = 0.994). According to the aforementioned findings, the surface
adsorption controlled the electrochemical responses between DA and UA on the ZnO-
CeO2/GCE electrode. The electro-oxidation reactions of DA and UA on ZnO-CeO2/GCE
are a two-electron-transfer process, and the reaction mechanisms can be expressed as
follows [37]:
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2.4. Determination of DA and UA on ZnO-CeO2/GCE

In order to enable the ZnO-CeO2/GCE electrode to detect DA and UA under opti-
mal experimental conditions, the material ratio of Ce2+:Zn2+, electrolyte concentration
and modifier concentration were optimized by DPV. Figure S2A,B show the effect of the
material ratio on the electrochemical sensor performance. When the material ratio was
Ce2+:Zn2+ = 1:4, the oxidation peak currents of DA and UA were the highest, so 1:4 was
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chosen as the best material ratio. Figure S3A,B display the effect of the concentration of
the modifier on the performance of the electrochemical sensor. By comprehensive com-
parison, the oxidation peak currents of DA and UA were the greatest at 4.0 mg mL−1,
so 4.0 mg mL−1 was selected to be the ideal concentration of modifier load. As shown
in Figure 6B,C, the peak current gradually increased when the pH of the PBS solution
increased from 6.0 to 7.0. However, when it increased to 8.0, the electrochemical signal
gradually decreased. Therefore, a pH 7.0 of 0.1 M was selected for the determination of DA
and UA.
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tained at 10 µM, and the concentrations of DA increased. As indicated in Figure 7A, in 0.1 
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tration. Figure 7B shows the linear fitting curve between the peak current and DA content. 
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Under the optimal experimental parameters, the DPVs of DA and UA with different
concentrations were measured at ZnO-CeO2/GCE. First, the concentration of UA was re-
tained at 10 µM, and the concentrations of DA increased. As indicated in Figure 7A, in 0.1 M
PBS (pH 7.0), the oxidation peak current increased following the change in DA concentration.
Figure 7B shows the linear fitting curve between the peak current and DA content. It was
displayed that the peak current and DA concentration in the 5–100 µM had a good linear re-
lationship. The linear equation could be fitted to I (µA) = 0.0794C (µM) + 0.9169 (R2 = 0.993)
and a sensitivity of 1122.8 µA mM−1 cm−2. In the range of 100–800 µM, the linear correlation
between the DA concentration and the peak current was good. The linear equation could be
fitted as I (µA) = 0.0320 C (µM) + 6.690 (R2 = 0.996) and the sensitivity was calculated as
452.99 µA mM−1 cm−2. Subsequently, the content of DA was fixed at 20 µM and the concen-
tration of UA increased. As shown in Figure 7C, in 0.1 M PBS (pH 7.0) solution, the oxidation
peak current changed with the increase in UA concentration. Figure 7D shows the linear
fitting curve between the oxidation peak current and UA concentration. It was seen that the
oxidation peak current and UA concentration in the 10–100 µM had a good linear connec-
tion. The linear equation could be fitted as I (µA) = 0.0642C (µM) + 2.1289 (R2 = 0.994) and
the sensitivity was 908.53 µA mM−1 cm−2. The linear relationship between the oxidation
peak current and UA content was well established in the range of 100–1000 µM. The linear
equation was fitted as I (µA) = 0.0140C (µM) + 6.8299 (R2 = 0.997) and the sensitivity was
calculated as 198.20 µA mM−1 cm−2. To the best of our knowledge, in the lower concen-
tration region, product molecules on the electrode surface are easier to desorb than in the
higher concentration region, which is beneficial for obtaining more rapid electrochemical
reactions and a more sensitive response for the electrocatalysis of DA and UA [38]. There-
fore, two linear dynamic ranges occur at two different concentration regions. The detection
limits were 0.39 µM for DA and 0.49 µM for UA (S/N = 3), separately, indicating that the
constructed ZnO-CeO2/GCE had good sensing performance in the detection of DA and UA.
Figure 8 shows that the peak current increases as the analyte concentration increases. The
well-defined peak potentials for DA and UA are +0.230 V and +0.386 V, respectively. The
spacing between the two peaks is 0.156 V, which is sufficient for the simultaneous detection
of DA and UA.
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By comparing the linear range and detection limits of other reported DA and UA
sensors (Table 1), the prepared ZnO-CeO2/GCE sensor can meet the requirements for the
selective determination of DA and UA in real samples, and has great practical applica-
tion potential.

In order to explore the selectivity of the ZnO-CeO2/GCE electrochemical sensor, some
common compounds in human serum: ascorbic acid, urea, glucose, K+, Na+, Cl− and Trp
were tested by DPV. As illustrated in Figure S4A, the addition of interferences had little
impact on the intensity of electrical signals generated by DA and UA, and the relative
current value changed no more than 0.94%, proving that the ZnO-CeO2/GCE electrode
had a strong anti-interference ability. One electrode was used to measure DA and UA
seven times to assess repeatability. The results showed that ZnO-CeO2/GCE had good
repeatability (Figure S4B). In addition, seven ZnO-CeO2/GCE electrodes were prepared
in the same way, and the reproducibility of the ZnO-CeO2/GCE electrodes was assessed
by the responding current to 250 µM DA and UA (Figure S4C). The results showed that
ZnO-CeO2/GCE had good reproducibility. To further assess the stability of the sensor,
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ZnO-CeO2/GCE was stored for 15 days, and the peak currents of the electrode to 250 µM
DA and UA were recorded every day. After 15 days, the peak current remained 93.8% of the
incipient current. The above test results showed that ZnO-CeO2/GCE exhibited excellent
anti-interference, repeatability, reproducibility and stability.

Table 1. Performance comparison of ZnO-CeO2/GCE with other DA and UA sensors.

Modified Material
Linear Range (µM) Detection Limit (µM)

Reference
DA UA DA UA

CuNP a @rGO b 20–1000 60–900 2.26 6.72 [39]
N-doped carbon Supported iron 5–900 4–300 3.21 3.348 [40]

HNGA c 0.6–75 0.4–50 0.22 0.12 [41]
HNAC d 2–10 20–100 0.401 2.800 [42]

Fe3O4 10–100 20–160 4.5 14 [43]
PPy e -Co-NNC f 1–50 2–500 0.025 0.411 [44]

PMo12
g @MIL-100(Fe) h @PVP i 1–247 5–406 0.586 0.372 [37]

ZnO-CeO2 5–800 10–1000 0.39 0.49 This work

Notes: a nanoparticles, b reduced graphene oxide, c holey nitrogen-doped graphene aero gel, d homogeneous
nanoparticles distributed on amorphous carbon, e Polypyrrole, f cobalt single-atom nanozymes of tubular bis-
paraben nitrogen–carbon, g PMo12O40

3−, h C9H5FeO7, i polyvinylpyrrolidone.

The performance of the constructed ZnO-CeO2/GCE in the detection of DA and UA
in real samples was further evaluated. The concentrations of DA and UA in human serum
were, respectively, determined by the ZnO-CeO2/GCE electrochemical sensor. In this
study, the standard addition method was used to test DA and UA in human serum. The
blood samples were first preliminarily pre-treated and the supernatant was obtained by
centrifugation at 10,000 rpm for 10 min and diluted 50 times with 0.1 M PBS (pH 7.0). Then,
the DA and UA standard solutions were added. DA concentrations of 10 µM, 20 µM and
30 µM and UA concentrations of 20 µM, 30 µM and 40 µM were added to human serum,
respectively, and the concentrations of DA and UA were obtained by the standard addition
method and the aforementioned calibration curve. As listed in Tables 2 and 3, the results
show that the prepared ZnO-CeO2/GCE sensors met the requirements for detecting DA
and UA in practical applications.

Table 2. Determination of DA in human serum.

Serum Sample Added (µM) Found (µM) Recovery (%) RSD (%)

1 10 9.89 98.9 0.96
2 20 19.94 99.7 1.26
3 30 30.4 101.3 1.49

Table 3. Determination of UA in human serum.

Serum Sample Added (µM) Found (µM) Recovery (%) RSD (%)

1 20 19.57 97.9 1.29
2 30 30.45 101.5 1.23
3 40 40.2 100.5 1.47

3. Experimental
3.1. Materials

Zn(CH3COO)2·4H2O, Ce(NO3)3·6H2O, anhydrous ethanol, ammonia water (NH3·H2O,
28%), resorcinol, formaldehyde (HCHO, 37%), glucose (Glu), KH2PO4, K2HPO4, KCl and
NaCl were provided by Sinopharm Chemical Reagent Co., Ltd. (China). Tryptophan (Trp)
and ascorbic acid (AA) were purchased from Sigma (USA). Dopamine (DA), uric acid (UA)
and urea (CH4N2O) were acquired from Alfa Aesar. All chemicals were of analytical grade.
All the water utilized in the experiments was ultrapure water (18.25 MΩ cm).
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3.2. Instruments

The morphologies and dimensions were examined using scanning electron microscopy
(SEM, Phenom·Pharos·G1, Phenom, Eindhoven, The Netherlands). Energy-dispersive
spectroscopy (EDS) images were collected from transmission electron microscopy (TEM,
JEM-2100F, JEOL LTD, Tokyo, Japan). The crystal structures were analyzed by X-ray
diffraction (XRD, D/MAX 2500, Rigaku, Tokyo, Japan), working with Cu Kα radiation
(λ = 1.5418 Å, 0.08◦ s−1). Analysis of element composition and valence structure on X-ray
photoelectron spectroscopy (XPS, Escalab 250 XI, Thermo Scientific, Waltham, MA, USA).
The N2 adsorption–desorption isotherms were determined with an Automatic adsorption
instrument (ASAP 2460, Micromeritics, Norcross, GA, USA). To compute the specific surface
area, the Brunauer–Emmett–Teller (BET) equation was utilized. Before the test, the samples
were preprocessed under a vacuum for 6 h at 100 ◦C. All electrochemical performance
tests were finished on an electrochemical workstation (CHI 660e, CH Instruments, China)
equipped with the three-electrode system.

3.3. Synthesis of RF Resin Spheres

The synthesis method of RF resin balls was improved by the reported method [45]. An
amount of 300 µL NH3·H2O was added to 16 mL CH3CH2OH and 40 mL deionized water.
Then, 0.1 g resorcinol and 280 µL HCHO were added and stirred overnight. The product
was subjected to centrifugation, washed and dried. These procedures yielded powdered
microspheres of RF.

3.4. Synthesis of ZnO-CeO2 Hollow Nanospheres

Utilizing the sol-gel concept and the hard-templating approach, ZnO-CeO2 hollow
nanospheres based on RF nanospheres were created. In the typical synthesis, Zn(CH3COO)2
and Ce(NO3)3 were chosen as precursors of ZnO and CeO2 composite with a proper
molar ratio of 4:1. First, 0.05 g RF was added to 8 mL anhydrous ethanol and 2 mL
acetonitrile. After sonicating for 30 min, we slowly added 2 mM Zn(CH3COO)2·4H2O and
Ce(NO3)3·6H2O ethanol solution to 5 mL. We stirred the reaction for 24 h, followed by
washing through centrifugation and drying in a vacuum drying oven at 60 ◦C to obtain
RF@ZnO-CeO2. Finally, the RF@ZnO-CeO2 composites were heated at 500 ◦C for 2 h to
obtain the final sample, ZnO-CeO2. The synthesis of ZnO and CeO2 nanospheres followed
the same procedure.

3.5. Fabrication of the Modified Electrode

The electrode surface of GCE was cleaned with 0.1 and 0.05 µm aluminum powder;
any impurities were then washed away with deionized water. Then, 5 µL ZnO-CeO2 (5 mg
mL−1) were uniformly dispersed on the GCE and placed under the infrared light to dry.
ZnO-CeO2/GCE were obtained for detecting DA and UA.

4. Conclusions

In this study, ZnO-CeO2 composite nanospheres with hollow structures were suc-
cessfully fabricated via the hard templating method. The as-obtained ZnO-CeO2 hollow
nanospheres possess high specific surface areas and abundant active sites, which is favor-
able for electron transfer and electrocatalysis. Taking advantage of the synergistic effect
between ZnO and CeO2, the synthesized ZnO-CeO2 hollow nanospheres exhibit superior
electrocatalytic activities to the oxidations of DA and UA in 0.1 M PBS (pH 7.0) solution.
The developed sensor displays wide linear ranges (5–800 µM for DA, and 10–1000 µM
for UA), high sensitivities (1122.86 µA mM−1 cm−2 for DA, and 908.53 µA mM−1 cm−2

for UA) and low detection limits (0.39 µM for DA, and 0.49 µM for UA). In addition, the
fabricated ZnO-CeO2/GCE was also successfully utilized to measure the concentration
levels of DA and UA in human serum samples. This work proves that ZnO-CeO2 hollow
nanospheres could be applied for selectively detecting DA and UA.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29081786/s1, Figure S1: (A) Nitrogen adsorption/desorption
isotherm (B) and pore size distribution of ZnO-CeO2 hollow spheres; Figure S2: The plot between the
various molar ratios of Ce and Zn against oxidation peak current (Ipa) and oxidation peak potential
(Epa) of DA(A) and UA(B); Figure S3: Surface modification material concentration against oxidation
peak current (Ipa) and oxidation peak potential (Epa) of DA(A) and UA(B); Figure S4: (A) Current
response of ZnO-CeO2/GCE to 200µM DA, UA and 1 mM interferences; (B) The repeatability of
ZnO-CeO2/GCE electrodes to DA and UA sensing; (C) The reproducibility of ZnO-CeO2/GCE
electrodes to DA and UA sensing; (D)Long-time stability of ZnO-CeO2/GCE.
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