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Abstract: Mycobacterium immunogenum, a newly identified member of the 

Mycobacterium chelonae_M. abscessus complex is considered a potential etiological agent 

for hypersensitivity pneumonitis (HP) in machine workers exposed to contaminated 

metalworking fluid (MWF). This study investigated the biocidal efficacy of the frequently 

applied commercial formaldehyde-releasing (HCHO) biocides Grotan and Bioban CS 1135 

and non-HCHO type biocides Kathon 886 MW (isothiazolone) and Preventol CMK 40 

(phenolic) toward this emerging mycobacterial species (M. immunogenum) in HP-linked 

MWFs, alone and in presence of a representative of the Gram-negative bacterial 

contaminants, Pseudomonas fluorescens, using two semi-synthetic MWF matrices 

(designated Fluid A and Fluid B). Relative biocide susceptibility analysis indicated 

M immunogenum to be comparatively more resistant (2–1600 fold) than P. fluorescens to 

the tested biocides under the varied test conditions. In terms of minimum inhibitory 

concentration, Kathon was the most effective biocide against M. immunogenum. Fluid 
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factors had a major effect on the biocide susceptibility. Fluid A formulation provided 

greater protective advantage to the test organisms than Fluid B. Fluid dialysis (Fluid A)  

led to an increased biocidal efficacy of Grotan, Kathon and Preventol against 

M. immunogenum further implying the role of native fluid components. Used fluid matrix, 

in general, increased the resistance of the two test organisms against the biocides,  

with certain exceptions. M. immunogenum resistance increased in presence of the  

co-contaminant P. fluorescens. Collectively, the results show a multifactorial nature of the 

biocide susceptibility of MWF-colonizing mycobacteria and highlight the importance of 

more rigorous efficacy testing and validation of biocides prior to and during their 

application in metalworking fluid operations. 

Keywords: metalworking fluid; Mycobacterium immunogenum; Pseudomonas fluorescens; 

biocide susceptibility; biocide resistance; formaldehyde 

Abbreviations: HCHO-biocide, formaldehyde-releasing biocide; ai, active ingredient; 

MWF, metalworking fluid; MIC, minimum inhibitory concentration 

 

1. Introduction  

Modern water-based metalworking fluids (MWFs) used as coolants and lubricants in many 

metalworking industries are available as synthetic or semi-synthetic formulations. These fluids are 

vulnerable to microbial colonization, the extent of which may depend on the fluid composition. 

Microbial growth reduces the quality and effectiveness of these fluids and may cause occupational 

health hazards in the exposed machinists [1–4]. Dilution of the commercially available MWF 

concentrate to a desired concentration with tap water before application provides an environment 

favorable for microbial contamination and growth. Furthermore, in-use metalworking fluids are well 

aerated through agitation and maintained at a temperature favorable for microbial growth in an open 

system, which collectively enhance the establishment of microbial consortia in MWF. Biocide 

application is a common practice to control the microbial build-up in metalworking fluids. However, it 

is generally believed that initial appearance of Gram-negative bacteria which degrade MWF 

characteristics prompts repeated biocide applications, which in turn select for the relatively biocide 

resistant microbial groups particularly mycobacteria. 

Several studies have suggested a possible relationship between MWF microflora and respiratory 

health hazards in metal workers particularly hypersensitivity pneumonitis (HP) [2,3,5–7]. Initial 

studies indicated the role of Gram-negative bacteria particularly pseudomonads [8,9] and their cell 

wall lipopolysaccharide (endotoxin) in causing occupational respiratory illnesses via exposure to the 

contaminated MWFs or their aerosols [10,11]. However, the attention soon focused on prevalence of 

the mycobacteria species of the Mycobacterium chelonae_M. abscessus complex in fluids associated 

with occupational respiratory illnesses [2,3,7,12–17]. In particular, M. immunogenum has been 

reported as the predominant or one of the predominant species colonizing MWF [18–23] and 

considered as a possible etiological agent for occupational hypersensitivity pneumonitis [6,15,18].  
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Limited controlled studies have been undertaken on evaluation of the effect of commercially 

available biocides on specific microorganisms of occupational health significance in industrial MWF 

formulations and effect of various fluid factors affecting their biocide efficacy [24–27]. Recently we 

reported efficacy of selected MWF biocides in a synthetic MWF formulation and saline [24]. Here we 

report the potential biocidal activities of formaldehyde-releasing (HCHO) and non-HCHO type 

biocides in commercial semi-synthetic metalworking fluid formulations toward M. immunogenum,  

an isolate from metalworking fluids associated with occupational HP, and P. fluorescens,  

a representative of the Gram-negative organisms in these fluids. These test organisms were studied 

individually and in mixed suspensions with an aim to determine the effect of fluid types, fluid dialysis, 

fluid use, and microbial mixture on biocide efficacy in MWF matrix. To our knowledge  

this is the first comprehensive biocide evaluation study in commercial semi-synthetic MWF  

formulations against the MWF-isolated Mycobacterium species alone and in presence of a common 

Gram-negative contaminant. 

2. Results and Discussion 

2.1. Effect of Fluid Type on Biocide Efficacy 

The test organisms, M. immunogenum and P. fluorescens, showed increased estimated MIC of the 

HCHO-releasing biocides (2.7–3.6 fold) in Fluid A as compared to Fluid B matrix (Figure 1A, B). The 

data indicate an additive effect of the native MWF components of Fluid B and the HCHO-biocides. A 

similar trend of increased MIC of P. fluorescens in Fluid A was observed against Grotan (3 fold; 

Figure 2A) and Bioban (1.6–2.5 fold; Figure 2B). However, P. fluorescens in mixed suspension 

showed a reverse trend with higher Grotan MIC estimate (1.3 fold) in Fluid B compared to Fluid A 

(Figure 2A). 

In contrast to the HCHO-biocides, Fluid A enhanced the microbicidal activity of non-HCHO 

biocides (Kathon and Preventol) against M. immunogenum (Table 1). This was also apparent from the 

increased MIC estimates (1.5–7 fold) in Fluid B compared to Fluid A matrix (Figure 1C, D). However, 

the trend was opposite for P. fluorescens, where an increased MIC estimate (1.5–4.3 fold) in Fluid A 

was observed with non-HCHO biocides (Figure 2C, D). 
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Figure 1. Effect of fluid type on biocidal efficacy toward M. immunogenum. Two different 

semi-synthetic fluid types (Fluid A and Fluid B) were used to investigate the biocidal 

activity of four individual test biocides namely, Grotan (Panel A), Bioban (Panel B), 

Kathon (Panel C) and Preventol (Panel D) in terms of minimum inhibitory concentration 

(MIC), either in single culture (pure) suspension or in mixed culture suspension (1:1 ratio 

with P. fluorescens) of M. immunogenum. The MIC values were based on 100% killing of 

the test organism and are means of the triplicates. The test organism was exposed to 

varying levels of the individual biocides for 60 min each in the two test MWF matrices. 

Abbreviations: Mi, M. immunogenum; S, Single culture suspension (pure suspension); 

M, Mixed culture suspension.  

 

Table 1. MIC estimates for different biocides in MWF based on complete growth 

inhibition at a particular contact time. 

Biocide Matrices 

Biocide Concentration (ppm) and Growth Inhibition  

M. immunogenum (60 min) P. fluorescens (15 min) 

100 1000 10,000 100,000 100 1000 10,000 100,000 

S M S M S M S M S M S M S M S M 

Grotan 

Fluid A(NUD) + + + + + + − − + + − − − − − − 

Fluid A(ND) + + + + + + − − + + − − − − − − 

Fluid B(ND) + + + + − − − − + + − − − − − − 

Fluid B(UD) + + + + + + − − + + + + − − − − 

Bioban 
Fluid A(NUD) + + + + − + − − − − − − − − − − 

Fluid A(ND) + + + + + + − − − − − − − − − − 
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Table 1. Cont. 

 
Fluid B(ND) + + + + − − − − − − − − − − − − 

Fluid B(UD) + + + + + + − − + + − − − − − − 

Kathon 

Fluid A(NUD) + + + + − − − − − − − − − − − − 

Fluid A(ND) + + − − − − − − − − − − − − − − 

Fluid B(ND) + + + + − − − − − − − − − − − − 

Fluid B(UD) + + + + − − − − − − − − − − − − 

Preventol 

Fluid A(NUD) + + + + − − − − − − − − − − − − 

Fluid A(ND) + + − + − − − − + + − − − − − − 

Fluid B(ND) + + + + − − − − − − − − − − − − 

Fluid B(UD) + + + + − − − − + + − + − − − − 

S: Single culture suspension; M: Mixed culture suspension; +: Growth on the plates; −: No growth; 

NUD: New undialyzed fluid; ND: New dialyzed fluid; UD: Used dialyzed fluid. 

Figure 2. Effect of fluid type on biocidal efficacy toward P. fluorescens. Two different 

semi-synthetic fluid types (Fluid A and Fluid B) were used to investigate the biocidal 

activity of four individual test biocides namely, Grotan (Panel A), Bioban (Panel B), 

Kathon (Panel C) and Preventol (Panel D) in terms of minimum inhibitory concentration 

(MIC), either in single culture (pure) suspension or in mixed culture suspension (1:1 ratio 

with M. immunogenum) of P. fluorescens. The MIC values were based on 100% killing of 

the test organism and are means of the triplicates. The test organism was exposed to 

varying levels of the individual biocides for 15 min each in the two test fluid matrices. 

Abbreviations: Pf, P. fluorescens; S, Single culture suspension (pure suspension);  

M, Mixed culture suspension. 
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Taken together, our results revealed a differential biocidal activity of HCHO- and non-HCHO 

biocides in the two fluid formulations (Fluid A versus Fluid B). For M. immunogenum,  

HCHO-biocides (Grotan and Bioban) were effective at lower concentrations in Fluid B as compared to 

Fluid A. On the other hand, non-HCHO biocides (Kathon and Preventol) were effective in Fluid A at 

lower concentrations. This could be because of a role of compatibility between the biocide and the 

fluid composition. In this context, earlier studies had suggested that interaction between corrosion 

inhibitors (ingredients in MWF) and added biocides was crucial in the biocidal efficacy 

outcome [1,28]. Considering this, presence of amines and borates in Fluid B might have exacerbated 

the biocidal activity of HCHO-biocides in this fluid as compared to Fluid A. A reverse trend observed 

with the non-HCHO biocides (more effective in Fluid A than in Fluid B) suggested the importance of 

the biocide type in this compatibility equation. In addition, Isothiazolone (Kathon) biocides are 

inactivated by nucleophiles [29]. This may explain the decreased biocidal activity of Kathon in Fluid B 

formulation, which is rich in amines (15%), as compared to Fluid A. In contrast with mycobacteria, 

P. fluorescens showed a different pattern of biocidal activity as all four biocides (both HCHO- and  

non-HCHO) were in general effective at lower concentrations in the Fluid B matrix as compared to 

Fluid A. This indicates the role of organism type as an additional factor in the biocide-MWF 

interaction phenomenon in determining the overall biocidal efficacy. In other words, the biocidal 

activity depends on the interaction among the active ingredient of the biocide, the native inhibitory 

components of the fluid, and the target organism. 

2.2. Effect of Fluid Dialysis on Biocidal Activity 

Pristine (unused) Fluid A was selected to study the effect of dialysis on the efficacy of the test 

biocides. The dialysis step was meant to investigate the role of fluid constituents less than 

3500 molecular weight size in biocide performance. 

For HCHO-biocides, M. immunogenum showed a mixed trend on the effect of fluid dialysis on the 

biocide efficacy either singly or in mixed suspension. For instance, Grotan showed increased MIC 

estimates (Figure 3A) in undialyzed fluid (23,000 ppm–32,000 ppm) compared to those after dialysis 

(17,000 ppm and 23,000 ppm), whereas Bioban showed increased MIC estimates in dialyzed fluid 

(Figure 3B). In contrast, P. fluorescens showed an increased MIC estimate (1.1–2 fold) for both the 

HCHO-biocides in the undialyzed fluid compared to dialyzed matrix (Figure 4A, B); the exception 

being the single culture suspension of P. fluorescens against Grotan where increased MIC estimate was 

observed (Figure 4A).  

 



Int. J. Mol. Sci. 2011, 12             

 

 

731 

Figure 3. Effect of fluid dialysis on biocidal efficacy toward M. immunogenum. 

Undialyzed and dialyzed forms of Fluid A were used to compare the biocidal activity of 

four individual test biocides namely, Grotan (Panel A), Bioban (Panel B), Kathon 

(Panel C) and Preventol (Panel D) in terms of minimum inhibitory concentration (MIC), 

either in single culture (pure) suspension or in mixed culture suspension (1:1 ratio with 

P. fluorescens) of M. immunogenum. The MIC values were based on 100% killing of the 

test organism and are means of the triplicates. The test organism was exposed to varying 

levels of the individual biocides for 60 min each in the two test MWF matrices. 

Abbreviations: Mi, M. immunogenum; S, Single culture suspension (pure suspension); 

M, Mixed culture suspension; UD, Undialyzed; D, Dialyzed. Fluid dialysis was meant to 

remove the native inhibitory substances.  

 

In contrast with the HCHO-biocides, the non-HCHO biocides showed an increased MIC  

estimate (1.75–7.5 fold) against M. immunogenum in undialyzed fluid compared to dialyzed fluid 

(Figure 3C, 4C). P. fluorescens showed an opposite trend with increased MIC estimates (1.5–8 fold) in 

dialyzed fluid (Figure 3D, 4D). Collectively, the results on non-HCHO biocides showed that dialysis 

caused an increase in biocide sensitivity of M. immunogenum, unlike P. fluorescens which showed 

decrease in sensitivity due to dialysis.  

Taken together, the fluid dialysis pre-step did seem to increase the biocide susceptibility of 

M. immunogenum against Grotan, Kathon and Preventol. This trend might be either because of 

removal of certain native fluid components potentially showing antagonism toward the biocide or due 

to a protective effect of <3500 molecular weight (M.W.) size components of the fluid that got removed 

by the dialysis process. 
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Figure 4. Effect of fluid dialysis on biocidal efficacy toward P. fluorescens. Two forms  

of Fluid A (undialyzed and dialyzed) were used to compare the biocidal activities of 

Grotan (Panel A), Bioban (Panel B), Kathon (Panel C) or Preventol (Panel D) toward 

P. fluorescens. The activities were compared in terms of mean minimum inhibitory 

concentration (MIC) in the given fluid matrix simulated with either a single culture (pure) 

suspension or mixed culture suspension (1:1 ratio with M. immunogenum) of 

P. fluorescens. The test organism was exposed to the varying levels of biocides for 15 min 

each in the two MWF matrices. Fluid dialysis was meant to remove the native inhibitory 

substances. Abbreviations: Pf, P. fluorescens; S, Single culture suspension (pure suspension); 

M, Mixed culture suspension; UD, Undialyzed; D, Dialyzed. 

 

On the other hand, a protective effect of the dialyzed fluid toward non-HCHO biocides (Kathon and 

Preventol) was observed for P. fluorescens. This protection may be due to removal of certain native 

components (<3500 M.W.) inhibitory to this organism. In contrast, HCHO-biocides showed increased 

biocidal activity in dialyzed as compared to undialyzed matrix, showing a possible protective effect of 

the native components toward the test organism. In an earlier study, specific MWF components 

including borate esters, triethanolamine, dicarboxylic acid, phosphate ester and polyglycol were shown 

to serve as sole carbon and/or nitrogen sources for the bacterial isolates and were indicated to be 

possibly responsible for the observed protective effect toward biocide action [30]. Grotan activity 

against pure culture suspension was the exception. Reduction in pH [28] could be the possible reason 

for this decreased activity of Grotan in dialyzed fluid, as this biocide requires slightly higher pH range 

(around 8.5) for its normal HCHO release and activity [28]. 
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2.3. Effect of Fluid Usage on Biocidal Activity 

Both the HCHO-biocides were less effective in the used fluid matrix than unused (pristine) fluid 

matrix against the two test organisms (M. immunogenum and P. fluorescens) in either (single or mixed) 

culture suspension. A 2.5–3.4 fold increase in MIC estimate was observed in the used fluid compared 

to unused fluid when the two HCHO-biocides were tested against M. immunogenum (Figure 5A, B).  

In case of P. fluorescens, a much higher MIC (18–35 fold) was required to kill the organisms in the 

used fluid (Figure 6A, B). 

Interestingly, the efficacy of the non-HCHO biocides toward M. immunogenum showed a mixed 

trend in the used versus unused matrix. Kathon efficacy toward the single culture (pure) suspension 

was higher in the used fluid matrix (MIC value of 4000 ppm) when compared to the unused matrix 

(MIC value of 5000 ppm; Figure 5C). The opposite was observed with mixed culture suspension of 

M. immunogenum where, the biocidal efficacy was higher in the unused fluid (MIC value of 5000 ppm) 

as compared to the used fluid (MIC value of 6000 ppm; Figure 5C). With Preventol, the efficacy 

toward M. immunogenum (Figure 5D) in single culture (pure) suspension was higher in the unused 

fluid matrix (refined MICs of 5000 ppm in pristine versus 9000 ppm in used) whereas a reverse pattern 

was true for the mixed culture suspension (refined MICs of 6000 ppm in unused versus 4000 ppm  

in used). 

Unlike M. immunogenum, P. fluorescens showed a clear trend of increased MIC estimate  

(3–20 fold) for non-HCHO biocides in used fluid compared to unused fluid matrix (Figure 6C, D). 

This showed a differential effect of the used matrix for the two test organisms, being protective for 

pure suspension type for M. immunogenum and for both suspension types for P. fluorescens.  

Figure 5. Effect of fluid use on biocidal efficacy toward M. immunogenum. Pristine 

(unused) and used Fluid B matrices were used to compare the biocidal efficacy of the four 

test biocides, Grotan (Panel A), Bioban (Panel B), Kathon (Panel C) and Preventol 

(Panel D), against M. immunogenum to know the effect of fluid use on biocidal activity. 

M. immunogenum was exposed to the varying concentrations of each test biocide as single 

culture (pure) suspension or mixed suspension (1:1 ratio with P. fluorescens) for 60 min 

each in the two MWF matrices. Abbreviations: Mi, M. immunogenum; S, Single culture 

suspension (pure suspension); M, Mixed culture suspension; UN, Unused; U, Used. 
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Figure 5. Cont. 

 

Figure 6. Effect of fluid use on biocidal efficacy toward P. fluorescens. Pristine (unused) 

and used Fluid B matrices were used to compare the biocidal efficacy of the four test 

biocides, Grotan (Panel A), Bioban (Panel B), Kathon (Panel C) and Preventol (Panel D), 

against P. fluorescens to know the effect of fluid use on biocidal activity. P. fluorescens 

was exposed to the varying concentrations of each test biocide as single culture (pure) 

suspension or mixed suspension (1:1 ratio with M. immunogenum) for 15 min each in the 

two MWF matrices. Abbreviations: Pf, P. fluorescens; S, Single culture suspension (pure 

suspension); M, Mixed culture suspension; UN, Unused; U, Used. 

 

Taken together, the results showed that the fluid use, in general, increased the antimicrobial 

resistance of the two test organisms, M. immunogenum and P. fluorescens, against the biocides, with 
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the exceptions discussed above. The clearly detectable protective effect of the used MWF matrix over 

pristine matrix might possibly be because of the presence of organic debris or fluid degradation 

products or loss of inherent inhibitory components in the used fluid. Earlier reports suggested that 

production of nucleophiles (amino acids, nucleic acids), drop in pH, and formation of enzymes could 

cause the resistance development and in turn lead to the enhanced survival of microorganisms [28]. 

Potential generation of these organic metabolites (nucleophiles, enzymes) may be expected in the field 

setting considering the practice of open tank storage and prolonged circulation of MWF, making it a 

reservoir for microbial contamination and activity. 

2.4. Increased Biocide Resistance of M. Immunogenum 

M. immunogenum was comparatively more resistant (2–1600 fold) than P. fluorescens with the 

tested biocides under the varied test conditions as also indicated by a much higher MIC range for the 

former than the latter (Table 1). For M. immunogenum, non-HCHO biocides were effective at a lower 

MIC range (<10,000 ppm) than the HCHO-biocides (>10,000 ppm) with some exceptions. Likewise, 

for P. fluorescens, the non-HCHO biocides required lower doses (MICs < 100 ppm) as compared to 

the HCHO- (>100 ppm) biocides (Table 1). More biocide resistance in M. immunogenum than P. 

fluorescens against all test biocides might be due to its intrinsic resistance mechanism (lipid-rich cell 

wall, efflux pumps, etc.) against chemical biocides. Overall, the results of this study indicated that the 

non-HCHO biocides (Kathon and Preventol) are more efficient in controlling the test organisms, 

M. immunogenum and P. fluorescens, compared to the HCHO-releasing biocides (Grotan and Bioban). 

Between the two non-HCHO biocides, Kathon (an Isothiazolone biocide) was the better performing 

biocide than Preventol (a phenolic biocide). In contrast, no such clear difference was observed between 

the efficacy of the two HCHO-releasing biocides (Grotan and Bioban). Although Kathon appeared to 

be the most effective among the four tested commercial biocides against Mycobacterium, there was 

some degree of Kathon resistance observed in this organism as compared to Pseudomonas. 

Isothiozolone (the active component in Kathon) is known to be inactivated by thiols. Mycobacteria 

produce mycothiol, a unique thiol compound comprised of N-acetylcysteine amide [15]. The 

mycobacterial thiol may detoxify the thiol reactive active component in Kathon biocide [31] thereby 

reducing its efficacy. Since the Isothiazolone has been reported to be activated in alkaline pH [1], the 

prevalence of high pH in MWF matrix (pH 8–10) might have caused an increased biocidal activity of 

Kathon in MWF. Preventol, a phenol-based biocide exhibits surface-active properties and thus causes 

generalized disruption of the cell membrane, which results in cell lysis and progressive loss of 

intracellular contents of organisms [32]. However, such phenolic biocides are weak in physical 

interaction with lipid-rich components of the bacterial cell wall and this phenomenon could be 

responsible for the relatively greater resistance of M. immunogenum to Preventol [33].  

The relatively lower effectiveness (in terms of MIC) of HCHO-releasing biocides, Grotan and 

Bioban, against M. immunogenum could be partially attributed to their mode of action, which involves 

surface activity of the released active component (formaldehyde) on bacterial cells [34]. The 

hydrophobic and waxy nature of mycobacterial cell wall discourages the interaction of formaldehyde 

and thus provides protection against HCHO-biocides. The mycothiol provides another important 
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protective mechanism against HCHO-biocides via detoxification of the active component 

formaldehyde [31]. 

2.5. Role of Co-Contamination in Biocide Susceptibility of the Test Organisms 

In general, both the test organisms showed increased biocide resistance (0–4 fold) in mixed culture 

suspensions compared to single culture (pure) suspensions except in a few instances. M. immunogenum 

was found to be more resistant in mixed suspension than in pure suspension, to both HCHO- and  

non-HCHO biocides in all matrices; the exceptions being Bioban and Preventol in used Fluid B matrix. 

The relative biocidal resistance of P. fluorescens in mixed suspension toward different test biocides in 

all matrices was also increased, except for Grotan in dialyzed Fluid A. An increased biocidal resistance 

of both M. immunogenum and P. fluorescens in presence of a co-contaminant suggests a possible 

protective mechanism among the microbial communities in MWF environment leading to their 

enhanced ability to resist biocide. The extent of protection varied with the biocide possibly due to 

differential distribution of the individual biocides between the two organisms and a consequent 

dilution effect. Reasons for the exceptions (Bioban and Preventol for M. immunogenum and Grotan for 

P. fluorescens) are however not clear. 

3. Experimental Section 

3.1. Microbial Isolates and Culture Conditions 

Two test organisms, namely, Mycobacterium immunogenum (ATCC 700506), an MWF-isolate, and 

Pseudomonas fluorescens (ATCC 13525), a representative of the Gram-negative organisms in MWF, 

were used in this study. The organisms were cultured using M7H9 broth and M7H10 agar (Difco, 

Detroit, MI) supplemented with Oleic acid-Albumin-Dextrose-Catalase enrichment (OADC, BD 

Biosciences, Sparks, MD). The cultures of M. immunogenum and P. fluorescens were  

grown in 40 mL of broth with continuous shaking (150 rpm) at 37 °C for 120 h and at 25 °C for  

24 h, respectively.  

3.2. Metalworking Fluids 

Two commercial semi-synthetic metalworking fluid formulations, arbitrarily designated for 

proprietary reasons as Fluid A (pristine) and Fluid B (pristine or in-use), were obtained from an 

industrial setting for use in this study. According to the manufacturer’s specifications, Fluid A is a 

―biocide free‖ formulation whereas Fluid B is a ―biocide added‖ formulation and the two have some 

basic compositional differences as well. Initially, we used a 5% (v/v) dilution of these MWF 

formulations but no bacterial growth was observed in either of the matrices indicating the presence of 

certain inhibitory constituents in these formulations. This warranted the selection and use of a non-

inhibitory fluid concentration (2% v/v), standardized in our hands for the purpose, for the two test 

organisms (data not shown). A field used version of Fluid B obtained from the same commercial 

source that supplied the pristine fluid was used for comparison in this study. 
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3.3. Biocides 

Four commercial biocides were evaluated in this study. Of these, two biocides were  

HCHO-releasing type, namely Grotan (Troy Chemical Corp., Newark, NJ) and Bioban CS  

1135 (DOW Chemical Co., Midland, MI). The active ingredients were hexahydro-1,3,5-tris(2-

hydroxyethyl)-s-triazine (78.9%) for Grotan and 4,4-Dimethyloxazolidine-3,4,4-trimethyloxazolidine 

(76%) for Bioban. An isothiazolone group biocide, Kathon 886 MW (Rohm & Hass Co., Philadelphia, 

PA) with 14.1% 5-chloro-2-methyl-4-isothiazolin-3-one as the active ingredient and a phenolic 

biocide, Preventol CMK 40 (Bayer Chemicals Corp., Pittsburgh, PA) with 4-chloro-3-methylphenol 

sodium salt (46.13%) as the active ingredient, were also tested. 

3.4. Fluid Dialysis 

Dialysis strategy (using 3500 M.W. cut-off membrane tubing) was used to get rid of the native 

inhibitory components in Fluid A matrix and to remove the blended biocide as well as native inhibitory 

components in Fluid B matrix. To study the effect of fluid dialysis process on inhibitory potential of a 

test biocide, 2%-undialyzed and 2%-dialyzed forms of pristine Fluid A were compared. To study the 

effect of fluid usage, dialyzed version of the pristine and used Fluid B matrices were compared. 

3.5. Biocide Susceptibility Testing 

Same batch of the culture for a given test organism was used in all treatments with a given test 

biocide to minimize the experimental variations. The bacterial cultures were grown in 40 mL of 

Middlebrook (MB) broth at corresponding temperature-time conditions to a cell density equivalent to 

120 Klett reading measured using Klett Photoelectric Colorimeter (Klett, New York). The cell counts 

corresponding to this Klett reading were determined to estimate the dilution requirements for achieving 

a constant initial number of cells (10
8
 CFU/mL) in MWF matrix for the biocide efficacy experiments. 

To understand the effect of co-contaminantion on biocide sensitivity of individual test organisms, the 

test fluid was spiked with the test organisms, individually or in mixture (1:1 ratio), and the minimum 

inhibitory concentration (MIC), in terms of concentration needed to kill all cells, was determined for 

individual biocides.  

The test organisms were treated with the individual biocides singly and in mixed suspension at 

different biocide concentrations in a two-step experiment. In the first step, the treatment involved a 

random broad concentration range of the biocide (100, 1000, 10,000 and 100,000 ppm) for different 

contact times (15, 30, 45 and 60 min) to determine the MIC estimates. In the subsequent step, a refined 

MIC value was determined by varying the concentrations between the estimated MIC concentration 

and its nearest lower concentration, at the estimated contact time. For instance, if the MIC estimate 

observed in the first step was 10,000 ppm, then we tested 1000 to 10,000 ppm range using 1000 ppm 

increments in the second step. In case of M. immunogenum, a further refinement of the MIC value was 

achieved by an additional narrowing down step. 

Viability of the test suspensions, after biocide treatment and serial dilution in neutral phosphate 

buffered saline (PBS), was estimated by plating on the M7H10 agar followed by incubation at 37 °C 

for 120 h (M. immunogenum) and 25 °C for 24 h (P. fluorescens) as described earlier (24). In case of 
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mixed suspension treatments, selective counts for the individual test organisms were obtained by 

differentially incubating the two different sets of M7H10 agar plates at either temperature of 

incubation (37 °C for M. immunogenum and 25 °C for P. fluorescens), as above.  

4. Conclusions 

M. immunogenum was relatively more resistant to the test biocides as compared to the Gram-negative 

test organism P. fluorescens. In addition, higher amounts of the HCHO-releasing biocides (Grotan and 

Bioban) were needed as compared to the non-HCHO biocides (Kathon and Preventol) to completely 

inactivate M. immunogenum in semi-synthetic MWF matrix. The observations pointed to the limitation 

of these existing commonly applied commercial MWF biocides in terms of their efficacy to control 

mycobacteria in these fluids. Hence, in addition to the need for development and evaluation of novel 

biocides, screening of a library of existing non-HCHO biocides against MWF-relevant test strains may 

be pursued to identify potentially more effective biocides for MWF-colonizing mycobacteria. On the 

other hand, the study highlights the role of fluid factors in understanding the efficacy of biocides 

toward the test organisms in metalworking fluids. The results showed a fluid type-dependent 

differential biocidal efficacy, indicating the importance of compatibility between the biocide and MWF 

matrix. Fluid dialysis studies indicated varying interaction of the inherent components of MWF with 

individual biocide groups thereby affecting the biocide efficacies. Used fluid matrix conferred 

increased resistance to the test organisms. This implies that prior fluid colonization activities including 

microbial degradation of MWF and biocide and further metabolic activities of microbes on the 

degraded products may lead to enhanced survival and growth of microbial contaminants and poor 

longevity of a biocide. The observed mutual protection against biocide killing between P. fluorescens 

and M. immunogenum in a mixture indicates that once the microbial communities containing  

Gram-negative and acid-fast bacteria are developed in the metalworking fluid environment they are 

able to tolerate relatively higher concentrations of biocides possibly due to biocide distribution and 

dilution effect. The above observations on multifactorial nature of the biocide susceptibility of 

mycobacteria in MWF suggest that efficient biocide control of microorganisms in these fluids would 

require proper fluid management practices including regular monitoring of the critical fluid factors in 

an industrial setting.  
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