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Abstract: In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via
a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione
detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions.
The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g),
and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like
activity and could catalyze oxidation of the colorless substrate 3,3′,5,5′-tetramethylbenzidine to a blue
product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe
proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for
TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could
be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric
detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear
range was 1–20 µM and 20–300 µM with a detection limit of 0.1 µM. The m-CuS showing good
stability and robust peroxidase catalytic activity was applied for the detection of glutathione in
human urine samples.

Keywords: nanozyme; mesoporous CuS nanomaterial; Cu-BTC; glutathione; colorimetric detection

1. Introduction

Glutathione (GSH) represents an essential antioxidant present widely in organisms,
and plays an important role in a variety of metabolic processes. The abnormal change in its
physiological level can directly contribute to cellular damage and many diseases, including
liver disease, Alzheimer’s disease, HIV, and even cancer [1,2]. Thus, exploiting detection
methods to trace GSH effectively and accurately is of great importance. Up to now, various
analytical tools for the detection of GSH have been developed, such as chromatography [3],
chemiluminescence [4], electrochemistry [5], molecular imprinting [6], fluorescent tech-
niques [7], and colorimetric methods [8]. Among these methods, colorimetric assay is
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favored because of its advantages such as visual observation, simple operation, low cost,
high efficiency, and fast response [9].

As a biocatalyst, natural enzymes, especially peroxidases have been widely used in
colorimetric analysis. Natural peroxidases have the advantages of good substrate specificity
and high catalytic efficiency, but they are also limited by the ease of denaturation, high
sensitivity to environmental factors, time consuming in preparation, difficulty in purifica-
tion, and special requirements for storage [10]. To overcome these shortcomings, there has
been much work performed for the fabrication of enzyme mimics that can replace natural
peroxidases. Since Fe3O4 nanoparticles were first reported to have intrinsic peroxidase
activity [11], many different nanomaterials have been reported with such enzyme-like
activity (known as nanozymes), including noble metal nanomaterials [12], carbon nano-
materials [13], transition metal oxides [14], transitional metal chalcogenides [15], and
metal organic framework (MOF) [16]. Recently, nanozyme-based colorimetric systems
have been also further developed for sensing in the fields of food detection [17], disease
treatment [18], biomedical analysis [19] and environmental analysis [20], mainly because
of their superiorities such as good stability, multifunctionalities, as well as low cost and
efficient preparation.

Among the developed nanozymes, transitional metal dichalcogenides (TMDs) have
attracted particular interest. For instance, Vipul et al. developed a Co3S4 nanosheet and
successfully introduced it as a peroxidase mimic in a colorimetric sensor for the detection
of L-cysteine [21]; Absalan et al. synthesized hierarchical hollow MoS2 nanotubes which
also possessed peroxidase-like activity and could be used for colorimetric detection of
D-penicillamine [22]. Especially among these TMDs, Cu-based TMDs have attracted a
remarkable interest in nanozymes. Cu in its divalent form (Cu2+) could exhibit a similar
effect to Fenton’s reagent and catalyze the conversion of hydrogen peroxide (H2O2) to
hydroxyl (•OH) radicals, in which S could accelerate the charge transfer between H2O2
and Cu2+ [23].

Compared with solid counterparts, mesoporous nanostructures have attracted high
interest because they greatly enlarge the specific surface area, exhibit excellent accessibility
for internal space, enable sufficient mass and charge transport, as well as provide abundant
active sites for catalytic reaction [24]. To date, some mesoporous nanomaterials—such
as mesoporous MnFe2O4 magnetic nanoparticles [25] and iron-doped mesoporous silica
nanoparticle [26]—have been reported with excellent nanozyme activity. Thus, there
would be a great improvement in the enzyme-like activity of the CuS nanomaterials if they
were designed with a mesoporous nanostructure. In recent years, nanomaterials derived
from an organometallic framework offer an avenue and focus for the synthesis of porous
nanomaterials. In this way, the inherent mesoporous properties of organometrics can be
retained, while the stability and activity of the resulting nanomaterials can be also greatly
improved [27].

In this study, an MOF-based synthetic strategy was utilized to prepare in situ m-
CuS through successive carbonization and sulfidation. The synthesized m-CuS exhib-
ited peroxidase-mimicking activity that enabled it to catalyze the oxidation of 3,3′,5,5′-
tetramethylbenzidine (TMB) by H2O2. Furthermore, this property of the m-CuS nanozyme
was introduced for the fabrication of a colorimetric sensor with the ability of selective
detection of GSH, which showed a strong inhibitory effect on m-CuS nanozyme catalyzing
TMB discoloration. Therefore, a sensitive colorimetric assay was exploited for the detection
of GSH with fine linear ranges of 1–20 µM and 20–300 µM, as well as a detection limit as
low as 0.1 µM. The m-CuS nanozymes with high catalytic activity explored in this work are
expected to be applied for biosensing of other substances of interest.

2. Result and Discussion
2.1. Characterization of m-CuS Nanozyme

Figure 1 shows the morphology and microstructure of Cu-BTC and m-CuS obtained
by SEM and HR-TEM. Before carbonization, the Cu-BTC precursor exhibited a typical
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octahedral morphology revealing a rough surface, a porous structure, and a size of about
200–500 nm, as shown in Figure 1a,b. After carbonization and sulfurization, this octahe-
dron shape did not change much as shown in Figure 1c,d, although the surface turned
rougher and the particle size increased marginally, which indicated that the in situ formed
carbon originating from the Cu-BET could provide a rigid protection effect. The internal
microstructure of the m-CuS was further characterized by HR-TEM, and the results are dis-
played in Figure 1e,f. From Figure 1e, it was obvious that m-CuS was totally incorporated
in the octahedral carbon skeleton, which could be further elucidated by the larger version
of the HR-TEM image in Figure 1f. The lattice fringes with the interspacing of 0.304 nm
observed here could be attributed to the (102) crystal plane of CuS (Joint Committee on
Powder Diffraction Standards (JCPDS) no. 79-2321) [28]. Moreover, local graphitization
occurring at the edge carbon was also observed, which would be beneficial for fast electron
transport due to the improvement of the electronic conductivity [29].
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Figure 1. SEM images (a,b) of the Cu-BTC precursor; SEM (c,d), HRTEM (e,f) images of the m-CuS.

The XRD of Cu-BTC is shown in Figure 2a. The diffraction peaks at 6.83, 9.51, 11.70,
13.41, 15.11, 17.47, 19.13, 20.34, 24.11, 25.95, 29.33, 35.32 and 39.24◦ confirmed the cu-
bic phase of the Cu-BTC, which was very consistent with that previously reported [30].
Figure 2b displays the XRD pattern of the synthesized m-CuS. The main diffraction peaks
of m-CuS correspond to the standard CuS card (JCPDS no. 79-2321). The diffraction peaks
at 2θ = 27.7, 29.3, 31.8, 39.9, 32.9, 47.9, 52.7, and 59.4◦, are ascribed to (101), (102), (103),
(006), (110), (108), and (116) planes of the m-CuS, respectively.
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The EDX mapping of Cu-BTC is displayed in Figure S1a–e (Supporting Information).
C, Cu, N, and O elements were observed, and they were of uniform distribution in the
Cu-BTC sample. By contrast, the C, Cu, S, N and O elements (Figure S2a–e, Supporting
Information) could be observed in m-CuS, which indicated the successful generation of
CuS incorporated in the octahedral carbon framework. The elemental composition of
m-CuS was further explained by XPS, as shown in Figure 3a–e. The chemical elements
including Cu, S, C, and N, O could all be detected in the m-CuS, in which the O signal
could have been caused by the exposure of the sample to oxygen in the air [28]. As shown
in Figure 3b–e, the high-resolution Cu 2p, S 2p, C 1s, and N 1s XPS spectra were obtained.
The two main peaks observed at 932.0 eV and 951.9 eV, respectively, in Figure 3b were
identified as Cu 2p3/2 and Cu 2p1/2, while a weaker satellite peak observed at 945.6 eV
could be caused by paramagnetic Cu2+ since it should be not observed for Cu (I) and Cu
(0) [31]. According to Figure 3c, the peaks at 162.06, 163.2, and 163.9 eV could be ascribed
to metal–sulfur bonding [32], and the peak at 168.8 eV might be attributed to some SOx
species, which was probably caused by the adsorbed oxygen on the surface of m-CuS [33].
In addition, a side peak detected at 161.2 eV for m-CuS was in accordance with that found
in a previous study [34]. In Figure 3d, the two peaks located at 284.6 eV and 286.9 eV,
respectively, were ascribed to the sp2-hybridized graphitic C atoms (C-C/C=C) and the
epoxy/alkoxyl groups (C-O). Moreover, the peak at 285.3 eV could be caused by the C-N
bonds, demonstrating nitrogen doping in m-CuS [35]. In Figure 3e, the two peaks seen at
398.5 eV and 400.6 eV belonged to the pyridinic-N and the pyrrolic-N [36,37], respectively,
further proving the evidence of N element in m-CuS.

Molecules 2024, 29, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. XRD pattern of Cu-BTC (a) and m-CuS (b). 

The EDX mapping of Cu-BTC is displayed in Figure S1a–e (Supporting Information). 
C, Cu, N, and O elements were observed, and they were of uniform distribution in the 
Cu-BTC sample. By contrast, the C, Cu, S, N and O elements (Figure S2a–e, Supporting 
Information) could be observed in m-CuS, which indicated the successful generation of 
CuS incorporated in the octahedral carbon framework. The elemental composition of 
m-CuS was further explained by XPS, as shown in Figure 3a–e. The chemical elements 
including Cu, S, C, and N, O could all be detected in the m-CuS, in which the O signal 
could have been caused by the exposure of the sample to oxygen in the air [28]. As shown 
in Figure 3b–e, the high-resolution Cu 2p, S 2p, C 1s, and N 1s XPS spectra were obtained. 
The two main peaks observed at 932.0 eV and 951.9 eV, respectively, in Figure 3b were 
identified as Cu 2p3/2 and Cu 2p1/2, while a weaker satellite peak observed at 945.6 eV 
could be caused by paramagnetic Cu2+ since it should be not observed for Cu (I) and Cu 
(0) [31]. According to Figure 3c, the peaks at 162.06, 163.2, and 163.9 eV could be ascribed 
to metal–sulfur bonding [32], and the peak at 168.8 eV might be attributed to some SOx 
species, which was probably caused by the adsorbed oxygen on the surface of m-CuS 
[33]. In addition, a side peak detected at 161.2 eV for m-CuS was in accordance with that 
found in a previous study [34]. In Figure 3d, the two peaks located at 284.6 eV and 286.9 
eV, respectively, were ascribed to the sp2-hybridized graphitic C atoms (C-C/C=C) and 
the epoxy/alkoxyl groups (C-O). Moreover, the peak at 285.3 eV could be caused by the 
C-N bonds, demonstrating nitrogen doping in m-CuS [35]. In Figure 3e, the two peaks 
seen at 398.5 eV and 400.6 eV belonged to the pyridinic-N and the pyrrolic-N [36,37], 
respectively, further proving the evidence of N element in m-CuS. 

 
Figure 3. (a) Survey scan XPS survey spectrum of m-CuS; and (b–e) high resolution XPS spectra of 
the Cu 2p, S 2p, C 1s, and N 1s levels in m-CuS. 

The specific surface area and pore size distribution of Cu-BTC and m-CuS were 
detected by nitrogen adsorption/desorption analyses at 77.35 K. As shown in Figure S3a 
(Supporting Information), the Cu-BTC had a specific surface area of 210.857 m2/g, which 

Figure 3. (a) Survey scan XPS survey spectrum of m-CuS; and (b–e) high resolution XPS spectra of
the Cu 2p, S 2p, C 1s, and N 1s levels in m-CuS.

The specific surface area and pore size distribution of Cu-BTC and m-CuS were
detected by nitrogen adsorption/desorption analyses at 77.35 K. As shown in Figure S3a
(Supporting Information), the Cu-BTC had a specific surface area of 210.857 m2/g, which
was obtained based on the Brunauer–Emmett–Teller (BET) method. By virtue of the Barrett–
Joyner–Halenda (BJH) method, the detailed information about the pore size distribution of
Cu-BTC was obtained and is shown in Figure S3b. The pore size in Cu-BTC was largely
distributed at ~1.187 nm. After carbonization and sulfidation to m-CuS, the m-CuS had
a specific surface area of 55.751 m2/g (Figure 4a). Moreover, the m-CuS displayed a type
IV adsorption–desorption isotherm, in which a distinct hysteresis loop was found with
high pressures (0.6–1.0 P/P0), revealing that the mesoporous nanostructure was present
in the m-CuS [38]. The pore size in m-CuS largely distributed at ~15.38 nm (Figure 4b),



Molecules 2024, 29, 2117 5 of 14

which confirmed the mesoporous structure (<50 nm) of the m-CuS [38]. Such a structure
with high porosity and specific surface would facilitate electrolyte infiltration and provide
m-CuS with more abundant active sites [28].
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2.2. Peroxidase-like Activity of m-CuS Nanozymes

To evaluate the peroxidase-like catalytic activity, the m-CuS catalyzed reaction of the
peroxidase substrate TMB in the presence of H2O2 was investigated by comparison with
the m-CuS-TMB and H2O2-TMB system. As evidenced by the inset of Figure 5a, the m-CuS
was found to catalyze the TMB oxidation by H2O2 and produce a color change to the typical
blue, which revealed that m-CuS possessed peroxidase-like catalytic activity.
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under different temperature (b), pH (c) (the inset of (c) shows the photograph of oxidized TMB by
m-CuS in aqueous solutions with different pH values), and H2O2 concentration (d).
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Like HRP, the catalytic activity of m-CuS might be related to pH, temperature, and
H2O2 concentration. Therefore, the peroxidase-like activity of m-CuS was further inves-
tigated by varying the temperature from 25 ◦C to 50 ◦C, pH from 1 to 10, and the H2O2
concentration from 0 to 300.0 mM, by comparison with HRP under experimental condi-
tions with the parameters in the same range. The influence of these factors on the relative
catalytic activity is shown in Figure 5b–d. In Figure 5b, the influence of temperature on the
catalytic efficiency of m-CuS is displayed, where the optimal temperature was found to be
40 ◦C. A further increase in temperature would decrease the catalytic activity of m-CuS,
probably because of the decomposition of H2O2. By contrast, the optimal temperature for
the catalytic effect of HRP was 30 ◦C, which suggested that m-CuS was less sensitive to
the reaction temperature. The effect of pH is shown in Figure 5c, and the greatest catalytic
activities of m-CuS and HRP were both found at pH 4.0. The inset of Figure 5c indicates
that when the pH was higher than 5.0, the solution did not produce a color change, but it
produced an obvious blue color at pH 4.0. Additionally, it was observed that the obtained
blue products became unstable with the increase of acidity, because they are subjected to
further oxidization, which yielded yellow imide when the pH achieved 2.0 and 3.0. Based
on these observation, pH 4.0 was selected for the following experiments. The effect of
H2O2 concentration is shown in Figure 5d, which revealed that the maximal level of per-
oxidase activity of m-CuS was observed when the H2O2 concentration reached two times
higher than HRP. However, when the H2O2 concentration was further increased, it rather
decreased the peroxidase-like activity of the m-CuS. Therefore, the optimal concentration
of H2O2 for m-CuS was obtained with 100.0 mM.

The apparent steady-state kinetic parameters were measured for the peroxidase-
mimicking reaction, which were acquired by changing one substrate concentration while
keeping the concentration of the other substrate constant. The results are shown in
Figure 6a–d. Within a certain concentration range of the two substrates, the absorbance was
divided by the molar absorption coefficient (39,000 M−1cm−1) of TMB-derived oxidation
product to obtain a typical Michaelis–Menten curve for m-CuS. The related data were
found to fit the Michaelis–Menten model. The Michealis–Menten constant (Km) was also
calculated as an indicator of substrate affinity based on the Lineweaver–Burk plot:

1
v
=

(
Km

Vmax

)(
1
[S]

)
+

(
1

Vmax

)
where v represented the initial velocity, [S] represented the substrate concentration, Vmax
represented the maximal reaction velocity, and Km represented the Michaelis constant. Ac-
cording to this calculation, the Km and Vmax of TMB were 0.827 mM and 5.075 × 10−8 Ms−1,
and the Km and Vmax of H2O2 were 1.904 mM and 5.935 × 10−8 Ms−1. Furthermore,
we compared the steady-state Michaelis–Menten kinetic constants obtained from m-CuS
nanozymes with those from previously reported nanozymes. The result is shown in
Table 1, which indicated that the Km value of m-CuS when using H2O2 as the substrate
was much lower than HRP [39], p-Co3O4 [40], MgFe2O4MNPs [41], Fe3O4/LNPs [42], and
Zn-CuO [43], which suggested the superior affinity of m-CuS to H2O2. Simultaneously,
the Km value of m-CuS using TMB as the substrate was also lower than CuFe2O4 [44] and
Zn-CuO [43], which was similar to that of HRP [39]. The greater TMB affinity of m-CuS
might be due to the strong electrostatic attraction formed between the negatively-charged
m-CuS and the positively-charged TMB substrate [2], which was further verified by the
determined zeta potential values as shown in Figure S4 (Supporting Information). In addi-
tion, the Vmax of m-CuS for TMB and H2O2 were greater than p-Co3O4 [40], CuFe2O4 [44],
Fe3O4/LNPs [42], and Zn-CuO [43]. These results demonstrated that the as-prepared
m-CuS could be employed as a potential alternative to natural HRP for detecting GSH.
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Table 1. Comparison of Michaelis–Menten constants of m-CuS with the other previously reported
nanozymes.

Km (mM) Vm (10−8 M s−1)

Catalyst H2O2 TMB H2O2 TMB Ref.

HRP 3.70 0.43 8.71 10.00 [39]
p-Co3O4 3.43 0.12 1.03 1.14 [40]
CuFe2O4 0.50 2.26 2.61 2.07 [44]

MgFe2O4MNPs 4.61 0.67 13.46 2.09 [41]
Fe3O4/LNPs 5.30 0.51 0.96 1.03 [42]

Zn-CuO 7.10 10.00 0.30 2.88 [43]
m-CuS 1.90 0.83 5.94 5.08 This work

2.3. The Catalytic Mechanism of m-CuS Nanozyme

For probing the possible mechanism for the peroxidase-like catalysis of m-CuS
nanozymes, a fluorescence method was used in the following study. In brief, PTA was used
to capture hydroxyl radicals generated by the m-CuS catalyzed H2O2 system. PTA itself
has no fluorescence property, but it can easily combine with hydroxyl radicals and form
2-p-hydroxybenzoic acid, which has fluorescence property and can emit blue fluorescence
at 430 nm. The result is shown in Figure 7a. When PTA was introduced to the m-CuS-
H2O2 system, it was observed that the fluorescence intensity increased with time, which
confirmed that m-CuS nanozyme could catalyze the decomposition of H2O2 to produce
•OH radical and form 2-p-hydroxybenzoic acid with fluorescent properties with PTA. This
experimental result confirmed that m-CuS nanozyme had similar peroxidase activity to
other nanozymes [23].
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2.4. Analytical Application for Determination of GSH

Figure 7b displays the UV-Vis absorption spectra of m-CuS-TMB-H2O2 detection
system at varying concentrations of GSH. As shown in Figure 7b, when there was no GSH
in the system, the absorbance value of m-CuS-TMB-H2O2 mixture was very high. When
GSH was introduced to the above mixture, the absorbance value at 652 nm began to decline.
For optimizing the experimental conditions for GSH sensing, the m-CuS-TMB-H2O2 system
reaction time and GSH response time were explored. The result is shown in Figure 8a,b.
A time-dependent absorbance of m-CuS-TMB-H2O2 system reaction was detected, which
was first increased with the time from 5 min to 25 min, but then remained unchanged in the
range 25 to 35 min with the greatest absorbance observed at 25 min as shown in Figure 8a.
Furthermore, the effect of GSH response was explored, and the result is shown in Figure 8b.
With the prolongation of the reaction time, the absorbance gradually decreased, and then
achieved a platform at 5 min. Thus, the optimal reaction time and response time were
determined to be 25 min and 5 min, respectively. Figure 7c shows the absorbance curves
against the GSH concentration. As seen from Figure 7d–e, the absorbance value and GSH
concentration present two linear relationships in the ranges of 1–20 µM and 20–300 µM,
offering a detection limit of 0.1 µM. In Table 2, we compare different types of nanozymes
for their analytical performance on the detection of GSH. The m-CuS exhibited improved
performance, including a wider linear and the lowest detection limit, which were superior
or at least comparable to most reported nanozyme sensors shown in Table 2.

Table 2. Performances comparison of m-CuS with the other previously reported nanozymes in
determination of GSH.

Sensing Probe Linear Range
(µM)

LOD
(µM) Reference

MnO2 CD 1–10 0.3 [45]
BSA-Au NCs 10–400 0.12 [46]

MnO2 NS-TMB 1–25 0.3 [47]
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Table 2. Cont.

Sensing Probe Linear Range
(µM)

LOD
(µM) Reference

MnO2-GQD 0.5–10 0.15 [48]
PEI-Ag NPs 0.5–6 0.38 [49]
Cu-CuFe2O4 2.5–10 0.31 [44]

Au nanoclusters 2–25 0.42 [50]
D-ZIF-67 0.5–10 0.2292 [51]
Sb-FeOCl 1–36 0.495 [52]

AuNPs-MIP 5–40 1.16 [53]
Hemin/GQD 1–50 0.2 [54]

m-CuS 1–20; 20–300 0.1 This work
CD: carbon dots; NC: nanocrystal; NP: nanoparticle; PEI: polyethyleneimine; MIP: molecularly imprinted
polymer.
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2.5. Selectivity, Stability and Reusability

For testing the stability of the colorimetric detection platform for GSH determination,
we conducted eight repeated measurements of GSH with the same concentration (50 µM)
on one day, and the result is shown in Figure 9a. The experimental result showed that the
catalytic system of m-CuS-TMB-H2O2 had good stability for GSH detection.
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Figure 9. (a) Repeatability of m-CuS-TMB-H2O2 for 8 runs determination of GSH (50 µM).
(b) The selectivity of m-CuS-TMB-H2O2 for GSH (100 µM) detection; interference substances were
glucose (1000 µM), K+ (1000 µM), Mg2+ (1000 µM), glycine (1000 µM), lactose (1000 µM), and
glutamate (1000 µM).

It was a challenge to determine GSH within complex human serum. To assess the anti-
interference ability of the developed m-CuS based sensor, major coexistence of components,
such as K+, Zn2+, glucose, glycine, lactose, and glutamate were taken into account. As
shown in Figure 9b, there is no obvious effect on the determination of GSH for the above
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interferents. Hence, the designed m-CuS nanozymes based sensor was suitable for the
detection of GSH.

2.6. Detection of GSH in Human Serum Samples

In order to confirm the practicability and feasibility of this proposed sensor for real
samples, we detected the GHS in human serum. Recovery experiments were performed
by addition of GHS in diluted human serum with final concentrations of 10, 30, 100, and
200 µM, respectively. The results are shown in Table 3, which indicates that the average
recovery was in the range from 97.3% to 101.25% for all the samples, and the RSD was
below 4.0%, verifying that this sensor could be reliable and applicable for the detection of
GHS in real samples.

Table 3. Determination of GSH in human serum samples using m-CuS nanozymes.

Sample GSH Added
(µM)

GSH Found
(µM)

Recovery
(%)

RSD
(%, n = 3)

1 10 9.8 98.0 2.4
2 30 29.2 97.3 3.5
3 100 99.6 99.6 3.4
4 200 202.5 101.25 2.6

3. Materials and Methods
3.1. Reagents and Apparatus

Glutathione, 3,3′,5,5′-tetramethylbenzidine (TMB), and horseradish peroxidase (HRP)
were obtained from Sigma (St. Louis, MO, USA). Poly-vinylpyrrolidone (PVP, K-30), 1,3,5-
benzenetri-carboxylic acid (H3BTC), copper nitrate trihydrate (Cu(NO3)2·3H2O), tereph-
thalic acid (PTA), sulfur, methanol, ethyl alcohol, hydrogen peroxide (H2O2, 30%), glucose,
fructose, lactose, maltose, sodium monohydrogen phosphate (Na2HPO4), disodium hy-
drogen phosphate (Na2HPO4), sodium hydroxide (NaOH), and hydrochloric acid (HCl)
were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) All the
chemicals were of analytical grade, and ultra-pure water was used in the study. Phosphate
buffer solution (0.1 M) of different pHs was obtained by mixing the 0.1 M Na2HPO4 and
0.1 M NaH2PO4 in the water, after which the pH of the solution was adjusted either by HCl
or NaOH. All the solutions were freshly prepared prior to each experiment.

UV-Vis absorption spectra were recorded on a UV-5200 UV-Vis spectrophotometer
(Shanghai Xiwen Biotech. Co., Ltd., Shanghai, China). Fluorescence spectra were deter-
mined on an F-380 fluorescence spectrometer. Scanning electron microscopy (SEM) images
were observed on a JSM-7800F scanning electron microscope (JEOL, Tokyo, Japan). Trans-
mission electron microscope (TEM) images were recorded on a JEM-2100F transmission
electron microscopy (JEOL, Japan). X-ray diffraction spectrometry (XRD) was measured on
a smartlab 9 X-ray diffractometer (Rigaku, Tokyo, Japan) with a Cu-Kα radiation source
(λ = 1.54056 Å). X-ray photoelectron spectroscopy (XPS) analysis was performed on an
ESCALAB 250Xi X-ray photoelectron spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) with an Al K alph source at a test energy of 1486.8 eV. The zeta-potential was
measured using a NICOMP 380ZLS ζ Potential/Particle Sizer (PSS NICOMP, Santa Barbara,
CA, USA). The specific surface area and pore size distribution of the samples were tested
by ASAP-2020 Brunauer–Emmett–Teller (BET, Micromeritics, Norcross, GA, USA) based
on the nitrogen adsorption–desorption isotherms.

3.2. Preparation of Cu-BTC

First, 3.6 g Cu(NO3)2·3H2O and 1.6 g PVP were fully dissolved in 200 mL methanol so-
lution. BTC methanol solution was prepared by dissolving 1.72 g BTC in 200 mL methanol
solution. Under the condition of constant stirring, the BTC methanol solution was then
added to the mixture of Cu(NO3)2·3H2O and PVP, and the stirring was stopped immedi-
ately after the solution had been placed aside at room temperature for 24 h. The product
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was subsequently transferred to a centrifuge tube, centrifuged and triple-washed with
methanol, and finally dried in vacuum at 60 ◦C to obtain blue Cu-BTC product for later use.

3.3. Synthesis of m-CuS

The m-CuS was synthesized according to a previously reported method [28]. Briefly,
the Cu-BTC (0.4 g) was first carbonized under N2 for 2 h at 600 ◦C, with the heating rate of
2 ◦C min−1. The resulting black powder and sulfur powder were placed, respectively, on
each end of the porcelain boat at a mass ratio of 1:2, where the sulfur powder was kept on
the top and the black powder on the bottom. After that, the porcelain boat was transferred
to a tube furnace, heated to 350 ◦C with a heating ramp of 2 ◦C min−1, and kept for 3 h under
N2. m-CuS black powders were finally obtained after cooling to ambient temperature.

3.4. Enzyme Mimicking Properties of m-CuS Nanozyme

m-CuS could catalyze the conversion of TMB, a chromogenic substrate, into a colored
product in the presence of H2O2. In the experiment, 20 µL TMB (10 mM), 20 µL m-CuS
(1 mg/mL), 2.0 mL phosphate buffer solution (0.1 M, pH 4.0), and different amounts of
H2O2 were mixed together in a 4.0 mL centrifuge tube. The sample was subsequently
heated at 40 ◦C for 20 min in a water bath, and then measured by UV-Vis spectrophotometry.

Under the above experimental conditions, the catalytic reaction was carried out at
different pH conditions (1.0–10.0) to test the influence of pH on the reaction. In a sim-
ilar manner, the catalytic reaction was carried out at different temperatures (30–55 ◦C)
to test the influence of temperature on the catalytic reaction. As a comparative experi-
ment, the catalytic reaction of HPR was also carried out in accordance with the above
experimental methods.

3.5. Kinetic Analysis

Based on the optimal experimental conditions, the steady-state kinetic investigations
of m-CuS nanozymes were carried out using H2O2 and TMB as substrates. The m-CuS or
HRP was mixed in 2.0 mL phosphate buffer solution with pH of 4.0 in the presence of H2O2
and TMB in a water bath at 40 ◦C. During the test, the concentration of TMB was changed
without altering the concentration of H2O2, or the concentration of H2O2 was changed by
keeping the concentration of TMB unchanged. The kinetic performance was obtained by
recording the absorbance at 652 nm wavelength every 1 min for 5 min continuously under
the kinetic test mode of the UV-Vis spectrophotometer.

3.6. The Investigation of m-CuS Nanozymes’ Peroxidase-like Catalytic Reaction Mechanism

For studying the catalytic mechanism of m-CuS nanozyme, the hydroxyl radical
generated in the m-CuS-H2O2 system was detected by using PTA as a fluorescent probe.
For specific experiments, 20 µL m-CuS (1 mg/mL), 20 µL H2O2 (30%), 1 mL PTA (20 mM),
and 1960 µL phosphate buffer solution (pH 4.0) kept at a total volume of 3.0 mL were
mixed together at room temperature. The fluorescence intensity at different reaction times
was then determined by a fluorescence spectrophotometer.

3.7. Detection of Glutathione

The detection of GSH was achieved through the following experimental methods.
First, 1850 µL phosphate buffer solution (0.1 M, pH 4.0), 20 µL TMB (10 mM), 10 µL H2O2
(1.0 M), and 20 µL m-CuS (1.0 mg/mL) were mixed. After that, the solution was heated at
40 ◦C for 20 min, and then 100 µL GSH solution with different concentrations was added.
The solution was kept at 40 ◦C for an additional 5 min. The absorbance value was recorded
at 652 nm by a UV-Vis spectrophotometer.

4. Conclusions

A novel colorimetric sensor based on m-CuS nanozymes was developed for the
quantitative detection of GSH, and was prepared via carbonization and sulfidation of
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Cu-BTC. It was found that the m-CuS had excellent peroxidase-like activity, which could
efficiently catalyze the oxidation of the substrate TMB in the presence of H2O2. Benefiting
from this activity of m-CuS nanozymes, the quantitative analysis of GSH could be realized
via the competing reactions of GSH with the chromogenic substrates led by the •OH radical,
which demonstrated a wide linear range form 1–20 µM and 20–300 µM, a low detection
limit of 0.1 µM, and good recoveries. At the same time, some limitations of this work
also exist, such as the catalytic activity and selectivity of m-CuS which should be further
improved. In summary, this work provided a new method for the synthesis of mesoporous
CuS nanozymes, and more significantly, the developed m-CuS nanozymes showed a great
potential for use in other biosensors and in biocatalysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29092117/s1, Figure S1: EDX mapping of Cu-BTC.
(a) TEM of Cu-BTC, (b) C element, (c) Cu element, (d) N element, (e) O element. Figure S2: EDX
mapping of m-CuS. (a) TEM of m-CuS, (b) C element, (c) Cu element, (d) S element (e) N element,
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