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Abstract: This study evaluates the pre-treatment of cellulose from kenaf plant to yield 

sugar precursors for the production of ethanol or butanol for use as biofuel additives. In 

order to convert the crystalline cellulosic form to the amorphous form that can undergo 

enzymatic hydrolysis of the glycosidic bond to yield sugars, kenaf pulp samples were 

subjected to two different pre-treatment processes. In the acid pre-treatment, the pulp 

samples were treated with 37.5% hydrochloric acid in the presence of FeCl3 at 50 °C or  

90 °C whereas in the alkaline method, the pulp samples were treated with 25% sodium 

hydroxide at room temperature and with 2% or 5% sodium hydroxide at 50 °C.  

Microwave-assisted NaOH-treatment of the cellulose was also investigated and 

demonstrated to be capable of producing high glucose yield without adverse environmental 

impact by circumventing the use of large amounts of concentrated acids i.e., 83–85% 

phosphoric acid employed in most digestion processes. The treated samples were digested 

with the cellulase enzyme from Trichoderma reesei. The amount of glucose produced was 

quantified using the Quantichrom
TM

 glucose bioassay for assessing the efficiency of 

glucose production for each of the treatment processes. The microwave-assisted alkaline 

pre-treatment processes conducted at 50 °C were found to be the most effective in the 

conversion of the crystalline cellulose to the amorphous form based on the significantly 

higher yields of sugar produced by enzymatic hydrolysis compared to the untreated sample. 
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1. Introduction 

Kenaf (Hibiscus cannabinus) is a woody plant cited by the researchers at the United States 

Department of Agriculture (USDA) as one of the most promising crops for industrial development [1]. 

The crop is an excellent choice for soil and water remediation as well as a top producer of bioenergy 

feedstock. Currently, it is grown mostly for the purpose of yielding cellulosic fibers for pulp and paper 

industry. Researchers are working on converting the by-products from the paper processing into 

fertilizer and feed binder. The kenaf fiber is superior to wood fiber for paper, textiles, and pressed 

wood materials. The foliage provides a high quality forage resource while the remainder of the plant 

can be used to produce animal bedding and litter with high absorption capacity and odor control media. 

The crop is disease-resistant and does not require herbicide, pesticide, or heavy fertilizer  

inputs [2,3]. Therefore, the biomass production is cost effective and ecologically sustainable. The 

kenaf cellulosic materials could be a renewable source of fermentable sugars for the production of 

ethanol and n-butanol fuel additives. To make this economically viable, the cellulosic materials must 

be converted to a form that can be degraded by chemical or biological processes.  

The cellulose of plant cell wall contains an abundance of glucose monomers bonded via  

β(1-4)-glycosidic linkages. The polysaccharide is in the form of a straight chain, which allows its 

hydroxyl groups to undergo both inter-molecular and intra-molecular hydrogen bonding. Therefore, 

cellulose has a highly crystalline structure making it difficult for the cellulase enzyme to access and 

hydrolyze the linkages to release the glucose units [4,5]. The resistance of the cellulose structure to 

cellulase digestion is due to the degree of crystallinity as well as the shielding by the hemicellulose and 

lignin barriers. Cellulase, which function through the synergistic action of three of its components, i.e., 

the exo-β-glucanase, endo-β-glucanase, and β-glucosidase readily access and hydrolyze the  

β(1-4)-glycosidic linkages in amorphous or highly decrystallized cellulose. Various pre-treatment [5–7] 

techniques including mercerization [8,9] and dissolution [10,11] procedures have been used to 

transform the natural cellulose (CI) structure of wood, cotton linter, and sugar cane bagasse to the 

cellulose II (CII) and amorphous form. In these studies, the degrees of transformation were evaluated 

using the wide-angle X-ray scattering (WAXS) technique [12,13], the 
13

C NMR spectroscopy [14,15], 

or the 
13

C-CP/MAS NMR spectroscopy techniques [16], all of which are effective for monitoring 

changes in cellulose crystals. Other techniques useful for studying lignocellulose materials include the 

conventional dispersive Raman spectroscopy [17,18] and the near-infrared Fourier Transform Raman 

spectroscopy [19,20]. 

A recent method developed by Cellulose Science International (CSI) for decrystallization of corn 

stover reportedly result in 69% glucose conversion, which is almost double the usual 36% conversion 

after 10 hours of enzymatic hydrolysis [21]. The procedure requires two stages including initial enzyme 

hydrolysis, which result in about 40% conversion followed by the decrystallization process for the 

residual cellulose that is recalcitrant toward the initial hydrolysis. Another two-step mild 
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alkaline/oxidative pre-treatment procedure at low temperature by conventional heating took a total of 

48 hours to successfully lower the hemicellulose content of wheat straw [22]. Zhu and co-workers 

accelerated the heating process to 60 minutes using domestic kitchen microwave coupled with alkali [23] 

or a combination of acid/alkali/H2O2 [24] pre-treatment and showed that the microwave/acid/alkali/H2O2 

procedure was most effective at removing most of the hemicellulose barrier from rice straw resulting in 

the highest glucose yield. The present study investigates the effectiveness of cellulose decrystallization 

in kenaf pulp using NaOH and ethanol pre-treatment with a microwave reactor versus an acid-

catalyzed method. The outcome was evaluated by the amount of glucose produced after enzymatic 

hydrolysis by the cellulase enzyme from Trichoderma reesei.  

2. Experimental Section 

2.1. NaOH Pre-Treatment of Avicel and Kenaf Using Microwave 

Microcrystalline cellulose or Avicel PH-101 from Fluka Biochemika was purchased from  

Sigma-Aldrich, St. Louis, MO, USA. The Avicel powder was treated using a modified mercerization 

method [8] with and without exposure to microwave energy. A quantity of 0.6 g Avicel powder was 

treated with 25% (w/w) sodium hydroxide in 10% (w/w) ethanol (Pharmco-AAPER, Shelbyville, TN, 

USA) co-solvent at room temperature for 45 minutes. In one pre-treatment procedure, the ethanol  

co-solvent and the NaOH base were added to the kenaf pulp for a total treatment time of 45 minutes. In 

another, the ethanol was added after 30 minutes of initial NaOH pre-treatment and mixed for an 

additional 15 minutes at room temperature. The Discover
TM

 microwave reactor (CEM Corporation, 

Matthews, NC, USA) was programmed with a temperature setting of 22 °C at 300 psi for a holding time 

of 30 minutes, with the stirring rate set on ―high‖; the maximum microwave power was set at 5 watts and 

the actual power recorded was at 1 watt. To facilitate the decrystallization, the NaOH/ethanol-treated 

samples were washed repeatedly with water containing 10% (w/w) ethanol until pH 7. The ―Walseth‖ 

was made by treating the Avicel powder with cold 85% phosphoric acid according to the method 

described by T. W. Jeffries [25]. The ―Walseth‖ and untreated Avicel were used as controls.  

Kenaf or Hibiscus cannabinus used in this study was grown locally. The cores of the stalks were 

ground into a fine pulp after the bark was removed. The amount corresponding to 0.6 g of kenaf pulp 

was soaked in approximately 25–28% (w/w) sodium hydroxide for 30 minutes at room temperature 

before adding the 10% (w/w) ethanol co-solvent. The experiments were carried out either with or 

without applying microwave energy in order to assess the contribution of microwave to improving 

yields. The pulp in the NaOH-ethanol solvent was mixed continuously for 15 minutes. Pre-treatment of 

kenaf pulp was repeated with 2% (w/w) and 5% (w/w) sodium hydroxide at 50 °C for 30 minutes 

without and with microwave followed by the 10% ethanol co-solvent treatment. The microwave power 

setting for the 50
 
°C pre-treatment was 50 watts but the recorded power ranged from 7–9 watts. The 

microwave pressure setting was at 300 psi, hold time at 30 minutes, and stirring set on ―high‖. The 

microwave temperature was monitored by an infrared sensor so that the microwave power could be 

automatically adjusted to maintain a constant temperature. Additional regulation was achieved by 

directing a stream of cold air into the chamber that housed the sample tube. Pre-treated kenaf samples 
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were washed repeatedly with water containing ethanol until pH 7 and stored at 4 °C. Untreated kenaf 

pulp and pulp treated with cold 85% phosphoric acid [25] were used as controls. 

2.2. Acid Pre-Treatment of Kenaf 

Kenaf pulp samples were subjected to different pre-treatment conditions (T1–T3) as described in 

the Table 1. 

Table 1. Pre-treatment conditions for Kenaf samples. 

Samples T1:HCl-FeCl3 T2: HCl only T3:FeCl3 only 

Kenaf 1.5 g 1.5 g 1.5 g 

dH2O 5.0 g 5.0 g 5.0 g 

12 M HCl 3.0 mL 3.0 mL 3.0 mL dH2O 

FeCl3 0.5 g -------- 0.5 g 

Treatments were carried out at 50 °C for 3 hours and 90 °C for 15 minutes. Glycerol was used in 

place of deionized water (dH2O) for samples treated at 90 °C to prevent acid-induced charring at higher 

temperatures. Prior to cellulase treatment, samples were washed several times with deionized water 

until pH 7 was obtained and stored at 4 °C. 

2.3. Enzyme Hydrolysis and Glucose Assay 

Pre-treated pulp and Avicel equivalent to 25 mg dry weight were re-suspended in 0.05 M of sodium 

acetate buffer at pH 5.2 to which 50 units of cellulase enzyme from Trichoderma reesei was added to a 

final volume of 5 mL after equilibrating the samples for 10 minutes in a water bath at 50 °C. Samples 

for glucose analysis were collected at 3.0, 6.0, and 24 hours after adding the cellulase. The undigested 

Avicel and kenaf fibers were pelleted and the supernatant solution was assayed for glucose. The 

amount of glucose produced was quantified using the Quantichrom
TM

 glucose bioassay (Thermo Fisher 

Scientific Inc., Waltham, MA) for assessing the efficiency of glucose production for each treatment 

method. The method involved boiling the samples in a reagent for 8 minutes before being cooled for 4 

minutes prior to measuring the optical density at 630 nm with the Hitachi U-2000 UV-Vis 

spectrophotometer. The digestion was carried out for triplicate samples with each sample being 

subjected to bioassays for glucose levels three times. 

2.4. Raman Microscopy Analyses 

Moist pre-treated kenaf fiber samples were sandwiched between two Grade-4 mica sheets of  

15 × 15 × 0.15 mm (SPI supplies, West Chester, PA, USA). The degree of delignification and 

decrystallization of the kenaf fibers was evaluated using the ProRaman-L Raman spectrometer 

(Enwave Optronics, Irwine, CA, USA) that was coupled to an Olympus CX31 microscope. The 

spectrometer has a 785-nm laser for sample excitation and a maximum laser power of 300–400 mW. 

The kenaf fiber was imaged and probed using a 40x microscope objective (MEIJI Techno, Japan) with 

a finite tube length objective (F) of 200 mm and a working distance of 0.5 mm. The Raman spectral 

measurements were acquired with the integration time of 130–150 seconds.  
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3. Results and Discussion 

3.1. Alkaline Pre-treatment of Avicel 

The alkaline pre-treatment that was normally used in mercerization processes [8] with 10% ethanol 

co-solvent [9,21] resulted in relatively high glucose yields for both the Avicel (Table 2) and kenaf pulp 

(Table 3a and 3b) when compared with the untreated samples. The cellulase readily digested the 

NaOH-treated Avicel samples with about 85–89% conversion to glucose after 3 hours of  

pre-treatment. The ―Walseth‖ or phosphoric acid treated Avicel control had about 94% conversion to 

glucose completed by 3 hours of digestion. Compared to untreated Avicel, the relative glucose yield for 

the ―Walseth‖ and the 25% NaOH-treated samples were about 2.7 times and 2.4 times the yield of the 

untreated sample, respectively. The digestion was almost complete with about 96–100% glucose 

conversion after 6 hours of enzymatic digestion for all the samples except for the untreated Avicel with 

only 71% conversion. The best three experimental measurements of glucose production for the  

NaOH-treated samples produced relative yields that ranged from 2.0–2.1 times the yield of the 

untreated sample. These values were comparable with the 2.1 times relative glucose yield of the 

―Walseth‖ sample after 6 hours of enzyme digestion. Prolonging the digestion time until 24 hours gave 

more time for the enzyme to penetrate and access the structure of the untreated samples. The 25% 

sodium hydroxide pre-treatment carried out at room temperature was conducive to disrupting the 

crystalline structure of Avicel that the additional treatment with low microwave energy was not 

necessary and did not result in any significant improvement in sugar yields. In fact, the difficulty in 

maintaining a low temperature during the microwave treatment may have resulted in the loss of the 

ethanol co-solvent and hence, lower sugar yields for the Avicel sample with the ethanol present during 

the microwave process (Table 2). This is consistent with previous findings that the ethanol co-solvent 

is important for maintaining the stability of the sample state of decrystallinity [21]. 

Table 2. Glucose produced by NaOH-treated Avicel. Avicel was treated with 25% NaOH 

with and without microwave energy at room temperature. The 10% ethanol co-solvent may 

be present with the NaOH or added after the initial NaOH treatment. The amount of 

glucose produced after 
a
 3.0, 

b
 6.0, and 

c
 24 hours of cellulase digestion of pre-treated 

Avicel was determined using the glucose bioassay. In order to correct for variations in 

cellulase activities during the experiment, the relative yield of glucose from each sample 

was compared with the glucose produced from the untreated Avicel control experiment 

conducted at the same time. 

 Control No Microwave Microwave Control 

Samples 
―Walseth‖ 

Avicel 

NaOH − 30 min, 

EtOH − 15 min 

NaOH + EtOH 

− 45 min 

NaOH − 30 min, 

EtOH − 15 min 

NaOH + EtOH 

− 45 min 

Untreated 

Avicel 

a.[Glucose] mg/dL 534 ± 16 480 ± 6 478 ± 12 481 ± 16 453 ± 8 200 ± 5 

Relative Yield  2.7× 2.4× 2.4× 2.4× 2.3× 1.0× 

b.[Glucose] mg/dL 552 ± 7 559 ± 13 542 ± 19 542 ± 8 499 ± 6 268 ± 3 

Relative Yield  2.1× 2.1× 2.0× 2.0× 1.9× 1.0× 

c.[Glucose] mg/dL 570 ± 34 559 ± 22 565 ± 19 551 ± 22 507 ± 8 376 ± 11 

Relative Yield  1.5× 1.5× 1.5× 1.5× 1.4× 1.0× 
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3.2. Alkaline Pre-Treatment of Kenaf Pulp 

Table 3. (a) and (b). Comparison of Glucose Levels Produced by NaOH-treated Kenaf 

under Different Experimental Conditions. Kenaf pulp was treated with different 

concentrations of NaOH either with or without the use of microwave energy for 30 minutes 

followed by 10% ethanol co-solvent pretreatment for an additional 15 minutes. The amount 

of glucose produced after 24 hours of digestion by cellulase of the pre-treated kenaf was 

determined. In order to correct for variations in enzyme activities when comparing glucose 

yields for various sets of experiments, relative yields of glucose production are calculated 

by dividing the glucose yields of treated samples by the glucose yields of the untreated  

kenaf sample. 

(a) 

Conditions  50
 
°C, 30 minutes  

 Control Conventional Heating Microwave Heating Control 

Samples PO4
3−

 Kenaf  2% NaOH  5% NaOH 2% NaOH  5% NaOH Untreated Kenaf 

[Glucose] mg/dL 89 ± 4 228 ± 6 251 ± 5 269 ± 2 283 ± 5 79 ± 6 

Relative Yield  1.1× 2.9× 3.2× 3.4× 3.6× 1.0× 

(b) 

Conditions  Room Temperature, 30 minutes  

 Control No Microwave Microwave Control 

Samples PO4
3−

 Kenaf 25% NaOH  25% NaOH  Untreated Kenaf 

[Glucose] mg/dL 125 ± 5 321 ± 10 298 ± 6 124 ± 4 

Relative Yield  1.0× 2.6× 2.4× 1.0× 

Kenaf fibers were more difficult to digest compared to Avicel because of the hemicellulosic and 

lignin content [26]. Hence, the kenaf samples were digested for 24 hours with cellulase before 

quantifying the glucose yield (Table 3a and b). The kenaf pulp treated with 25% NaOH at room 

temperature without the use of microwave energy resulted in about 2.6 times the relative glucose yield 

of the untreated pulp after 24 hours of cellulase digestion (Table 3b) suggesting that the pre-treatment 

improved the accessibility of the pulp to the cellulase enzyme. Room temperature pre-treatment using 

low microwave energy gave similar results of glucose conversion, yielding about 2.4 times the amount 

of glucose obtained for the untreated pulp. However, the 2% and 5% NaOH pre-treatment conducted at 

a higher temperature of 50
 
°C using conventional heating significantly improved the relative glucose 

yield of the pulp to respectively, 2.9 and 3.2 times that of untreated pulp. This suggests that 

temperature enhances the pre-treatment processes even at low NaOH concentration. The increase in the 

microwave power to accommodate the increase in treatment temperature from 25 °C to 50 °C led to 

yields of glucose for the 2% and 5% NaOH-treated pulp that were 3.4 and 3.6 times, respectively, 

relative to the glucose concentration found in the untreated samples (Table 3a). In fact, the 

combination of microwave and 2% NaOH treatment resulted in a higher glucose yield than those 

obtained with conventional heating of the 2% NaOH and 5% NaOH-treated pulp (Figure 1a). This 

suggests that the presence of microwave energy can further aid in the decrystallization of the cellulose 

structure of the kenaf fibers. Using low power microwave energy did not result in the same benefit and 

therefore, the yield from the microwave-assisted 25% NaOH-treated pulp did not improve compared to 
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pulp treated with 25% NaOH at 25 °C without microwave (Figure 1b). Unlike the ―Walseth‖ Avicel, 

which produced the maximum glucose yield, the kenaf pulp treated with cold 85% phosphoric acid was 

no better than the untreated pulp in terms of glucose yield. The fibers were either more resistant to the 

acid pre-treatment at low temperature than Avicel because of the shielding by the hemicellulose and 

lignin or the decrystallization were not stable since the pre-treated fibers were washed in water instead 

of ethanol-water co-solvent. Since the digestibility of the cellulosic biomass in most biobased 

feedstocks are directly related to the hemicellulose removal [27], it is possible that the phosphoric acid 

pre-treatment method did not effectively remove most of the hemicellulose in the kenaf fibers and 

therefore the glucose yield was as low as that for untreated pulp. 

Figure 1. The Effects of Different NaOH Treatment Conditions on the Digestibility of 

Kenaf Pulp. The base treatment was performed with different percentages of NaOH and 

temperatures under the conditions of without microwave (solid column) and with 

microwave power (striped column). The phosphoric acid treated kenaf (-■-) and the 

untreated kenaf (-■-) were the controls. The columns indicate the amount of glucose 

produced after 24 hours of enzymatic digestion of the pre-treated kenaf by cellulase. (a) 

Glucose produced by kenaf pre-treated with 2% (■) and 5% (■) NaOH at 50
o
C without and 

with microwave energy. (b) Glucose produced by kenaf pre-treated with 25% (■) NaOH at 

room temperature without and with microwave energy. 
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temperature of 90 °C for 15 minutes resulted in 1.4 times the glucose yield of the untreated sample 

whereas the same pre-treatment carried out at 50 °C for 3 hours resulted in a 1.2 times the glucose 

yield of the untreated sample (Table 4). These values are significantly lower than those obtained using 

the 2% and 5% NaOH-treatment method. A high relative yield of 1.8 times the glucose produced in 

untreated sample was obtained at the 90 °C with HCl only pre-treatment indicated that the FeCl3 

catalyst was not required at very high temperature. To avoid any potentially undesirable side reactions 

of acid hydrolysis and the reduced decrystallinity effect on the cellulose at high temperature with 

longer reaction time as observed by Zhang et al. [10], the reaction time for the high temperature 

treatment was reduced to 15 minutes. In addition, glycerol, a less volatile solvent with a boiling point 

of 290
 
°C, was used in place of water for the high temperature pre-treatment process. 

Table 4. Glucose Produced By Acid Pre-treated Kenaf. The amount of glucose produced 

after 24 hours of digestion by cellulase was determined. To avoid variations in enzyme 

activities, the yields of glucose for the treated samples are divided by the glucose yield for 

the control or untreated kenaf sample to give relative yields. The phosphoric acid treated 

kenaf was an additional control that was conducted at the same time with the batch of kenaf 

samples pre-treated for 0.25 hours at 90 °C. 

Treatment 50 °C for 3 Hours Control 90
 
°C for 0.25 Hours 

Samples 
HCl–

FeCl3 
HCl FeCl3 

Untreated 

Kenaf 

PO4
−3 

Kenaf 

HCl–

FeCl3 
HCl FeCl3 

Untreated 

Kenaf 

[Glucose] mg/dL 97 ± 2 89 ± 4 78 ± 3 81 ± 3 67 ± 4 94 ± 3 119 ± 5 58 ± 4 68 ± 4 

Relative Yield 1.2× 1.1× 1.0× 1.0× 1.0× 1.4× 1.8× 0.9× 1.0× 

3.4. Raman Analyses of Kenaf Fibers 

Raman spectral analysis of the NaOH-treated kenaf fibers showed that the lignin band due to the 

symmetric aryl ring stretching at 1608 cm
−1

 [20,28] was significantly reduced in the treated fibers 

relative to the untreated fibers (Figure 2a, b). It was also observed that the Raman peak at 2944 cm
−1

, 

which was attributed to the asymmetric CH stretch of OCH3 group associated with lignin, was 

significantly reduced in the spectra of all the NaOH-treated samples relative to the untreated fibers due 

to the loss of the lignin containing the methoxy groups [20]. Both observations of peak intensity trends 

at 1608 cm
−1

 and 2944 cm
−1

 suggest that the NaOH pre-treatment was able to remove some of the 

lignin shielding the cellulose from the hydrolytic action of the cellulase enzyme. Comparison of the 

Raman spectra in Figure 2a also shows that when the pre-treatment was conducted in the absence of 

microwave power, the use of 5% NaOH treatment was more effective in lowering the lignin content in 

the fiber compared to the experiment with 2% NaOH treatment. Furthermore, the application of 

microwave power seemed to elevate the rate of lignin removal in the 2% NaOH-treated fiber to the 

point that there was not any significant difference in the levels of lignin for the 2% NaOH-treated and 

5% NaOH-treated fibers. The Raman peaks for the vibrational modes of the syringyl and guaiacyl 

moieties of lignin were observed for the kenaf pulp. However, the syringyl/guaiacyl ratio of lignin 

composition was not determined because their corresponding Raman peak separation is only 4–8 cm
−1
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for the most prominent ring stretching band and thus making it difficult for quantitative analysis due to 

the limited spectral resolution of the Raman microscope [29].  

Peak shifts and peak distortions were observed for Raman spectral bands at 386 cm
−1

, 1102 cm
−1

, 

1129 cm
−1

, 1154 cm
−1

, 1278 cm
−1

, 1343 cm
−1

, and 1379 cm
−1 

(Figure 2 a, b), all of which have been 

attributed to the cellulose vibrational bands mostly in the form of HCC and HCO bending and 

stretching modes according to several researchers [20,30]. The spectral differences imply that the 

NaOH treatment was not only significant in the delignification process but it was also crucial in 

causing the structural transformation of the cellulose that resulted in the higher glucose yields reported 

in Tables 3a and 3b. When the 25% NaOH treatment was performed for Avicel instead of kenaf fibers, 

the same type of spectral differences was also observed along with similar levels of improvement in 

glucose yields. 

Figure 2. Raman Analysis of NaOH-Treated Kenaf Fiber. Individual kenaf fiber 

sandwiched between mica sheets was analyzed by a Raman microscope. The spectra for 

NaOH-treated fibers that were subjected to microwave radiation and no microwave radiation 

are labeled ―MW‖ and ―No MW‖, respectively. The spectra are offset and shown on a 

common scale. (a) Raman spectra of 2% and 5% NaOH treated and untreated kenaf fibers 

that were subjected to reaction temperature of 50
 
°C. (b) Raman spectra of 25% NaOH 

treated and untreated kenaf fibers that were subjected to reaction at room temperature. 

(a) 
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Figure 2. Cont. 

(b) 

 

4. Conclusions 

The NaOH pre-treatment method gave significantly higher glucose yield relative to untreated pulp 

compared to the HCl-FeCl3 catalyzed method (Tables 3 and 4). The major advantage of the NaOH  

pre-treatment is its ability to delignify and decrystallize the kenaf fiber at low NaOH concentrations of 

2% or 5% sodium hydroxide at 50
 
°C, using either conventional heating or microwave radiation. The 

microwave-assisted pre-treatment of kenaf with 2% or 5% NaOH produced glucose yield in the range 

of 269–283 mg/dL, which corresponds to 3.4–3.6 times the glucose yield derived from untreated pulp 

whereas the same pre-treatment conducted with conventional heating produced glucose yield of  

228–251 mg/dL that is equivalent to 2.9–3.2 times the glucose yield of untreated pulp. The microwave 

energy contributed to making the kenaf pulp more amenable to the cellulase activity of producing 

monosaccharides through the delignification and the decrystallization of the kenaf fibers. An ethanol 

co-solvent is required to stabilize the decrystallization processes. The acid method based on 37.5% 

HCl and the higher temperature of 90
 
°C, produced only about 1.8 times the glucose yield of untreated 

pulp. The NaOH method for cellulosic pre-treatment of kenaf pulp fulfills a major goal of biomass 

utilization in providing a treatment methodology that not only produces a significant increase in sugar 

yield but also has minimal environmental impact because this method precludes the need to use highly 

concentrated acids such as the 83% phosphoric acid used in other digestion processes [10]. For future 
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work, it is important to further evaluate the efficiency of NaOH treatment for other types of cellulosic 

biomass such as agricultural wastes of corn stover, sugarcane bagasse, and rice husks. 

The analysis of NaOH-treated kenaf fibers by Raman microscopy further corroborated the glucose 

bioassay data and supported the observation that the delignification process is critical to production of 

glucose from the lignocellulose in kenaf. The reduction in the intensity of the Raman band at 1608 cm
−1

 

can potentially be utilized as a quantitative measure of the delignification efficiency for future research 

in cellulosic treatment. The promising results of NaOH pre-treatment for kenaf fibers should encourage 

further studies on the enzymatic hydrolysis of the pre-treated pulp and the fermentation of the sugar to 

be carried out simultaneously in the same reactor chamber using a specially selected Saccharomyces 

cerevisiae yeast strain [31]. Although the optical microscope used in this study does not allow a 

detailed study of the microstructural transformation of the kenaf fiber by the microwave irradiation, a 

prior publication has demonstrated using scanning electron microscopy that carboxymethylcellulose 

subjected to microwave radiation showed greater sample porosity [32]. This resulted in a larger surface 

area for the cellulase enzyme to yield a faster reaction rate for the samples with microwave pre-

treatment relative to untreated samples. The microwave enhancement of catalytic efficiencies was also 

observed when the activities of xylanase and pectinase were evaluated with xylan from oat spelt and 

polygalacturonic acid from oranges [32]. 

Acknowledgements 

The funding for this research was provided by the Faculty Research and Creative Project program at 

Middle Tennessee State University and by the American Chemical Society Project SEED. 

References 

1. Kugler, D.E. Kenaf commercialization: 1986–1995. In Progress in New Crops; Janick, J., Ed.; 

ASHS Press: Alexandria, VA, USA, 1996; pp. 129–132. 

2. Princen, L.H. Kenaf—Promising new fiber crop. In The Herbarist; Hicks, A., Ed.; USDA: 

Washington, DC, 1982; pp. 79–83. Available online: http://ddr.nal.usda.gov/bitstream/10113/ 

26222/1/IND83082047.pdf (accessed on 17 August 2010). 

3. New uses for kenaf. In News and Events; USDA: Washington, DC, USA, 2004; Available online: 

http://www.ars.usda.gov/is/AR/archive/aug00/kenaf0800.htm (accessed on 17 August 2010). 

4. Sinnott, M.L. The cellobiohydrolases of Trichoderma reesei: A review of indirect and direct 

evidence that their function is not just glycosidic bond hydrolysis. Biochem. Soc. Trans. 1998, 26, 

160–164. 

5. Ooshima, H.; Burns, D.S.; Converse, A.O. Adsorption of cellulase from Trichoderma reesei on 

cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive 

decompression. Biotechnol. Bioeng. 1990, 36, 446–452. 

6. Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and 

biogas production: A review. Int. J. Mol. Sci. 2008, 9, 1621–1651. 

7. Laser, M.; Schulman, D.; Allen, S.G.; Lichwa, J.; Antal, M.J., Jr.; Lynd, L.R. A comparison of 

liquid hot water and steam pretreaments of sugar cane bagasse for bioconversion to ethanol. 

Bioresource Technol. 2002, 81, 33–44. 



Int. J. Mol. Sci. 2011, 12            

 

 

1462 

8. Borysiak, S.; Doczekalska, B. Research into the mercerization processs of beechwood using the 

WAXS method. Fibres Text. East. Eur. 2008, 16, 101–103. 

9. Mansikkamäki, P.; Lahtinen, M.; Rissanen, K. The conversion from cellulose I to cellulose II in 

NaOH mercerization performed in alcohol-water systems: An X-ray powered diffraction study. 

Carbohydr. Polym. 2007, 68, 35–43. 

10. Zhang, J.; Zhang, J; Lin, L.; Chen, T.; Zhang, J.; Liu, S.; Li, Z.; Ouyang, P. Dissolution of 

microcrystalline cellulose in phosphoric acid—Molecular changes and kinetics. Molecules 2009, 

14, 5027–5041. 

11. Isogai, A.; Atalla, R.H. Dissolution of cellulose in aqueous NaOH solutions. Cellulose 1998, 5, 

309–319. 

12. Sao, K.P.; Samantaray, B.K.; Bhattacherjee, S. X-ray study of crystallinity and disorder in ramie 

fiber. J. Appl. Polym. Sci. 1994, 52, 1687–1694. 

13. Zhang, J.; Li, D.; Zhang, X.; Shi, Y. Solvent effect on carboxymethylation of cellulose. J. Appl. 

Polym. Sci. 1993, 49, 741–746. 

14. Atalla, R.H.; Gast, J.C.; Sindorf, D.W.; Bartuska, V.J.; Maciel, G.E. 
13

C NMR spectra of cellulose 

polymorphs. J. Am. Chem Soc. 1980, 102, 3249–3251. 

15. Earl, W.L.; VanderHart, D.L. High resolution, magic angle sample spinning 
13

C NMR of solid 

cellulose I. J. Am. Chem Soc. 1980, 102, 3251–3252. 

16. Kunze, J.; Fink, H.-P. Structural changes and activation of cellulose by caustic soda solution with 

urea. Macromol. Symp. 2005, 223, 175–187. 

17. Atalla, R.H., Agarwal, U.P. Raman microprobe evidence for lignin orientation in the cell walls of 

native woody tissue. Science 1985, 227, 636–638. 

18. Atalla, R.H.; Agarwal, U.P.; Bond, J.S. Raman spectroscopy of lignin. In Methods in Lignin 

Chemistry; Dence, C.W., Lin, S.Y., Eds.; Springer-Verlag: Berlin, Germany, 1992; pp. 162–176. 

19. Agarwal, U.P.; Atalla, R.H. FT Raman spectroscopy: What it is and what it can do for research on 

lignocellulosic materials. Proc. 8th Intl. Symp. Wood Pulp. Chem. 1995, 8, 67–72. 

20. Agarwal, U.P. An overview of Raman spectroscopy as applied to lignocellulosic materials. In 

Advances in Lignocellulosic Characterization; Argyropoulos, D.S., Ed.; TAPPI Press: Atlanta, 

GA, USA, 1999; pp. 201–225. 

21. Atalla, R.H. An innovative new technology to reduce recalcitrance of cellulose and make it 

competitive with corn as a biomass feedstock. Cellulose Sciences International: Madison, WI, 

USA, 2009; Available online: http://www.celscint.com/uploads/CSI_Technology.pdf (accessed on 

1 May 2010). 

22. Curreli, N.; Agelli, M.; Pisu, B.; Rescigno, A.; Sanjust, E.; Rinaldi, A. Complete and efficient 

enzymatic hydrolysis of pre-treated wheat straw. Process Biochem. 2002, 37, 937–941. 

23. Zhu, S.; Wu, Y.; Yu, Z.; Liao, J.; Zhang, Y. Pretreatment by microwave/alkali of rice straw and its 

enzymatic hydrolysis. Process Biochem. 2005, 40, 3082–3086. 

24. Zhu, S.; Wu, Y.; Yu, Z.; Wang, C.; Yu, F.; Jin, S.; Ding, Y.; Chi, R.; Liao, J.; Zhang, Y. 

Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice 

straw. Biosyst. Eng. 2006, 93, 279–283. 



Int. J. Mol. Sci. 2011, 12            

 

 

1463 

25. Jeffries, T.W. Mandel’s manual of cellulase assay. USDA Forest Products Laboratory: Madison, 

WI, USA, 1987; Available online: http://calvin.biotech.wisc.edu/jeffries/cellulases/mandels.html 

(accessed on 22 February 2011).  

26. Cunningham, R.L.; Carr, M.E.; Bagby, M.O. Hemicellulose isolation from annual plants. 

Biotechnol. Bioeng. Symp. 1986, 17, 159–168.  

27. Um, B.H.; Karim, M.N.; Henk, L.L. Effect of sulfuric and phosphoric acid pre-treatments on 

enzymatic hydrolysis of corn stover. Appl. Biochem. Biotechnol. 2003, 105–108, 115–125. 

28. Agarwal, U.P.; Ralph, S.A. FT-Raman spectroscopy of wood: Identifying contributions of lignin 

and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl. Spectrosc. 

1997, 51, 1648–1655. 

29. Ona, T.; Sonoda, T.; Ito, K.; Shibata, M.; Katayama, T.; Kato, T.; Ootake, Y. Non-destructive 

determination of lignin syringyl/guaiacyl monomeric composition in native wood by Fourier 

transform Raman spectroscopy. J. Wood Chem. Technol. 1998, 18, 43–51. 

30. Sun, Z.; Ibrahim, A.; Oldham, P.B.; Schultz, T.P.; Conners, T.E. Rapid lignin measurement in 

hardwood pulp samples by near-infrared Fourier transform Raman spectroscopy. J. Agric. Food 

Chem. 1997, 45, 3088–3091. 

31. Ooi, B.G.; Lankford, K.R. Strategy for adapting wine yeasts for bioethanol production. Int. J. Mol. 

Sci. 2009, 10, 385–394. 

32. Mondal, K.; Roy, I.; Gupta, M.N. Enhancement of catalytic efficiencies of xylanase, pectinase, 

and cellulase by microwave pretreatment of their substrates. Biocatal. Biotransfor. 2004, 22, 9–16. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


