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Abstract: Coordination polymers (CPs) or metal-organic frameworks (MOFs) have 

attracted considerable attention because of the tunable diversity of structures and functions. 

A 4,4'-bipyridine molecule, which is a simple, linear, exobidentate, and rigid ligand 

molecule, can construct two-dimensional (2D) square grid type CPs. Only the 2D-CPs with 

appropriate metal cations and counter anions exhibit flexibility and adsorb gas with a gate 

mechanism and these 2D-CPs are called elastic layer-structured metal-organic frameworks 

(ELMs). Such a unique property can make it possible to overcome the dilemma of strong 

adsorption and easy desorption, which is one of the ideal properties for practical 

adsorbents. 

Keywords: porous coordination polymer (PCP); metal-organic framework (MOF); gas 

adsorption; gas separation; structural transformation; gate phenomena; elastic 

layer-structure; clathrate formation 
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1. Introduction  

Organic synthetic chemistry has enabled us to develop various kinds of elegant synthetic methods 

such as C-C bond formations, condensation reactions, and functional group transformations, and has 

realized the synthesis of extremely complicated organic functional molecules [1–3]. On the other hand, 

supramolecule chemistry shows us that the creation of complicated structures and functions may be 

possible even by mere mixing of components (self-organization) when we utilize weak interactions 

such as coordination bond, hydrogen bonding, and π-π interaction [4–8].  

Coordination polymers (CPs) or metal-organic frameworks (MOFs) which are synthesized from 

exo-multidentate ligands and metal cations through the self-organization process have attracted 

considerable attention because of their diversity of structures and functions with the appropriate 

tunability [9–23]. In particular, porous coordination polymers (PCPs) or porous MOFs are considered 

as a promising candidate for a new class of adsorbent [24–26], separation material [27–30], 

catalyst [31–41], and sensors [42], because of their high sorption capacities and molecular recognition 

abilities by excellent tunability of the pore structure [11,43,44]. 

One of the characteristics of PCPs/MOFs is a softness derived from the weak interactions between 

counter ions and ligands, or ligands and ligands. Since traditional porous materials such as zeolite or 

activated carbon are ordinarily robust, adsorbed guest molecules are accommodated into the steadily 

constructed pores. On the other hand, some kinds of PCPs/MOFs show structural flexibility [45–62]. 

The flexible PCPs/MOFs interact with guest molecules, showing nonporous/porous structural 

transformations [63–66] or change the pore structures in response to external stimuli [67–70]. In the 

case of gas adsorption phenomena on robust traditional porous materials, the adsorbed amount tends to 

increase gradually with the increment of gas pressure. However, flexible PCPs/MOFs, in some cases, 

show non-linear responses between the adsorbed amount and the gas pressure. Although such an 

interesting phenomenon has been extensively studied in the case of crystals of small organic molecules 

or a discrete complex [71–78], the detailed mechanism of non-linear responses of PCPs/MOFs in gas 

adsorption is still unclear. In this review, we introduce the structures and functions of flexible two 

dimensional PCPs/MOFs, which are constructed with simple, rigid, and linear ligands, 4,4'-bipyridine 

(bpy), and are named "elastic layer-structured metal-organic frameworks (ELMs)". We also discuss the 

advantages of flexible ELMs for practical applications. 

2. Gas Adsorptivity of Elastic Layer-Structured Metal-Organic Frameworks (ELMs) 

2.1. Discovery of Gate Phenomena of Coordination Polymer 

In 2001, Li and Kaneko reported interesting gas adsorption phenomena on a blue crystalline 

coordination polymer synthesized from bpy and Cu(BF4)2 showing sudden gas uptake at a definite gas 

pressure [63]. Porous and nonporous materials show that various gas adsorption isotherms depend on 

the surface properties, the pore diameter, and nature of the gas molecule. The adsorption isotherms for 

vapors are classified into six types by the IUPAC (Figure 1) [79]. 
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Figure 1. Six types of IUPAC adsorption isotherms: X-axis is relative pressure and Y-axis 

is adsorption amount. Typical traditional nanoporous materials are ordinarily classified into 

type I adsorption isotherm. 

 

Despite the difference of the detail profile, all of the six types of adsorption isotherms show a 

gradual increase of the amount of gas adsorption dependent on gas pressure. Therefore, the nil gas 

adsorption in the low-pressure region and the sudden gas uptake profile of the “blue crystalline” 

CP/MOF cannot be classified by IUPAC categories. There were a number of reports on gas adsorption 

phenomena on PCPs/MOFs before the Li-Kaneko report in 2001. In the old example, although 

adsorption isotherms were not disclosed, Mori and Takamizawa reported the gas adsorption 

phenomena on copper complexes. Nevertheless, all of the PCPs/MOFs show traditional adsorption 

isotherms, which are classified by the six types of adsorption isotherms [80–93]. In other words, before 

the Li-Kaneko report, all of the gas adsorption phenomena on PCPs/MOFs were classified into 

representative physisorption by porous materials and resembled such properties, which were shown by 

traditional adsorbents. In this context, gate adsorption was an unprecedented phenomenon. Subsequent 

studies revealed that the “blue crystalline” CP/MOF shows the gate phenomena not only to CO2 but 

also N2, O2, and Ar [94,95]. It is noteworthy that the “blue crystalline” CP/MOF also shows a gate 

response to supercritical CH4 at 303 K that usually shows very small interaction to adsorbent 

(Figure 2) [96]. 

Figure 2. Gate phenomena of the “blue crystalline” CP/MOF with various gases: (a) CO2 

at 273 K, (b) N2 at 77 K, (c) O2 at 77 K, (d) Ar at 77 K, and (e) CH4 at 303 K.  
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Figure 2. Cont. 

 

 

2.2. Structure of Two-Dimensional Layer-Stacking Coordination Polymer 

The chemical formula of the “blue crystalline” CP is [Cu(bpy)(H2O)2(BF4)2]·bpy (1), and 

Hubberstey et al. firstly reported its structure [97]; in which a one-dimensional main structure that is 

composed of Cu2+-bpy is integrated into a three-dimensional structure through hydrogen bondings 

among coordinated H2O, bridging guest bpy molecules, and BF4
- anions. This CP shows the gate 

adsorption properties after heating in vacuo treatment; hence, the characteristic hydrogen bonding 

network was thought to play an important role in the gate phenomenon in the early stage of the study. 

In a detailed study by X-ray diffraction analysis, infrared spectroscopy (IR), EXAFS, and elemental 

analysis, it is revealed that the CP releases water molecules in a reversible fashion and changes its 

structure into a two-dimensional layer stacking-type architecture, and its chemical formula is 

[Cu(bpy)2(BF4)2] (Figure 3) [98]. This layered CP was revealed to be the real gate material and named 

an elastic layer-structured metal-organic framework (ELM-11). Therefore the hydrated complex 1 is 

named preELM-11. 
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Figure 3. Interconversion of preELM-11 (1) and ELM-11. 

 

 

The Cu2+ ions are octahedrally coordinated by four bpy ligands at the equatorial positions to give 

two-dimensional, square grid sheets (Cu-Cu squares: 11.15 × 11.15 Å), while two BF4
- anions occupy 

the transaxial positions (Figure 4) [99]. Although the square grid motif constructed by linear bidentate 

ligand and Cu2+ is not uncommon, BF4
- anion, which has a weak coordination ability and coordinated 

structure, is relatively unique [100–106]. 

Figure 4. The local structure of ELM-11 (orange, Cu; gray, C; pale purple, N; pink, B; 

yellow green, F; white, H). 

 

Although there are spaces for the inclusion of guest molecules in each square cavity, there is no 

effective pore in the stacked architecture because of the staggered stacking structure (Figure 5). The nil 

adsorption under the gate pressure can be understood from this structure, and Kaneko named this kind 

of CP a latent porous crystal, LPC [96]. Later the name of LPC was extended into a general name 

which covers family compounds, as given in this review. 

Figure 5. Layer stacking structure of ELM-11: (a) side view and (b) top view. 
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The unique gate phenomenon was clarified by detailed synchrotron radiation experiments on the 

CO2 adsorbed structure of the CP [99]. After CO2 adsorption, the inter-layer distance is increased by 

1.20 Å (26%) from 4.58 Å to 5.78 Å, and the staggered stacking layers slide with each other, 

accompanying the rotation of the pyridine ring [107–109]. As a consequence, spaces for the 

accommodation of guest molecules are generated. Such structural change was also confirmed by 

infrared spectroscopy (IR); the peak at 1149 cm-1, which is assigned to the BF4
-, immediately 

disappeared during CO2 adsorption, and a new peak appeared at 1170 cm-1 by way of compensation. 

Two isosbestic points at 1144 and 1156 cm-1 indicate that this phenomenon is a transformation between 

two states: The apohost and the CO2-CP clathrate (Figure 6) [96]. The IR spectral change and CO2 

adsorption isotherm show relatively good correspondence (Figure 7). The gate gas adsorption and 

inter-layer expansion were accompanied with volume changes of powder crystalline ELM-11 

(Figure 8). It is noteworthy that molecular expansion phenomena cause a macroscopic volume change 

irrespective of non negligible outer granular gaps. 

Figure 6. Schematic representation of the gate adsorption and transformation of ELM-11 

between the closed and the open form. 

 

Figure 7. The correspondence of CO2 adsorption isotherm and IR spectral data: Carbon 

dioxide adsorption/desorption (pink) on ELM-11and IR spectra (absorbance change of the 

peak (BF4
-), blue) at 273 K. 

 



Int. J. Mol. Sci. 2010, 11             

 

 

3809

Figure 8. Volume change of ELM-11 accompanied by CO2 adsorption at 273 K: (a) before 

CO2 adsorption and after CO2 adsorption at (b) 6.66 kPa; (c) 13.3 kPa; (d) 26.7 kPa;  

(e) 34.7 kPa; (f) 45.3 kPa; (g) 101 kPa.  

 

In short, the gate phenomenon of ELM-11 is summarized as follows: (1) gate adsorption and 

desorption processes are ascribed to expansive, and shrinking modulation of the layer-stacking 

structure accompanied with gas molecule accommodation and effluence, respectively [55,110]; (2) the 

structural change consists of a two-state transformation between the apohost and guest-apohost 

clathration; (3) in a microscopic sense, the structural change is induced by the molecular movement 

generating the accommodation space, such as layer sliding, interlayer expansion, and pyridine ring 

rotation, caused by guest molecule accommodation and in the macroscopic sense, powder volume 

enhancement caused by external stimuli [111,112]. 

3. Elastic Layer-Structured Metal-Organic Frameworks (ELMs) 

Here a detailed expansion of the name of ELMs is given. We named the expansive/shrinking 

flexible CP/MOF as an ELM—an elastic layer-structured metal-organic framework. A series of 

isostructural ELMs with various metal ions, counter ions, and ligands were developed by our group. 

The metal and counter ions play an essential role in the structure and property and thereby the 

composition is added to ELMs for a specified ELM family, with the compositions of their components 

shown in Figure 9. 

Figure 9. Nomenclature of ELMs. 

 

All the ELMs show gate adsorption/desorption behavior, and comparing the results of the 

investigation of the phenomena has revealed the roles of each component: metal ions, counter ions, and 

ligands. 



Int. J. Mol. Sci. 2010, 11             

 

 

3810

3.1. Role of the Counter Ions 

In the case of nitrogen gas adsorption at 77 K, BF4
- containing ELM-11 ([Cu(bpy)2(BF4)2]) and 

ELM-31 ([Ni(bpy)2(BF4)2]), both show that the upward convex profile in the adsorption isotherm and 

the maximum amount of adsorption are almost similar (Figure 10). Although the structure of 

[Ni(bpy)2(BF4)2] is still unclear because of the difficulty of single crystal synthesis, the composition of 

the components was confirmed by elemental analysis. The similarity of ELM-11 and ELM-31 was 

confirmed by IR, TG, and gas adsorption experiments using several gases, such as N2, CO2, and O2. 

Therefore, the structure of the Ni-CP is presupposed to a two-dimensional square grid in this article. 

Figure 10. Adsorption isotherms of N2 on ELM-11 (Cu-BF4) (blue circles) and ELM-31 

(Ni-BF4)(green circles) at 77 K. Solid and open symbols represent adsorption and 

desorption, respectively. 

 

On the other hand, ELM-12 (Cu), containing trifluoromethanesulfonate (OTf) as a counter ion, 

shows a definite double step adsorption isotherm, while the rising profile is almost vertical 

(Figure 11) [67]. From the detailed structural study using synchrotron X-ray diffraction analysis, it was 

revealed that the ELM-12 has open micropores at the initial stage, and the first vertical adsorption step 

is assigned to micropore filling in the inherent micropores. This is in marked contrast to the nonporous 

nature of ELM-11, in spite of the common analogous fundamental two-dimensional layer structure. 

This difference is derived from only slight difference in stacking structure; the layers of ELM-11 are 

stacked in a complete staggered form, so that the bpy molecules cover the open space of metal-organic 

square grids in the neighboring layers. On the other hand, the layers of ELM-12 are also stacked in 

zigzag fashion, but the slipped degree is smaller than that of ELM-11 hence ELM-12 affords effective 

micropores to accommodate gases. In addition, the slightly larger inter-layer distance of ELM-12 

compared to that of ELM-11 also help generate porosity at the initial stage. Furthermore, it is also 

revealed that the second adsorption step is derived from layer expansion phenomena accompanied with 

the gas-ELM clathrate generation in a way analogous to the gate phenomena of ELM-11. 

Another OTf containing ELM, ELM-22 ([Co(bpy)2(OTf)2]), accentuates the characteristics of OTf 

anions. Despite the differences of metal ions, both OTf containing ELMs (ELM-12 and ELM-22) 

indicate a similar adsorption property in the case of N2 at 77K [113]; the maximum amount of 
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adsorption and definite double-step adsorption profile are close to each other with a slight difference in 

the gate pressure (Figure 12). These similar adsorption properties are apparently derived from the 

similarities in their fundamental structure. Counter anions regulate the structure (especially through the 

stacking mode) and influence the adsorption profile [114–120]. 

Figure 11. Adsorption isotherms of N2 on ELM-11 (Cu-BF4) (blue circles) and ELM-12 

(Cu-OTf)(pink triangles) at 77 K. The solid and open symbols represent adsorption and 

desorption, respectively. 

 

Figure 12. Adsorption isotherms of N2 on ELM-12 (Cu-OTf)(blue circles) and ELM-22 

(Co-OTf)(pink circles) at 77 K. Solid and open symbols represent adsorption and 

desorption, respectively. 

 

Trifluoro(trifluoromethyl)borate anions, which contain a hydrophobic CF3 part like that in OTf 

anions, and a weakly coordinating BF3
- part that is the same as those of BF4

- which is also available for 

the construction of the ELM structures. ELM-13 was thynthesized by layering method (Cu(BF4) 2 and 

KCF3BF3/H2O and bpy/acetone at room temperature) and the two dimensional layer strcture was 
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analyzed by single crystal X-ray diffraction analysis. The pretreated (at 363 K under reduced pressure) 

CF3BF3
- containing ELM (ELM-13), [Cu(bpy)2(CF3BF3)2], shows unique gate gas adsorption 

properties. In the case of N2 adsorption at 77 K, ELM-13 shows a single step adsorption profile, while 

the maximum amount of adsorption is similar to BF4
- containing ELM-11. However, the vertical rising 

of the adsorption isotherm at the initial stage is more marked in OTf containing ELM-12 (Figure 13). 

Figure 13. Adsorption isotherms of N2 on ELM-11 (Cu-BF4)(blue circles), ELM-12  

(Cu-OTf)(green triangles), and ELM-13 (Cu-CF3BF3)(pink diamonds) at 77 K. Solid and 

open symbols represent adsorption and desorption, respectively. 

 
 

In the case of ELMs, the role of counter anions is not only to charge compensation of metal cations, 

but also to regulate the interaction between the layers. In the case of ELM-12 (Cu-OTf), there exists 

the hydrogen bonding between the O atom of the OTf anion and the ß-hydrogen atom of bpy in the 

neighboring layer, and the hydrogen bondings act as the tether line between the layers 

(Figure 14) [121]. 

Figure 14. Hydrogen bonding between the counter anion and bpy of the neighboring layer 

(ELM-12): (a) square grid and OTf anions (top view), (b) square grid and OTf anions (side 

view), (c) hydrogen bonding between the OTf and the bpy. 
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The counter anions, BF4
- and CF3BF3

-, have similar coordination properties (Metal-F) and both 

anions form the same type of hydrogen bonding (F...H). The two ELMs show a single step gate 

adsorption, and the maximum amount of adsorption (N2, 77 K) is almost similar. On the other hand, a 

double step gate-type ELM-12 contains OTf (CF3SO3
-) anions, which resemble the CF3BF3

- anion in 

size, but differs in its coordination property (O...Met) and type of hydrogen bonding (S=O...H). In this 

context, it can therefore be presumed that the regulating factor of gate steps (single step or double 

steps) is not the size of the counter ion but their chemical factors, such as the coordination ability and 

type of hydrogen bonding. On the other hand, OTf and CF3BF3
- anion-containing ELMs almost show a 

vertical adsorption isotherm profile, while BF4
- containing ELM shows an upper convex profile. 

Therefore, in the case of the gate response, an important factor may be the ion size or the chemical 

property, such as hydrophobicity derived from a CF3 group. In any case, the ELMs, which have 

different counter ions but the same fundamental structure, show quite a strikingly different response to 

nitrogen gas, although nitrogen molecules are inert and small. Furthermore, it is also worth noting that 

the controlling factor for (1) gate behavior (single or double), (2) the gate profile (upper convex or 

vertical), and (3) the maximum amount of adsorption, are counter ions, which are just small parts 

attached to metal ions (Table 1). 

Table 1. Counter ions and adsorption properties of ELMs. 

ELM- 
Counter 

Ion 
Coordination 

Bond 
Hydrogen 

Bond 
Gate Type 

Amount of Gas 
Adsorptiona/mg g-1 

11 BF4
- F-Met F-H one step 340 

12 OTf O-Met S=O-H two steps 220 
13 CF3BF3

- F-Met F-H one step 314 
a Nitrogen adsorption at 77 K. 

As mentioned above, ELMs which contain OTf, BF4
-, or CF3BF3

- anions, show characteristic 

adsorption isotherm profile, respectively. Then, what adsorption profile does an ELM, containing two 

different anions show [102,122,123]: ELM-12/3 bearing both OTf and CF3BF3
- was synthesized by 

layering of Cu(OTf)2 and KCF3BF3/H2O and bpy/ethanol (Elemental analysis as C22H16N4O3CuBF9S, 

which corresponds to the Cu:bpy:CF3SO3:CF3BF3 = 1:2:1:1; Calcd (%): C 39.93, H 2.44, N 8.47, Cu 

9.60, B 1.63, S 4.85; found: C 41.4, H 2.30, N 8.8, Cu 9.60, B 1.20, S 4.40. The content of the two ions 

species are also quantitatively analyzed by ion chromatography: 1.04 equivalent of OTf for Cu2+ and 

1.00 equivalent of CF3BF3
-  for Cu2+ were detected.). Two dimensional layer strcture of ELM-12/3 was 

analyzed by single crystal X-ray diffraction analysis. This ELM-12/3 shows an adsorption isotherm 

quite similar to that of ELM-12 containing OTf: The similarities are shown in the vertical double step 

profile, the adsorption amount ratio of one-step and second-step (ca. 1/1), and the maximum amount of 

adsorption (220 mg/g). On the one hand, the gate pressure of ELM-12/3 decreases significantly 

compared to ELM-12 (OTf) and ELM-13 (CF3BF3
-). On the other, ELM-12/3 shows the lowest gate 

pressure compared to ELM-12 (Cu-OTf) and ELM-22 (Co-OTf) (Figure 15). 

To date, and to the best of our knowledge, ELM-12/3 is the only example of two-dimensional 

flexible CPs having the mixed counter anions. 
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Figure 15. (a) Adsorption isotherms of N2 on ELM-12 (Cu-OTf) (blue circles), ELM-22 

(Co-OTf) (pink diamonds), and ELM-12/3 (green triangles) (OTf/Cu-CF3BF3) at 77 K.  

(b) Close up of low-pressure region. Solid and open symbols represent adsorption and 

desorption, respectively. 

 

3.2. Effect of Metal Cations 

As mentioned above, the influence of metal ions on the adsorption profile is slight in the case of N2 

adsorption at 77 K. If the counter ion is common, the slight difference of the adsorption isotherms 

between Cu-ELM vs. Ni-ELM and Cu-ELM vs. Co-ELM is observed only in the gate pressure. On the 

other hand, the kind of metal cations is quite an important factor for controlling the sorption 

phenomena in the case of O2 and CO2 adsorption [113]. Trifluoromethanesulfonate anion-containing 

ELM-12 (Cu) and ELM-22 (Co) are basically isostructures, despite the slight difference in the 

coordination field of metal ions derived from the Jahn-Teller effect. Therefore, the porous character of 

the initial structure derived from the slight zigzag stacking mode is common in both the ELMs. 

However, they show quite different responses to O2 and CO2 molecules. In the case of O2 adsorption at 

77 K, the ELM-22 (Co) shows the same double step adsorption isotherms as those in the case of N2 

adsorption, even though Cu2+ containing the ELM-12 adsorbs O2 in triple steps, and the maximum 

amount of adsorption is 1.6 times that of the ELM-22 (Co). Carbon dioxide molecules induce a similar 

response in the ELMs—the adsorption isotherms (196 K) of the ELM-22 (Co) are of a double step, 

while ELM-12 (Cu) shows a multi step adsorption phenomenon. Furthermore, the total amount of 

adsorption of ELM-12 (Cu) is 1.5 times that of ELM-22 (Co). The molecular number of that adsorbed 

on ELM-12 (Cu) and the physical properties of the adsorbed gas are shown in Table 2. 

Although the molecular size of O2 is comparable to N2, the adsorbed amount of O2 is apparently 

larger compared to that of N2 (1.5 times). In addition, although the molecular size of CO2 is larger than 

N2, CO2 molecules of an amount similar to N2 can be accommodated in the flexible ELM-12 

framework. Accordingly, it can be presumed that O2 and CO2 molecules have a stronger effect on the 

layer expansion of Cu-ELM and that such effect is less for Co-ELM. On the other hand, Ni2+ 

containing ELM-31 (Ni-BF4) shows simple one step gate responses to CO2 at 273 K, which is similar 
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to the response of Cu2+ containing ELM-11 (Cu-BF4) to CO2 (Figure 16). In this case, the metal cation 

does not affect the gate profile but mainly the gate pressure. 

Table 2. Adsorbed molecular numbers per one copper atom of ELM-12 and parameters of 

gas molecules a,b. 

Parameters N2 O2 CO2 
Adsorbed molecular numbers per one copper atom 
of ELM-12 

5.3 7.8 5.6 

Quadrupole moment (10-40 Cm2) -4.9 -1.33 -14.9 
Lennard-Jones potential (e /kB/K) 104.2 126.3 245.3 

a Nitrogen and O2 adsorption was measured at 77 K and CO2 was at 196K. 
b References for the parameters: [124,129,137,138]. 

Figure 16. Adsorption isotherms of CO2 on ELM-11 (Cu-BF4)(blue circles) and ELM-31 

(Ni-BF4)(green triangles) at 273 K. Solid and open symbols represent adsorption and 

desorption, respectively. 

 
 

It is also well known that the type of metal cation used has a strong effect on the adsorptivity of 

PCPs/MOFs [125–128]. This effect is divided into two categories: (1) direct effect—through the 

interaction between metal cations and adsorbed molecules, and (2) indirect effect—through the 

regulation of pore structures. In the case of the PCPs/MOFs having open metal sites, it is especially 

well studied that adsorption control by the metal ion is based on metal-adsorbate interaction  

[84,129–132]. Although it is also well known that isostructural PCPs/MOFs are constructed from 

different metal ions, the metal effects on adsorption through structural regulation have not been well 

studied, especially in the case of flexible coordination polymers [133–136]. Férey et al. report one of a 

few examples discussing the effect of large quadrupole moments of CO2 on the structural 

transformation of flexible PCPs/MOFs [135]. The contribution of the quadrupole moment of CO2 in 

the interaction is still much smaller than the dispersion attractive interaction. In the case of ELMs, an 

important aid with the large quadrupole moment of CO2 for large amount and multi step CO2 

adsorption on ELM-12 (Cu) can be considered [135,137–140]. Carbon dioxide also shows specific 
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behavior with the adsorption phenomena on the gate opening mechanism of ELM-11 (Cu-BF4). 

Although both N2 (77 K) and CO2 (273 K) show a single step gate adsorption on ELM-11, the number 

of adsorbed molecules is quite different: N2 is 7.0/unit cell (at P/P0 = 0.99, at 77 K) and CO2 is 1.9/unit 

cell (at P/P0 = 0.99, at 273 K), because the adsorption temperature of CO2 is close to the critical 

temperature as shown in Figures 13 and 16. Actually, the isosteric heat adsorption of CO2 on ELM-11 

was estimated at 26 kJ/mol by the van't Hoff equation, at the range of the number of adsorbed 

CO2molecules from 0.5/unit cells (37.58 mg/g) to 1.5/unit cells (112.7 mg/g). This value is comparable 

to the sublimation enthalpy of CO2 (25 kJ/mol). These results imply the specific interaction of CO2 and 

ELM-11 at the subcritical temperature. Thus, CO2 should be highly stabilized in the lattice of ELM-11. 

Although Baiker et al. reported interaction between Cu2+ of (pre)ELM-11 and adsorbed acetnitrile 

molecule [141], metal-guest interaction of ELMs are still unclear and under investigation. 

3.3. Hydrogen Adsorption 

Hydrogen molecules are not adsorbed on nonporous ELM-11 under the condition of supercritical 

gas above 33 K. In addition, hydrogen molecules do not cause the structural transformation because of 

weak interaction. As both ELM-12 (Cu) and ELM-22 (Co), which contain OTf ions, are porous even at 

the initial stage, they adsorb slight H2 at 77 K. From the small amount of adsorbed gas and weak 

interaction with H2, the adsorption mechanism is considered as a quasi-micropore filling whereby 

super critical gas can be filled in the inherent pore sites enough to stabilize the molecules even above a 

critical temperature. The adsorption is not chemisorptive but reversible [142]. Although the pore 

parameters of ELM-12 (Cu) and ELM-22 (Co) are quite similar, the adsorbed H2 amounts differ from 

each other [113]. This difference is apparent especially in low pressure regions. For example, ELM-22 

(Co) adsorbed more than 1.5 times that of adsorbed ELM-12 (Cu) at a low pressure region. As the 

difference in the dispersion interaction of Cu2+ and Co2+ ions with H2 molecules should be small, this 

difference is attributed to the more meandering pore structure of ELM-22 (Co) compared to ELM-12 

(Cu), and the fine structural difference arises from a difference in metal cations (Table 3). 

Table 3. Adsorption amount of H2 and pore parametersa of ELM-12 (Cu-OTf) and ELM-22 

(Co-OTf). 

 ELM-12 (Cu-OTf) ELM-22 (Co-OTf) 
H2 adsorption amount 
[mg g-1, 1 atm at 77 K] 

5.9 6.8 

surface area [m2 g-1] 390 400 
micropore volume [mL g-1] 0.14 0.15 
adsorption capacity [mg g-1] 118 125 
total pore volume [mL g-1] 0.27 0.28 
isosteric heat of adsorption [kJ mol-1] 12.2 13.0 
a All pore parameters were estimated from N2 adsorption isotherms measured at 77 K by using 

Dubinin-Radushkevich equation and/or liquid nitrogen density. 

As mentioned above, in the case of ELMs, metal cations act not only as a simple connecting node 

for the architecture, but also as fine tuning of pore structures. 
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3.4. Effect of Ligand 

In general, the length of ligands is a key factor to tune the coordination space of PCPs/MOFs  

[143–150]. Yaghi's group reported the archetype study of relationships between the length of the ligand 

and the amount of gas adsorption using a series of various ligands [43]. According to their studies, 

PCP/MOF with longer ligands apparently tend to have a large coordination space—when the ligands 

are changed from terephthalic acid (IRMOF-1, contains one phenyl (Ph) ring),  

4,4'-biphenldicarboxylic acid (IRMOF-10, two Ph ring), to 4,4'-terphenyldicarboxylic acid (IRMOF-16 

three Ph ring), the calculated percentage of free volume increases from 79.2% (one Ph), 87.0 (two Ph), 

to 91.1% (three Ph). 

In contrast to the Yaghi's rigid PCPs/MOFs series, flexible ELMs show a reverse tendency. 

Although the extended ligand, 4,4'-bis(4-pyridyl)benzene (bpb) (11.4 Å) is 63% longer than bpy  

(7.0 Å) [151], ELM-31b ([Ni(bpb)2(BF4)2]) shows a 40% smaller adsorbed amount  

(W0(N2) = 212 mg/g at 77 K) compared to that of ELM-31 ([Ni(bpy)2(BF4)2])(W0(N2) = 350 mg/g at 

77 K). This reverse tendency should be understood from the unique adsorption mechanism of ELMs. 

In the case of "hard" PCPs/MOFs, which show type I physisorption isotherms, there is a tendency for 

the larger free volume to accommodate more gas. On the other hand, "flexible" ELMs adsorb gas 

through clathrate formation; the adsorption depends on the stability of the gas-CP/MOF clathrates. 

Since the clathrates of larger square grids with longer ligands (bpb ligand, 15 × 15 Å) are unstable 

because of the weak interaction between guests and hosts, compared to small square grids (bpy ligand, 

11 × 11 Å), the amount of adsorbed gas tends to decrease for the longer ligand system. Fujita et al. 

reported the example of flexible two-dimensional layer stacking-type PCP/MOF with extended 

ligands. This PCP/MOF varies its structure with solvent exchange [152]. To our best knowledge, the 

ELM-31b is the only example of two-dimensional stacking PCP/MOF with extended ligands, which 

can change its structure by gas molecules, which interact with host framework by weaker interaction.  

4. Various Two-Dimensional Square Grid Stacking-Type (2DSG) CPs/MOFs 

4.1. Two-Dimensional Square Grid Stacking-Type CPs/MOFs: Structure and Functions 

An aromatic compound containing nitrogen such as pyridine is one of the most popular coordinative 

functional groups, and hence many CPs/MOFs have been synthesized using exobidentate ligands 

bearing two pyridyl groups, such as bpy [153,154]. There are quite a few examples of metal-organic 

square networks with linear bifunctional spacer ligands [155]. To synthesize such kinds of CPs/MOFs, 

various ligands have been used: short or long [156–161], rigid or flexible [162,163], linear or 

inflectional [164,165], with functional group(s) [159,166–170], rotaxane-type [171], chiral-type [172], 

and so on. An example of a typical linear, rigid, exobidentate ligand would be 4,4'-bipyridine. A 

number of two-dimensional square grid stacking-type CPs/MOFs (2DSG-CP/MOF) with this ligand 

has been reported [173–176]. Because of the neutral nature of bpy, 2DSG-CPs/MOFs necessarily 

contain counter anions to compensate the positive charges of metal ions, and these negatively charged 

counterparts increase the diversity of 2DSG-CPs/MOFs. Various 2DSG-CPs/MOFs constructed with 

bpy and unidentate coordination anion are listed in Table 4. 
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Table 4. Two-dimensional square grid stacking type CPs/MOFs constructed with bpy and 

unidentate coordination anion. 

Compounda Functionb Apical Ligand Counter Ion References 
[M(bpy)2(dtbp)2]·2H2O (M = Mn, Co, Cd) GI H2O dtbp [177,178] 
[Co(bpy)2(NCS)2]·2Et2O GI NCS- NCS- [179] 
[Co(bpy)2(H2O)2]·3NTf2·mim GI H2O NTf2 [180] 
[Co(bpy)2(H2O)2]·2ps·10H2O GI H2O ps [181] 
[Co(bpy)2(H2O)2]·2NO3·2bpy·2H2O GI H2O NO3

- [182] 
[Co(bpy)2(H2O)2]·bpy·bsb GI H2O bsb [183] 
[Co(bpy)2(OTf)2] (ELM-22) GA OTf OTf [113] 
[M(bpy)2(NO3)2]·3np (M = Co, Ni) GI H2O NO3

- [184] 
[M(bpy)2(NO3)2](na)2 (M = Co, Ni, Zn) GI NO3

- NO3
- [185] 

[M(bpy)2(NO3)2]·arenes (M = Co, Ni) GI NO3
- NO3

- [186] 
[Ni(bpy)2(BF4)2] (ELM-31) GA BF4

- BF4
- [113] 

[Ni(bpy)2(NO3)2]·2pyrene GI NO3
- NO3

- [187] 
[Ni(bpy)2(NCS)2] - NCS- NCS- [188,189] 
[Ni(bpy)2(H2PO4)2]·G  G = n-BuOH·H2O, 
2bpy·3H2O, or 2bpy·ethylene glycol·H2O 

GI H2PO4
- H2PO4

- [190] 

[Cu(bpy)2(BF4)2] (ELM-11) GA BF4
- BF4

- [99] 
[Cu(bpy)2(OTf)2] (ELM-12) GA OTf OTf [67] 
[Cu(bpy)2(CF3BF3)2] (ELM-13) GA CF3BF3

- CF3BF3
- [99] 

[Cu(bpy)2(OTf)(CF3BF3)] (ELM-12/3) GA CF3BF3
-, OTf CF3BF3

-OTf [191] 
[Cu(bpy)2(H2O)2]·2ClO4·bpo·3H2O GI H2O ClO4

- [192] 
[Cu(bpy)2(H2O)2]·2ClO4·H2O GI H2O ClO4

- [193] 
[Cu(bpy)2(H2O)]·2sac·CH2Cl2 GI H2O sac [194] 
[Cu(PF6)(bpy)2(CH3CN)]·PF6·2CH3CN GI PF6

-, CH3CN PF6
- [122] 

[Cu(bpy)2(H2O)2]·PF6·BF4 GI H2O PF6
-·BF4

- [122] 
[Cu(bpy)2(H2O)2]·2PF6 GI H2O PF6

- [122] 
[Cu(bpy)2(H2O)2]·(UO2·Hcit)2·7H2O GI H2O UO2·Hcit [195] 
[Cu(bpy)2(H2O)2]·2sac·DMF GI H2O sac [196] 
[Cu(bpy)2(H2O)2]·2PF6·2H2O·2tdp GI H2O PF6

- [197] 
[Cu(bpy)2(H2O)2]·4ClO4·H2bpy GI H2O ClO4

- [198] 
[M(bpy)2(H2O)2]·2ClO4·(2,4'-bpy)2·H2O 
(M = Zn, Cd) 

GI H2O ClO4
- [198] 

[Cu(bpy)2(NO3)2]·3paba GI NO3
- NO3

- [199] 
[Cd(bpy)2(H2O)2]·2NO3·4H2O GI H2O NO3

- [199] 
[Zn(bpy)2(H2O)2]·bpy·bs GI H2O bs [200] 
[Zn(bpy)2(fcph)2]  ME fcph fcph [201] 
[Zn(bpy)2(NO3)2]·2dcb·pyrene GI NO3

- NO3
- [202] 

[Cd(bpy)2]·2NO3 Cat - NO3
- [203] 

[Cd(bpy)2(NO3)2]·2dbb GI NO3
- NO3

- [203] 
[Cd(bpy)2(H2O)2]·2NO3·4H2O Cat, GI H2O NO3

- [204] 
[Cd(bpy)2]·2NO3·2dbb GI - NO3

- [205] 
[Cd(bpy)2(H2O)2]·2NO3·4H2O GI H2O NO3

- [206] 
[Cd(bpy)2(NO3)(H2O)]·NO3·2abp GI H2O, NO3

- NO3
- [206] 

[Cd(bpy)2(NO3)2]·2na GI NO3
- NO3

- [207] 

 



Int. J. Mol. Sci. 2010, 11             

 

 

3819

Table 4. Cont. 

Compounda Functionb Apical Ligand Counter Ion References 
[Cd(bpy)2(H2O)2]·2ClO4·1.5bpy·cnp·4H2O GI H2O ClO4

- [208] 
[Cd(bpy)2(H2O)2]·bpy·2nan·2ClO4·H2O GI H2O ClO4

- [209] 
[Cd(bpy)2(ClO4)2]·2mna GI ClO4

- ClO4
- [209] 

[Cd(bpy)2(H2O)2]·2PF6·2bpy·4H2O GI H2O PF6
- [210] 

[Cd(bpy)2(H2O)(OH)]·PF6 GI H2O, OH- PF6
-, OH- [210] 

[Cd(bpy)2(H2O)2]·2BF4·2bpy·nab·2H2O GI H2O BF4
- [211] 

[Cd(ans)2(bpy)2] GI ans ans [212] 
[Cd(bpy)2(H2O)2]·2pic GI H2O pic [213] 
[Zn(bpy)2(H2O)2]·2pic·2H2O GI H2O pic [214] 
[Zn(bpy)2(H2O)2]·bpy·2pic·H2O GI H2O pic [215] 
[Cd(bpy)2(NO3)2]·G; G = chlorobenzene,  
dbb, or p-chlorobenzene 

GI NO3
- NO3

- [216] 

a Abbreviations: Et2O = diethylether; dtbp = di-tert-butyl phosphate; mim = 1-butyl-3-

methylimidazolium; NTf = bis(trifluoromethanesulfonyl)imide; ps = pyridine-4-sulfonic acid;  

bsb = 4,4'-bis(sulfonatostiryl)biphenyl; np = naphthalene; na = p-nitroaniline;  

arenes =chlorobenzene, o-dichlorobenzene, benzene, nitrobenzene, toluene, or anisole;  

bpo = 2,5-bis(3-pyridyl)-1,3,4-oxadiazole; sac = o-sulfobenzimidate; UO2·Hcit = uranyl citrate; 

tdp = 1,3,4-thiadiazole-2,5-di-4-pyridyl; paba = 4-aminobenzic acid; bs = benzenesulfonate; 

FcphSO3 = m-ferrocenyl benzenesulfonate; dcb = o-dichlorobenzene; dbb = o-dibromobenzen; 

abp = 4-amino-benezopheone; na = 2-nitroaniline; cnp = 4-chloro-2-nitrophenol;  

nan = o-nitroaniline; mna = N-methyl-2-nitroaniline; nab = o-nitroaminobenzene;  

ans = 2-aminonaphthalene-1-sulfonate; pic = picrate 
b GI = guest inclusion, GA = gate adsorption, ME = metal ion exchange; Cat = catalysis. 

Since almost all the listed 2DSG-CPs/MOFs include guest molecules, this means the 

2DSG-CPs/MOFs are potentially acting as porous materials. From the standpoint of host/guest 

chemistry, the synthesis of hybrid-type nonlinear optical materials was attempted with the combination 

of 2DSG-PCPs/MOFs host and guest molecules, such as p-nitroaniline [185]. On the other hand, there 

is no report on the gas adsorption or structural transformation of the CPs/MOFs listed in Table 4, 

except for ELMs. In addition, we cannot synthesize ELMs family with any counter anions other than 

BF4
-, OTf, and CF3BF3

-. If the scope of ligands widens from bpy to pyrazine,  

1,4-bis(4-pyridyl)benzene, and 4,4'-bis(4-pyridyl)biphenyl, to the best of our knowledge, there is no 

report on the gate gas adsorption of 2DSG-CPs/MOFs or the structural transformation of  

2DSG-CPs/MOFs caused by gas molecules. In the case of longer ligand, it is reported that the 

structural transformation of 2DSG-CPs/MOFs constructed with 4,4'-bis(4-pyridil)biphenyl ligand. 

However, the structural change was not caused by gas molecules but by the exchange of aromatic guest 

molecules [160]. The reason why all of the listed 2DSG-CPs/MOFs except the ELMs do not show the 

gas adsorption is considered to be as follows: (1) the cavity of the metal-organic square does not act as 

an open pore because of the close packing of the layers and the difficulty of structural transformation 

of the layers; (2) the cavity is already occupied by non-removable guest molecules and there is no 

space for gas adsorption; and (3) the 2DSG structure collapses when the guest is released. The 



Int. J. Mol. Sci. 2010, 11             

 

 

3820

necessary requirement for gas adsorption is conservation of the framework structure after the guest 

release. The collapse of the CP/MOF structure with the guest release can be seen as a common 

behavior, and in the case of 2D CP/MOFs [217], sometimes a turbostratic disorder occurs in the case of 

2DSG CP/MOFs [218]. The present collapse assumption must be reconsidered, based on the fact that 

ELM-22 (Co) retains its 2DSG structure without any guest. 

Hereafter, let us consider the role of counter anions. It is well known that these play a significant 

role in regulating the structure of CPs/MOFs [122,159,219–221]. In addition, the counter anions 

sometimes play a significant role in the function of CPs/MOFs. However, in the case of flexible 

PCPs/MOFs [222], the role of counter anions in structural transformation is not necessarily clear. The 

common features of the counter anions of ELMs are: (1) monodentate; (2) mono-valent; (3) weak 

coordination ability; (4) occupation of the apical positions; and (5) participation of fluorine atoms. In 

the case of non-ELM 2DSG-CPs/MOFs, NCS-, which have relatively strong interaction with metal 

cations, tend to occupy the apical positions. Imamoto reported the synthesis of [Ni(bpy)2(NCS)2] [188] 

of a fundamental structure is similar to ELM-22 (Co-OTf) having no guest and precise layer stacking. 

Therefore, the non-porous character of the Imamoto's Ni-CP/MOF may be attributed not to structural 

friability but to the difficulty in the structural transformation for the generation of micropore. Jacobson 

reported the Co version of NCS-2DSG-CP/MOF, [Co(bpy)2(NCS)2]·2Et2O [179]. Although this 

compound easily releases two ether molecules, the non-guest state does not induce gas adsorption. In 

this case, the initial porous state is supposed to transform into a non-porous form (a compact layer 

stacking form) with the guest release. Imamoto and Jacobson did not mention the gas adsorption 

ability of their CPs/MOFs. From our adsorption experiment (N2 at 77 K and CO2 at 273 K, after the 

pretreatment at 363 K for three hours under reduced pressure), Ni-CPs/MOFs did not show any gas 

adsorption ability. We also checked Fujita's [Cd(bpy)2(NO3)2], but this CP did not show N2 gas 

adsorption ability at 77 K. 

In the case of other anions, such as NO3
-, ClO4

-, and PF6
-, these weak coordination anions tend to 

locate themselves in the square grid as guests. They occupy the apical position only if the grid 

accommodates aromatic guest molecules. Based on these facts, occupation of the apical positions by 

weak coordinating anion can be regarded as one of the key factors for the gate gas adsorption 

phenomena. Although the space of the grid will decrease, if the counter anion is present as a guest, 

there still remains room for small gas molecules, considering the small size of the counter ions 

compared to the size of the square grid. Therefore, the reason why the ion-accommodating 

2DSG-CP/MOF does not uptake the gas molecule, may be attributed to the difficulty of interlayer 

sliding. In the case of ELMs, interlayer sliding is a crucial motion for the gate phenomena. Therefore, 

the interlayer interaction is a relatively important factor for gate adsorption. In general, ligand-ligand 

interaction, such as CH-π and π-π, is well known as the interlayer interaction [223,224], and 

ligand-counter ion interaction also sometimes have a significant function [156,225–227]. In the case of 

ELMs, a counter ion occupies the apical positions of metal cations and acts as a terminal ligand. At the 

same time, the anion forms hydrogen bonds with the ß-hydrogen of bpy of the neighboring layer, and 

the hydrogen bonding network acts as tether lines between the two-dimensional layers. These facts are 

strongly indicative of the key role of the counter anion in the gate phenomena. 

The fact that the counter ions of ELMs (BF4
-, CF3SO3

-, and CF3BF3
-) necessarily bear a number of 

fluorine atoms does not seem to be a coincidence. Although fluorine atoms bound to the carbon atom 



Int. J. Mol. Sci. 2010, 11             

 

 

3821

rarely form hydrogen bonding, fluorinated ligands sometimes affect the structural transformation or the 

adsorption phenomena of CPs/MOFs through their unique physical properties [228–234]. Fluorine 

atoms bound to inorganic elements have the ability to form hydrogen bonds, which sometimes play an 

important role in the construction of molecular structures. In addition, the largest electronegativity of 

the fluorine atom should influence the coordination space. However, the effect of fluorine atoms on the 

structural transformation of CPs/MOFs has not been systematically studied. As mentioned above, some 

sorts of participation of fluorine atoms on the gate phenomena can be presumed, and further study is 

required to clarify the accurate role of fluorine atoms. 

4.2. Two-Dimensional Square Grid (2DSG) CPs/MOFs with Various Ligands Other Than bpy 

As already mentioned, various 2DSG-CPs/MOFs which have a shorter ligand than bpy have been 

reported. Although some of them contain coordinating BF4
- or OTf, to the best of our knowledge, no 

gate gas adsorption phenomenon or structural transformation has been reported on these CPs/MOFs. 

There are a few reports on CPs/MOFs with longer analogues to bpy, such as 1,4-bis(4-pyridyl)benzene 

and 4,4'-bis(4-pyridyl)biphenyl [235]. Fujita et al. reported that the NO3
- coordinated 2DSG-CP/MOF 

with 4,4'-bis(4-pyridyl)biphenyl shows a reversible structural transformation, which was caused by 

guest exchange (mesitylene/o-dibromobenzene) with a very slow timescale in 22 hours [160]. To the 

best of our knowledge, this is the only report on the structural transformation of the isostructural 

CP/MOF of ELMs. 

4.3. The Gate Phenomena of ELMs 

In the case of ELMs, gate gas adsorption/desorption suddenly occurs, accompanied with the 

synchronous IR change [191]. From the isosbestic points of IR change, the structural transformation is 

understood as an equilibration between close and open forms. Strictly speaking, this phenomenon must 

be understood by clathrate formation through the guest molecule inclusion reaction, as already 

mentioned earlier [73,75,78,96]. The clathrate formation mechanism is described by a general 

thermodynamic expression. The application of this theory to ELM-11 is given in the following 

Equations (1) and (2): 

 (1) 

 
(2) 

n shows the number of CO2 molecules accommodated in the unit cell of ELM-11 at the same time. 

In general, the cooperative structural transformation phenomena of oligomeric structures caused by 

plural effecters are well known as an allosteric effect (e.g., structural transformation of hemoglobin 

caused by O2 molecules). In the case of ELM-11, CO2 adsorption isotherms and the fitting results of 

the cooperative clathrate formation show relatively good accordance. This strongly indicates that the 

gate adsorption/desorption of ELM-11 stems from a clathrate formation reaction. 

The gate adsorption/desorption phenomena of CPs/MOFs have been discussed both from the 

viewpoint of kinetics and thermodynamics [236–238]. In the case of ELMs, it is confirmed that both 
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the gate opening and closing states are in a thermal equilibrium [96]. Methane gas-pressurized ELM-11 

at 303 K at 2.5 MPa is in the gate-open stage. When the sample was cooled to 273 K, the adsorption 

amount increased and the amount was coincident with that of the desorption branch of 273 K. When 

the cooled sample was, in turn, warmed to 303 K, the adsorption amount was decreased and the 

amount was coincident with that of the desorption branch of 303 K (Figure 17). From these 

experiments, it is apparent that ELM-11 at the gate-open state is a thermodynamic product. The 

thermal equilibrium of the gate-closed state of ELM-11 was also confirmed by CO2 adsorption 

experiments. Although the gas pressure was retained for 13 hours at ambient temperature at slightly 

under the gate opening pressure, ELM-11 did not adsorb the gas. This experiment also strongly 

supports the equilibrium nature of ELM-11 before the gate opening. 

Figure 17. Temperature jump experiment of CH4 adsorption on ELM-11. The open and 

closed circle show CH4 adsorption and desorption on ELM-11 at 303 K, respectively. The 

temperature was dropped from the blue square (303 K) to the red square (273 K) and was 

then elevated from the red square to the blue square. The thin dashed line shows desorption 

branch at 273 K, which was measured by another experiment. 

 

As shown in Figure 14, the presence of hydrogen bonding between the counter ion and bpy ligand 

in neighboring layer is confirmed by single crystal X-ray diffraction analysis. During the early stage of 

the study of ELMs, gate phenomena were considered to accompany the cleavage of the hydrogen 

bonding network. Although the modulation of hydrogen bonding during the expansion/shrinkage 

structural transformation was not clarified, it is confirmed that interlayer interactions, such as hydrogen 

bonding and π-π interactions, still remain after the structural transformation. The weak interactions 

work as tether lines between the layers and the structural transformation can be achieved not by the 

cleavage of weak interactions but by the rotation of the aromatic rings and conformational change of 

counter ions [239–244]. The fact that the maximum adsorbed gas amount was determined by the nature 

of the counter ions suggests the presence of the tether line mechanism of hydrogen bonding after the 

structural transformation. 
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5. Evaluation of the Adsorptivity of ELM-11 from the Standpoint of Practical Application 

5.1. Applicability of Gate Phenomena for the Energy-Saving Pressure Swing Adsorption Process 

Pressure swing or temperature swing adsorption systems using porous adsorbents have been 

practically used in gas separation, such as that for O2/N2 and CO2/CH4 [135,245,246]. In both systems, 

the maximum adsorption amount is an important factor for efficiency. However, the desorption amount 

per pressure or temperature swing is also important and this factor is strongly influenced by the profile 

of the adsorption isotherm (Figure 18). An adsorbent which shows a strong affinity to an adsorbate 

shows a steep uprise of adsorption isotherm at the low pressure region and such kinds of adsorbent 

sometimes have difficulty in recovering the adsorbed gas. 

Figure 18. Representative example of two types of adsorption isotherm and the 

relationship between the pressure swing width and the amount of recoverable gas. The red 

arrow shows the pressure swing width and the green arrow shows the recovered gas 

amount by the pressure swing from P2 to P1, respectively. 

 

Figure 19 and Table 5 show the CO2 adsorption isotherms on various adsorbent and recovered gas 

amounts by the pressure swing process calculated by the adsorption isotherms. The maximum amount 

of adsorbed gas on ELM-11 is moderate compared to other type I isotherm adsorbents. However, the 

recovered gas amount from ELM-11 by the pressure swing simulation is the largest because of the 

specific gate profile.  

If an adsorbate has a strong affinity to CO2 molecules, type I adsorption isotherm is obtained, but 

the affinity is too strong for the easy release of adsorbed gas. In this way, simple type I profiles pose 

the dilemma of the combination of strong adsorption and easy desorption. On the other hand, living 

systems solve this dilemma; hemoglobin realizes the strong adsorption and easy desorption of oxygen 

by cooperative structural transformation and the sigmoidal oxygen association-dissociation curve 

[247–249]. As in the case of hemoglobin, the gate profile, which is achieved by cooperative structural 

transformation, has the possibility to overcome the dilemma of strong adsorption and easy desorption. 

Therefore, the gate adsorption material has excellent potential applicability for the pressure swing 

adsorption process. 
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Figure 19. Carbon dioxide adsorption isotherms on various adsorbents at 273 K:  

green = zeolite 13X (13X APG); pink = BasoliteTM C300 (HKUST-1); orange = BasoliteTM 

A100 (MIL-53 (Al)); black = activated carbon fiber A-20; blue = ELM-11. BasoliteTM 

C300 and BasoliteTM A100 were purchased from Sigma-Aldrich Co. and were pretreated at 

473 K, 3 h in vacuo before adsorption measurement. Zeolite 13X APG was purchased from 

Union Showa K.K. and was pretreated at 523 K, 3 h in vacuo before adsorption 

measurement. 

 

Table 5. Maximum amount of adsorbed CO2 on various adsorbents and recovered gas 

amount by pressure swing at 273 K. 

Adsorbent 
Maximum amount of 
adsorbed gas/ml g-1 a 

Recovered gas amount by pressure 
swing (45→20 kPa)/ml g-1 b 

ELM-11 80 71 
C300 121 30 
A100 88 22 

13X APG 179 13 
A20 110 17 

a Measured by BELSORP-miniII (BELL Japan INC). 
b Calculated from the isotherms. 

5.2. Carbon Dioxide Gas Selectivity of ELM-11 

Around an ambient temperature and pressure, CO2 opens the gate of ELM-11 but N2 and O2 cannot 

open it at ambient temperature and pressure, while the gate of ELM-11 is opened by N2 and O2 at a 

much lower temperature or higher pressure. Therefore, it is anticipated that high CO2 separation ability 

form N2 and O2 at ambient conditions using ELM-11. Actually, the highly pure CO2 (>99%) was 

obtained from ternary mixture gas (CO2:N2:O2 = 40:47:13 mol%) using ELM-11 by the simple 

temperature swing operation [191]. This result shows the advantage of flexible gate materials for 

efficient gas separation. 
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5.3. Adsorption Kinetics 

The adsorption rate is an important factor for the industrial application of adsorbents. The 

adsorption rate of CO2 on ELM-11 was measured by the pressure jump method. In the case of the 

pressure jump from 150 to 735 Torr at 273 K and from 150 to 730 Torr at 298 K, half the amount of 

adsorption is reached within three minutes. Further, the adsorption rate of CH4 was also examined. 

When the pressure of CH4 increases from 2.0 to 5.5 MPa at 298 K, the adsorption amount peaks within 

one minute (Figure 20). From these experiments, it is revealed that the adsorption rate of ELM-11 is 

sufficiently rapid for practical use. 

Figure 20. Adsorption speed of CH4 on ELM-11 at 6.0 MPa at 298 K. 

 

5.4. Molding of the Powder of ELM-11 

Powder adsorbents must be shape-formed for easy handling in the case of industrial 

application [250]. Therefore, the process for making ELM-11 pellets was studied. A certain amount of 

pellet samples (10 mm in diameter, 3 mm in thickness, ρ = 1.3g/cm3) were made using a continuous 

pressing pelletizer with magnesium stearate (10 wt%) as a lubricant. The granulation of ELM-11 was 

also studied. Relatively hard (bead hardness = 130 cN, 1 mm diameter, 20 beads) granules with narrow 

particle distribution were obtained by a commonly used carbon granulation process using sugar as a 

binder (Figure 21).  

Figure 21. Shape forming of ELM-11: (a) pellet and (b) disk. 
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The effect of the shape forming on the gas adsorptivity was estimated by the CH4 gas adsorption on 

granulated ELM-11. Although there was a slight decrease of gate adsorption/desorption pressure, it 

retained a definite gate profile and large hysteresis, and the maximum amount of CH4 adsorption was 

the same as that of unprocessed powder samples (Figure 22). Hence, easily obtainable ELM-11 

powders are highly promising for real applications. 

Figure 22. Effect of shape forming on the gas adsorption property at 298 K: Powder 

sample (dashed line, open circle) and pelletized sample (0.5–1.0 mm in diameter; solid 

line, closed circle). 

 

5.5. Temperature Elevation with the Gate Adsorption of CH4 on ELM-11 

Figure 23. Rapid CH4 adsorption on ELM-11: The temperature was measured at the center 

of the sample (red line) and at the circumference (two positions: rigid line and thin line). 

 

Methane gas is adsorbed on ELM-11 rapidly as mentioned above and the temperature elevation of 

ELM-11 with the adsorption of CH4 was examined. Fifty grams of preELM-11 was packed in a 

stainless steel column, and the column was heated to 393 K under reduced pressure to convert the 
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preELM-11 to ELM-11. Next, CH4 was introduced to the column at 5.0 MPa, the pressure was 

increased from 5.0 to 6.0 MPa suddenly at 298 K, and the temperature of the adsorption column was 

monitored. The measured temperature elevation was only 3 K at the circumference of the column and 

only 6 K even at the center of the column (Figure 23). The maximum desorption due to the 

temperature rise is estimated to be less than 8%. If we mix the conductive carbon fibers with ELM-11 

powder, the temperature rise should be suppressed. 

5.6. Stability of ELM-11 

ELM-11 is hygroscopic and varies its structure to the preELM-11 when exposed to the air. 

Therefore, it is convenient that ELM-11 is stored in the form of preELM-11. As mentioned above, 

preELM-11 is easily converted to ELM-11 by heat treatment at 393 K under reduced pressure. The 

precursor preELM-11 is quite stable and can be stored at room temperature. No structural and 

adsorption performance degradation was observed when stored as the form of preELM-11 for six years 

in a plastic vial at room temperature. 

The stability of ELM-11 as an adsorbent was examined by repetition of CH4 adsorption-desorption 

experiments at 303 K. After the adsorption-desorption cycle was performed 50 times, almost no 

change in the maximum amount of adsorption and gate pressure (adsorption and desorption) was 

observed. It is noteworthy that the stacked layer architecture through weak interlayer interaction, such 

as hydrogen bonding and π-π interaction, shows such durability for the interlayer sliding and layer 

expansion/shrinkage modulation. 

The heat stability of ELM-11 was examined by thermal gravimetry. The precursor preELM-11 

released water molecules up to 420 K and changed its structure to ELM-11. No further weight loss was 

observed up to 420 K.  

PreELM-11 is easily prepared according to the reported procedure [99] and commercially available 

from Tokyo Chemical Industry Co., Ltd. Accordingly, from both the stand points of properties and 

availability, ELM-11 could be applicable to an industrial separation process.  

6. Catalytic Reaction of bpy Containing Two-Dimensional Layer PCPs/MOFs 

Although there are a dozen reports on reactions catalyzed by PCPs/MOFs [35,38,251–257], there 

are only a few examples of catalytic reaction using bpy containing 2DSG PCPs/MOFs. Fujita et al. 

reported on the cyanosilylation of aldehyde catalyzed by 2DSG-PCP/MOF, [Cd(bpy)2(NO3)2] [204]. 

Arai et al. reports the catalytic oxidation of ketones, and Baiker et al. reports the catalytic epoxide ring 

opening reaction using [Cu(bpy)(H2O)2(BF4)2]·bpy (preELM-11) [258–260]. The catalyst is not 2DSG 

ELM-11 but the one dimensional-CP, preELM-11. But preELM-11 changes its structure in alcoholic 

solvent: Transformation from preELM-11 to ELM-11 by immersion in alcohol at room temperature 

was confirmed by IR, powder XRD, and gas adsorptivity. Baiker et al. indicate the dehydration of 

preELM-11 by methanol soaking [260]. Therefore there may be a possibility that the true catalytic 

species may be ELM-11. One of the most interesting points of ELM-11 catalysts is the effect of the 

flexibility on the reaction. Reports on the utilization of the flexible nature of PCPs/MOFs to improve 

the selectivity or reactivity of catalytic reactions will no doubt appear on the scene in the near future. 
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7. Conclusions 

The rigid and linear exobidentate ligand, 4,4'-bipyridine (bpy) is one of the simplest ligands for the 

construction of PCPs/MOFs. The square grid structure constructed with bpy is one of the most 

fundamental motifs of the PCPs/MOFs structure. The two-dimensional square-grid layer stacking 

(2DSG) PCPs/MOFs, with appropriate metal cations and counter anions, only show structural 

transformation with the gate gas adsorption phenomena and such special 2DSG-PCPs/MOFs are called 

"elastic layer-structured metal-organic frameworks (ELMs)". In this review, we show a brief survey of 

general 2DSG-PCPs/MOFs with bpy and also survey the structure and function of the ELMs based on 

study of the author's group. 

Since the gate profile can put the desorption pressure close to adsorption pressure, these unique 

phenomena can make it possible to overcome the dilemma of strong adsorption and easy desorption, 

which is one of the ideal properties for a practical adsorbent. The fact that such a unique property can 

be achieved through the simple 2DSG-structure and the gate property can be regulated by changing the 

metal cation and counter ion while retaining the fundamental structure, is attractive from both 

academic and industrial perspectives. 

The ultimate functional organic architecture is animate beings. They have developed dexterous 

biological flexible structures using weak interactions. DNA and RNA store the genetic information in 

the hydrogen bonding between the base pairs and the enzyme's flexible nature derived from weak 

bonding improves the catalytic ability [261]. The "flexible adsorbent", hemoglobin attain the 

easy-adsorption and easy-desorption of oxygen. "Flexibility" should be the key factor which makes up 

the PCPs/MOFs as some of the ultimate artificial functional materials. 
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