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Received: 5 January 2024

Revised: 18 March 2024

Accepted: 10 April 2024

Published: 17 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Chalcone-Synthase-Encoding RdCHS1 Is Involved in Flavonoid
Biosynthesis in Rhododendron delavayi
Ju Huang 1,†, Xin Zhao 1,†, Yan Zhang 1, Yao Chen 1, Ximin Zhang 1, Yin Yi 1, Zhigang Ju 2,* and Wei Sun 1,*

1 Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountain Area of
Southwest of China, School of Life Science, Guizhou Normal University, Guiyang 550025, China;
15285737718@163.com (J.H.); zxjyn536@163.com (X.Z.); 15186346268@163.com (Y.Z.);
18984245819@163.com (Y.C.); zhxm409@163.com (X.Z.); yiyin@gznu.edu.cn (Y.Y.)

2 Pharmacy College, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
* Correspondence: juzhigangz@163.com (Z.J.); sunwei889@163.com (W.S.); Tel.: +86-182-8605-8275 (W.S.)
† These authors contributed equally to this work.

Abstract: Flower color is an important ornamental feature that is often modulated by the contents of
flavonoids. Chalcone synthase is the first key enzyme in the biosynthesis of flavonoids, but little is
known about the role of R. delavayi CHS in flavonoid biosynthesis. In this paper, three CHS genes
(RdCHS1-3) were successfully cloned from R. delavayi flowers. According to multiple sequence align-
ment and a phylogenetic analysis, only RdCHS1 contained all the highly conserved and important
residues, which was classified into the cluster of bona fide CHSs. RdCHS1 was then subjected to
further functional analysis. Real-time PCR analysis revealed that the transcripts of RdCHS1 were
the highest in the leaves and lowest in the roots; this did not match the anthocyanin accumulation
patterns during flower development. Biochemical characterization displayed that RdCHS1 could
catalyze p-coumaroyl-CoA and malonyl-CoA molecules to produce naringenin chalcone. The physio-
logical function of RdCHS1 was checked in Arabidopsis mutants and tobacco, and the results showed
that RdCHS1 transgenes could recover the color phenotypes of the tt4 mutant and caused the tobacco
flower color to change from pink to dark pink through modulating the expressions of endogenous
structural and regulatory genes in the tobacco. All these results demonstrate that RdCHS1 fulfills the
function of a bona fide CHS and contributes to flavonoid biosynthesis in R. delavayi.

Keywords: flower color; flavonoid; chalcone synthase; enzyme activity; Rhododendron delavayi

1. Introduction

Flower color, a vital trait of ornamental plants, is mainly determined by flavonoids [1,2].
Flavonoids are a large group of plant natural pigments that comprise chalcones, aurones,
flavones, isoflavones, flavandiols, flavonols, proanthocyanins, anthocyanins, and so on [3].
In addition to tissue pigmentation, flavonoids also fulfill significant roles in multiple
physiological processes, such as UV protection, auxin transport, phytopathogens, defense
against herbivores, signaling between plants and microbes, and pollen development [4,5].
Importantly, flavonoids provide a wide variety of health benefits to humans, including
delaying the aging of immune organs and the nervous system, eyesight improvement,
and the prevention of cancer, Alzheimer’s disease, and cardiovascular disease [6,7]. Ex-
tensive studies on flavonoid biosynthetic pathways have been completed using Petunia
hybrida (petunia) [8], Antirrhinum majus (snapdragon) [9], and Arabidopsis thaliana (Ara-
bidopsis) [10] as models, and many enzymes that take part in flavonoid biosynthesis have
been characterized [11].

Chalcone synthase (CHS), a polyketide synthase, is crucial in the biosynthetic pathway
of flavonoids and serves as the gatekeeper to regulate their biosynthesis [12]. CHS catalyzes
a three-step condensative reaction from trimolecular malonyl-CoA and monomolecular
p-coumaroyl-CoA to produce naringenin chalcone [13]. For the first step, the coumaroyl
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moiety is loaded to the site of active cysteine (Cys164). Next, condensation reactions
occur based on the decarboxylation of malonyl-CoA to produce nucleophiles for chain
elongation. Finally, the reaction generates thioester-linked tetraketide, which cyclizes into a
hydroxylated aromatic ring to yield chalcone [14]. Due to their important roles in initiating
flavonoid biosynthesis, CHSs have been intensively researched in many higher plants,
including petunia [8], Arabidopsis [10], Antirrhinum sp. [9], Oncidium orchid [15], apple [16],
grape [17], Gerbera hybrida [18], Dianthus chinensis [19], and so on. In Antirrhinum majus,
the first CHS mutant was called white nivea, generated through deleting its single CHS
gene [20]. For petunia, there are more than eight copies of CHS genes in its genome,
but only the CHS-A and CHS-J transcripts are expressed in its floral tissues. They are
conspicuously down-regulated in the white parts of ‘Red Star’ [21,22]. In addition, the
spatial suppression of CHSA also causes the natural bicolor floral phenotype to be affected,
as well as an inability to generate functional pollen tubes [23]. In contrast to petunia, maize
CHS mutants can still initiate pollen tube growth but are incapable of sustaining growth
exceeding 12 h, ultimately leading to male sterility [24]. The Arabidopsis tt4 mutant, which
lacks brown tannins in its seed and anthocyanin in the cotyledons and hypocotyls, has been
demonstrated to be caused by a mutation in the CHS gene. Other phenotypic effects, such
as changes in pollen fluorescence and root morphology, were also reported later [25,26]. In
Gerbera hybrida, three CHS-like genes are expressed during its flower development, whereas
only the CHS1 transcript corresponds with the synthesis of anthocyanins and flavanols [27].
As for the Asiatic hybrid lily, there are also three CHS genes (CHSA-CHSC) that are active in
colored tepals, but their transcript patterns are diverse [28,29]. Therefore, all the mentioned
results indicate that CHS plays an indispensable role during plant development and is
crucial for petal color formation in some plants.

Rhododendron delavayi (R. delavayi), which belongs to the Ericaceae family, is a sig-
nificant ornamental plant species. Considering its vivid flowers and high horticultural
value, R. delavayi has become increasingly popular in the world [30]. However, the first
rate-limiting enzyme, chalcone synthase, which is vital for petal coloration, has not been
isolated and analyzed from R. delavayi. For this study, a CHS gene (named RdCHS1) was
isolated from the petals of R. delavayi, and its functional roles in flavonoid biosynthesis
were comprehensively demonstrated. An expression analysis of RdCHS1 was conducted,
showing that it might participate in the biosynthesis of flavonoids (not only anthocyanin)
in all detected tissues. Subsequently, the catalytic property of RdCHS1 was confirmed, and
its function in planta was verified through transferring it into the Arabidopsis tt4 mutant. At
the same time, RdCHS1 was also ectopically expressed in tobacco; the data displayed that it
could strengthen the pink color of the corolla from pale pink to dark pink. In this paper, we
comprehensively identify the function of chalcone synthase in R. delavayi and prove that
RdCHS1 is a CHS gene affecting flavonoid biosynthesis in R. delavayi.

2. Results
2.1. Cloning and Sequence Analysis of RdCHSs

According to the transcriptome data of R. delavayi, three CHS genes were identified
through blastn alignment, with reference genes from Arabidopsis and proximal species.
The cDNA sequences of RdCHS1 (SUB13889370), RdCHS2, and RdCHS3 were cloned and
found to have the ORFs of 1182 bp, 762 bp, and 1170 bp, encoding 393-, 253-, and 389-
amino acid proteins, respectively. Protein sequence alignment for the RdCHSs protein
(in comparison to other plant CHSs) was conducted; the results disclosed that RdCHS1,
RdCHS2, and RdCHS3 all contained three highly conserved residues (marked with a
yellow box), which form the active site of CHS. However, the second important Phe residue
(marked with a blue box) determining the catalytic specificity of CHS was replaced with
Val in RdCHS2 and RdCHS3. Meanwhile, the ORFs of RdCHS2 were significantly shorter
than the typical lengths of CHSs, leading to a deletion of the first five residues (marked
with a black triangle) that help form the coumaroyl-CoA binding and cyclization pocket.
In two signature motifs (marked with a green box), only RdCHS2 and RdCHS3 contained
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different amino acid residues compared to other CHSs, the function of which was identified
(Figure 1). Moreover, the phylogenetic analysis also revealed that RdCHS1 was grouped
into the cluster of bona fide CHSs and is evolutionarily closest to the CHS from Vitis vinifera,
while RdCHS2 and RdCHS3 were classified into non-CHS Type III PKS clusters. Thus,
based on the unusual ORF lengths and variations in the conserved residues and motifs,
as well as the phylogenetic analysis, RdCHS1 was subjected to further functional analysis
(Figure 2).
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Figure 1. Amino acid sequence alignment of CHS protein in R. delavayi with proteins from other
species. The yellow box represents three conserved catalytic residues in CHS. The blue-frame
amino acids determine the specificity of the CHS substrate. The green rectangular box indicates the
highly conserved domains of CHS. The black triangles represent important residues for binding to
coumarinyl coenzyme A and the residues specific to the cyclic reaction of CHS.
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BAA31259.1), AtCHS (Arabidopsis thaliana, AAA32771.1), ZmCHS (Zea mays, CAA42763.1), OsCHS
(Oryza sativa, BAA19186.2), GbCHS (Ginkgo biloba, AAT68477.1), MsCHS2 (Medicago sativa, P30074.1),
PnCHS (Psilotum rudum, BAA87922), EaCHS (Equisetum arvense, Q9MBB1.1), AmQNS (Aegle marmelos,
AGE44110), RgACS (Ruta graveolens, CAC14058.1), RpBAS (Rheuam palmatum, AAK82824.1), VvSTS
(Vitis vinifera, ABV82966.1), PsSTS (Pinus sylvestris, CAA43165), Gh2PS (Gerbera hybrida, P48391.2),
RpALS (Rheum palmatum, AAS87170), CsOLS (Cannabis sativa, B1Q2B6), HIVPS (Huamulus lupulus,
ACD69659.1), HaBPS (Hypericum androsaemum, AAL79808.1), MdBIS1 (Malus domestica, NP001315967),
BfBBS (Bromheadia finiaysoniana, CAA10514.1), WtPKS1 (Wachendorfia thyrsiflora, AAW50921), RdORS
(Rhododendron dauricum, BAV83003), AtPKSA (Arabidopsis thaliana, O23674), and AtPKSB (Arabidopsis
thaliana,Q8LDM2). QNS, OLS, ALS, BIS, and ORS stand for quinolone synthase, olivetol synthase,
aloesone synthase, 3, 5-dihydroxybiphenol synthase, and orcinol synthase, respectively. Black
diamond represents 3 CHS gene of R. delavayi.

2.2. RdCHS1 Expression Patterns in Developing Flowers and Different Tissues

The transcript patterns of RdCHS1 were checked in R. delavayi using real-time PCR.
RdCHS1 was expressed globally in all tissues and varied according to tissue type, with the
highest transcript abundance detected in the leaves and the lowest in the roots. Furthermore,
similar levels of RdCHS1 mRNA were observed in flower organs, including petals, toruses,
scapes, pistils, and stamens (Figure 3A). Then, more detailed transcript patterns of RdCHS1
were examined during different flower developmental stages. As shown in Figure 3B,
the expression profile of RdCHS1 increased steadily in the early two stages, decreased
in the following two stages, and achieved its highest expression level in the last stage,
which is inconsistent with the anthocyanin synthesis patterns during R. delavayi flower
development [31]. Therefore, the above-mentioned findings suggest that RdCHS1 may be
involved in the biosynthesis of not only anthocyanin, but also the other flavonoids in the
detected tissues.
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Figure 3. Expression profiles of RdCHS1 in R. delavayi. (A) Relative expression levels of RdCHS1
gene in different tissues; Pe, petals; To, toruses; Sc, scapes; Pi, pistils; St, stamens; Ro, roots; and Le,
leaves. (B) Relative expression levels of RdCHS1 at five flower developmental stages: S1, flower buds
about 1 cm; S2, flower buds about 1.5 cm; S3, flower buds about 2 cm; S4, freshly opened flowers;
and S5, blooming flowers. Results represent means ± SE from three biological replicates. Letters a, b,
c indicate very significant difference at the 0.01 level.

2.3. Biochemical Characterization of RdCHS1

As a crucial step in confirming the biological function of RdCHS1, it was heterol-
ogously expressed as a thioredoxin-fusion protein along with His-tag in E. coli. The
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recombinant purified RdCHS1 displayed a single protein band in SDS-PAGE (Figure 4A).
Then, in vitro enzymatic assays were performed to elucidate the catalytic activity of the
recombinant RdCHS1 in the presence of malonyl-CoA and p-coumaroyl-CoA. As reported
previously, naringenin chalcone (NC), the catalytic product of CHS, can spontaneously
convert into naringenin in aqueous solutions [32]. Therefore, both naringenin chalcone
and naringenin were regarded as the products of recombinant RdCHS1 in an HPLC
analysis. Compared to the control, naringenin chalcone and naringenin products were
detected in reactions with the RdCHS1 protein, which matched the authentic samples
(Figure 4B–D). This result indicates that RdCHS1 encodes a biochemically functional
CHS protein, catalyzing the synthesis of naringenin chalcone from malonyl-CoA and
p-coumaroyl-CoA.
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Figure 4. Biochemical assays of recombinant RdCHS1. (A) Expression of RdCHS1 in E. coli. (1) Maker;
(2) total soluble protein from E. coli expressing pET-32a (+) vector; (3) total soluble protein from
E. coli expressing RdCHS1 prior to induction with IPTG; and (4) purified RdCHS1. (B) Standard of
naringin chalcone; (C) the control (empty pET-32a vector); (D) HPLC profiles of the reaction products
of RdCHS1; and (E) reaction scheme of the enzymatic synthesis of naringin chalcone/ naringin from
malonyl-CoA and p-coumaroyl-CoA.

2.4. Complementation of the tt4 Mutant with RdCHS1

In order to determine the effect of RdCHS1 on anthocyanin biosynthesis, it was trans-
formed into the Arabidopsis tt4 mutant, and more than 10 independent lines were obtained.
In comparison, wild-type Arabidopsis accumulated anthocyanins in their hypocotyls and
tannins in their seed coats, but the tt4 mutant could not. As presented in Figure 5A, trans-
formation with RdCHS1 could successfully recover the pigmentation phenotype of the tt4
mutant. Meanwhile, RT-PCR was also carried out to affirm the expressions of RdCHS1, and
the amplicons absent in Col-0 and the tt4 mutant were observed in the transgenic seedlings
(Figure 5B). Additionally, to determine the change in anthocyanins in detail, an HPLC
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analysis was conducted. The results in Figure 6 show that the anthocyanins in the wild-
type Arabidopsis (peaks 1–4) were all absent in the tt4 mutant, while the seedlings carrying
RdCHS1 could successfully complement the biosynthesis of cyanindin and pelargonidin,
which coincided with the quantification of total anthocyanins (Table S2, Figure 5C). There-
fore, the above results imply that RdCHS1 possesses similar activity to AtCHS, a chalcone
synthase involved in flavonoid biosynthesis in vivo.
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Figure 5. Complementation of RdCHS1 function in the Arabidopsis tt4 mutant. (A) Phenotype of the
wild-type, mutant (tt4), and T2 transgenic lines. (B) Expressional analysis of RdCHS1 in wild-type,
mutant, and transgenic lines. (C) Total contents of anthocyanins in Arabidopsis seedlings. The
results correspond to the means from three biological replicates. The asterisks indicate the significant
differences between the means of wild-type and transgenic plants calculated using Tukey’s HSD test
(*** p < 0.001).
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Figure 6. HPLC analyses of anthocyanins in Arabidopsis seedlings. HPLC chromatograms of
the samples from the seedlings of wild-type (A), mutant (B), RdCHS1-1 (C), and RdCHS1-3 (D).
Peaks 1–4 represent cyanidin 3-O-[2′′-O-(xylosyl) 6′′-O-(p-O-(glucosyl) p-coumaroyl) gluco-
side] 5-O-[6′′ ′′-O-(malonyl) glucoside, cyanidin 3-O-[2′′-O-(6′′′-O-(sinapoyl) xylosyl) 6′′-O-(p-O-
(glucosyl)-p-coumaroyl) glucoside] 5-O-(6′′ ′′-O-malonyl) glucoside, pelargonidin derivatives, and
pelargonidin derivatives.
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2.5. Overexpression of RdCHS1 in Tobacco

In order to verify the function of RdCHS1 in the biosynthesis of anthocyanin in flowers,
it was synchronously transformed into tobacco plants. After screening, 15 independent
transgenic lines were generated, and two independent lines exhibiting a significantly
strengthened flower color were selected for further analysis (Figure 7A). The presence of
RdCHS1 on a molecular level was examined using RT-PCR, and the contents of anthocyanin
in tobacco corollas were also determined through HPLC (Figure 7B,D). The quantitative
results displayed that the amount of anthocyanin in the transgenic flowers was higher
than that in the non-transformed flowers, which accounted for 131.7–184.2% of the total
anthocyanins in the control (Figure 7C). Thus, it became clear that the ectopic expression of
RdCHS1 can increase anthocyanin accumulation in tobacco flowers.
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Figure 7. Effect of RdCHS1 on anthocyanin accumulation in transgenic tobacco flowers. (A) Tobacco
flowers of the wild-type and transgenic lines. (B) Expression profiles of RdCHS1 in the flowers
of transgenic tobacco. (C) Quantitation of anthocyanin accumulation levels in transgenic tobacco
flowers with HPLC. (D) HPLC chromatograms of the samples from the flowers of wild-type and
transgenic tobacco. The results correspond to means from three biological replicates. The asterisks
indicate significant differences between the means of the wild-type and transgenic plants calculated
using Tukey’s HSD test (*** p < 0.01; * p < 0.05).

The increased anthocyanin in the transgenic tobacco flowers implied that a coordinated
interaction might exist between RdCHS1 and the endogenous enzymes involved in the
biosynthesis of anthocyanin. Hence, real-time PCR analysis was carried out to investigate
the effect of RdCHS1 over-expression on the anthocyanin pathway in the transgenic flowers.
As presented in Figure 8, all the investigated genes except NtF3′5′H were consistently up-
regulated compared to in wild-type tobacco. Moreover, the ectopic expression of RdCHS1
in the tobacco strongly influenced the transcript levels of NtCHS and NtAN2, and their
transcript abundances were from 2.4 to 5.51-fold higher in both transgenic lines. Thus,
these findings reveal that RdCHS1 overexpression can modulate the expressions of the
endogenous anthocyanin pathway genes in tobacco.
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results represent the means ± SE from three biological replicates. The different letters above the bars
indicate significant differences between the samples judged through Tukey HSD tests (p < 0.01).

3. Discussion

The CHS enzyme family is crucial for plant growth and development. They are
ubiquitous in different plant species and encoded by multiple genes. For example, 3, 4,
12, and 14 CHS genes have been cloned and identified from Lilium spp. [28,29], Dahlia
variabilis [33], Zea mays [34], and Petunia hybrida [35], with several of them being true CHSs,
whereas others are involved in various metabolic pathways [36]. Arabidopsis has four CHS
genes, one of which is the true CHS and takes part in flavonoid biosynthesis [37]. Of the
RdCHSs, the protein sequence alignment and phylogenetic analysis showed that RdCHS1
was closely related to the bona fide CHSs, indicating its ability to produce naringenin
chalcone (Figures 1 and 2).

CHSs in plants share a high similarity in their amino acid sequences. The RdCHS1
amino acids were 82.6–91.4% identical with the Arabidopsis CHSs and Vitis vinifera CHSs
(Figure 1). An increasing number of PKSs (except for CHS), such as stilbene synthase
(STS), acridone synthase (ACS), and 2-pyrone synthase (2PS), have been demonstrated to
possess an identical catalytic mechanism to that of CHSs, but they are different in terms of
their intramolecular cyclization patterns and predilection for starter substrates [38,39]. The
above enzymes are also quite similar at the amino acid level with CHSs. Thus, plentiful
CHS sequences in public databases, identified only through their sequence similarity, may,
in fact, encode other related enzymes [40]. Alternatively, the kinds of amino acids in protein
sequences might help to define the CHS. The Phe residues (Phe215 and Phe265) are two
gatekeepers in CHSs that facilitate substrate loading and appropriate folding during the
cyclization process [14,38]. Phe265, a critical residue for substrate selectivity, is conserved
in the sequence of CHSs, but changes in other plant PKSs [39,41]. In OsCHS9, Phe265
is substituted with Gly, which displays undetectable CHS activity; instead, it encodes
GUS, catalyzing the production of bisdemethoxycurcumin [42]. RdCHS1 contains both
Phe residues in its amino acid sequence, implying that it may be a functional CHS in R.
delavayi, and exhibits CHS activity. In RdCHS2 and RdCHS3, Phe265 is replaced with Val,
indicating their function as other plant PKSs (Figure 1); thus, RdCHS1 was selected for
further analysis.

Gene expression patterns are correlated with their functions; a differential analysis
of gene expression can provide key information for the study of gene features, regulation,
and origins [43,44]. The expression patterns of RdCHS1 are spatially regulated. Its highest
mRNA level was detected in leaves, followed by flower tissues, and it was the lowest in
roots. Meanwhile, RdCHS1 expression in flowers is also developmentally regulated, but it
is not associated with the accumulation of total anthocyanins (Figure 3). These are different
from the results in Petunia hybrida and Gerbera hybrida, in which CHS expression is excessive
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in flowers and is coupled with anthocyanin pigmentation [21,27]. Together with its high
expression in leaves, the RdCHS1 expression profiling in this research suggests that it might
not be the dominant CHS enzyme in R. delavayi petals.

In vitro enzymatic assays showed that RdCHS1 was an authentic CHS similar to the
CHS enzymes in Gerbera hybrida (GCHS1 and GCHS3) that could convert malonyl-CoA and
p-coumaroyl-CoA molecules into naringenin chalcone (Figure 4) [18]. Although RdCHS1
performed typical CHS functioning, it did not seem to be a major functional CHS in petal
pigmentation, according to its highest expression in the leaves and lower catalytic efficiency
towards malonyl-CoA and p-coumaroyl-CoA. Recent studies have reported that the CHS
gene in Physcomitrella patens can accept dihydro-p-coumaroyl-CoA and cinnamoyl-CoA to
produce relevant chalcones [45]. Similarly, the CHS gene from Scutellaria baicalensis also has
the ability to convert isovaleryl-CoA, phenylacetyl-CoA, isobutyryl-CoA, and benzoyl-CoA
into a variety of products containing the aromatic polyketide, which is unnatural [46].
Therefore, CHS is generally a promiscuous enzyme in regard to substrate specificity, which
suggests its functional diversification during the process of evolution. In view of the above
discoveries, further research is needed to explore the catalytic properties of RdCHS1, so as
to determine its function in plants and also lay the foundation for functional divergence
studies of the CHS gene family in R. delavayi.

A few studies have observed the influence of reducing CHS activity in various plants,
such as in Arabidopsis, where tt4 was the CHS gene mutant and displayed a deficiency in the
synthesis of anthocyanin, as well as an absence in the pigment of the seed coating [47]. Thus,
the tt4 mutant is a suitable model for verifying whether RdCHS1 takes part in anthocyanin
and proanthocyanidin biosynthesis. As expected, RdCHS1 completely restored the purple
coloration of tt4 in hypocotyls and cotyledons and the pigment in the seed coats, which
confirmed the function of RdCHS1 as a CHS in vivo (Table S2, Figure 5). These results
are similar to the case of maize; its C2 gene encoding CHS was also overexpressed in tt4
mutants and exhibited a similar pigmentation phenotype and accumulation patterns of
flavonoids [48]. Meanwhile, the complementation of Arabidopsis flavonoid mutants was also
conducted by other enzymes involved in flavonoid biosynthesis, such as chalcone isomerase
from Ophiorrhiza japonica and dihydroflavonol 4-reductase from Dryopteris erythrosora; all
these findings demonstrate that the function of enzymes that participate in flavonoid
biosynthesis is exchangeable among different plant species [49,50].

When compared to wild-type tobacco, the overexpression of the RdCHS1 gene resulted
in dark pink flowers and increased cyanidin-type anthocyanins in transgenic lines (Table S4,
Figure 7), and a similar phenomenon has also been observed in Solanum lycopersicum [51].
Although enhancive expressions of endogenous structure genes (NtCHS, NtCHI, NtF3H,
NtF3′H, NtANS, and NtUFGT) and regulatory factors (NtAN1a, NtAN1b, and NtAN2)
(Figure 8) have been detected in RdCHS1 transgenic tobacco (Figure 8), it is not clear
whether the enhanced biosynthesis of anthocyanins is due to the induction of the en-
dogenous pathway or the catalytic function of RdCHS1. Because a massive expression of
RdCHS1 can increase the metabolic flux of the anthocyanin pathway, it can, thus, promote
anthocyanin accumulation. On the other hand, the up-regulation of these endogenous gene
expressions may be attributed to the positive feedback regulation of flavonoid pathway
intermediates such as naringenin chalcone (the product of RdCHS1), or that the RdCHS1
protein may directly interact with structural or transcriptional regulation proteins to in-
crease anthocyanin accumulation [52]. Unexpectedly, the transcript level of NtF3′5′H
remained constant, which may have been caused by the host tobacco being incapable of
producing delphinidin-type anthocyanins due to dihydromyricetin deficiency [53]. Overall,
the above results prove that RdCHS1 encodes a biochemically functional CHS protein and
takes part in flavonoid biosynthesis.
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4. Materials and Methods
4.1. Plant Materials

R. delavayi was grown in the experimental field of Gui Zhou Normal University. The
anthesis, scapes, petals, pistils, toruses, roots, stamens, leaves, and flowers at different
stages (stages 1–5) were sampled. Arabidopsis T-DNA insertion mutant (tt4, SALK020583)
and wild-type in Columbia ecotype background were obtained from NASC ( ) and cul-
tivated in the glasshouse. T2 transgenic Arabidopsis seedlings cultured for 7 days were
harvested from anthocyanin inductive medium (1/2 MS adding 3% sucrose) and used for
RT-PCR and anthocyanin analysis. The tobacco (K326) plants used in the transformation
were kept in 12 h of light at 22 ◦C. The blooming flowers of the T1 transgenic tobacco
were collected. All the above plant samples were quick-frozen immediately and stored at
−80 ◦C for later analysis.

4.2. Chemicals

Malonyl-CoA, p-Coumaroyl-CoA, and Naringin chalcone used in the enzyme activity
analysis were obtained from Sigma-Aldrich (Saint Louis, MI, USA). Cyanidin 3-O-glucoside
was purchased from Phytolab (Bayern, Germany).

4.3. Full-Length cDNA Cloning of RdCHS1

Extracted RNA from the flowers of R. delavayi was used for the synthesis of cDNA
using Takara M-MLV reverse transcriptase. Based on the assembled transcriptomic infor-
mation (SRR26283938), specific primers for RdCHS CDS (coding sequence) cloning were
designed (Table S1). After amplification, the products of the PCR were inserted into pMD18-
T vectors (Takara, Japan) and transformed into the competent cells of JM109. After enzyme
digestion verification, multiple positive clones were selected and subjected to sequencing
to verify the accurate nucleic acid order of RdCHSs.

4.4. Sequence Alignment and Phylogenetic Analysis

The multi-alignment of different CHS sequences was performed with DNAMAN 5.0.
The phylogenetic tree was built using CHS proteins from diverse plants in MEGA 6.0 with
2000 bootstrap replicates for estimating the confidence of the tree clade.

4.5. Gene Expression Analysis

The total RNAs were extracted from R. delavayi and tobacco samples. The BioRad
CFX96 real-time PCR system was selected for the gene expression analysis with gene-
specific primers (Table S1). RdActin and NtTublin were selected as internal controls for
the R. delavayi and tobacco samples, respectively. The PCR conditions were the same as
those reported in a previous paper [31]. Each sample was run in triplicate, and the 2−∆∆CT

method was used to calculate the expression values. To confirm the specific amplification,
agarose gel electrophoresis and a melting curve analysis were carried out.

4.6. Soluble Protein Extraction and CHS Enzyme Assay

The complete ORF of RdCHS1 was amplified using the PCR method. The resulting
fragments were introduced into the BamH I and Hind III sites of the pET-32a vector and
transformed into Escherichia. coli strain BL-21 to express the protein with an N-terminal
His6 tag. Protein expression and purification were conducted, as reported previously [54].
Briefly, bacterial fluid containing the corresponding plasmid was induced for 48 h at
15 ◦C after adding IPTG. The recombinant RdCHS1 protein with the His tag was purified
using the TransGen purification kit following the instructions. The protein purity was then
analyzed through SDS-PAGE.

The chalcone synthase activity for generating naringenin chalcone was checked in the
reaction mixtures, consisting of 160 µM malonyl-CoA, 80 µM p-coumaroyl-CoA, 100 mM
potassium phosphate (pH 7.2), and 30 µg purified recombinant protein. After incubation at
30 ◦C for 60 min, the assay mixtures were terminated via extracting twice with 100 µL ethyl



Molecules 2024, 29, 1822 11 of 14

acetate followed by centrifugation for 20 min. The formed products were detected through
high-performance liquid chromatography (HPLC) using a C18 column by monitoring the
absorbance at 304 nm. The mobile phase was the miscible liquids of 3% acetic acid, 47%
water, and 50% methanol.

4.7. Expression Vector Construction and Transformation of Arabidopsis and Tobacco

The pBI121 that contained the CaMV35S promoter and NPTII was used to construct a
binary vector for Arabidopsis and tobacco transformation. The full-length CDS of RdCHS1
was amplified from the pMD18-T vector and cloned into the pBI121 vector digested with
Xba I and BamH I. After construction, the over-expression cassette was sequenced to confirm
the correct insertions of RdCHS1, and then this was immobilized into the Agrobacterium
tumefaciens strain GV3101 via the freeze–thaw method. Arabidopsis transformation was
conducted according to the method employed in previous reports [55]. After sterilization,
transgenic Arabidopsis seed selection was carried out on 1/2 MS medium supplemented
with kanamycin (50 mg L−1). Following 1 week of growth, T2 Arabidopsis transgenic
seedlings with purple cotyledons were sampled and used for later analysis. Meanwhile,
tobacco transformation was also carried out following a previously reported protocol [56].
The transgenic tobacco seedlings were selected and grown in a greenhouse. Only the fully
expanded flowers were harvested, they were used for further analysis. In order to confirm
the over-expression of RdCHS1, RT-PCR analysis was performed in Arabidopsis and tobacco
using β-actin and NtTublin as controls.

4.8. Anthocyanin Analysis of Transgenic Arabidopsis Seedlings and Tobacco Flowers

For the anthocyanin analysis, 0.2 g of freeze-dried samples from the transgenic Ara-
bidopsis seedlings and tobacco flowers was powdered and extracted using 1 mL extracting
solutions (H2O:MeOH:HCl = 75/24/1) for 14 h at 4 ◦C. The extract solution was centrifuged
and filtered through 0.22 µm microporous filters. Then, the extracted compounds were de-
tected with HPLC using a C18 column. Two eluents, 5% formic acid (A) and 1.5% methanol
(B), were used for elution. Gradient elution was conducted at a 1.0 mL min−1 flow rate:
0–10 min, 86–83% A; 10–35 min, 83–77% A; 35–60 min, 77–53% A; 60–67 min, 53–86% A;
67–70 min, 86% A. The flow rate was 1 mL min−1, the monitored wavelength was 520 nm,
and the column temperature was 35 ◦C. The anthocyanin concentrations were estimated
according to 3-O-glucoside standards based on the method described by Fanali [57].

5. Conclusions

We cloned and characterized the RdCHS1 gene from R. delavayi and demonstrated its
role through in vitro and in vivo testing. We found that RdCHS1 was expressed globally in
all tissues and was not associated with anthocyanin synthesis during flower development,
which revealed that RdCHS1 may participate in the biosynthesis of not only anthocyanin,
but also other flavonoids in R. delavayi. Meanwhile, an enzyme activity assay was con-
ducted, which indicated that RdCHS1 possesses CHS activity, converting malonyl-CoA
and p-coumaroyl-CoA substrates into naringenin chalcone. Furthermore, the physiological
role of RdCHS1 was studied in Arabidopsis tt4 mutants and tobacco; the results showed
that RdCHS1 recovered the tt4 mutant phenotypes and led to dark pink tobacco flowers,
suggesting that the manipulation of RdCHS1 may contribute to modifying the color of other
ornamental plants.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29081822/s1, Table S1. List of primers used
in this study; Table S2. The anthocyanin profiles in acidic MeOH-H2O extracts of the RdCHS1
transgenic Arabidopsis; Table S3. HPLC-DAD and HPLC-ESI-MS analysis of anthocyanin in acidic
MeOH-H2O extracts of the wild-type Arabidopsis and RdCHS1 over-expressing lines; Table S4.
HPLC-ESI-MS analysis of anthocyanin extracts of RdCHS1 over-expressing transgenic tobacco
flowers. Figure S1. Expression analysis of RdCHS2 and RdCHS3. References [58,59] are cited in
Supplementary Materials.

https://www.mdpi.com/article/10.3390/molecules29081822/s1
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