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Abstract: In order to generate an antibody against a small hapten molecule, the hapten is 

cross-linked with carrier protein to make it immunogenic. In this study, the hapten 

(Fumonisin B1, FB1) was coupled to ovalbumin (OVA) and bovine serum albumin (BSA), 

respectively by a short cross-linker reagent (glutaraldehyde, GA). To develop a technique 

for detecting the conjugation, the hapten-protein conjugates (FB1-OVA and FB1-BSA) 

were characterized thoroughly by ultraviolet (UV) spectroscopy, Fourier transform  

infrared (FT-IR) spectroscopy, gel electrophoresis and matrix-assisted laser desorption 

ionization time-of-flight mass spectrometry (MALDI-TOF-MS), respectively. The molecular 

weights of FB1-BSA and FB1-OVA were 74,355.301 Da and 48,009.212 Da, respectively 

determined by the method of MALDI-TOF-MS. The molecular coupling ratios were 11 and 5 

in FB1-BSA and FB1-OVA, respectively. In this experiment, MALDI-TOF-MS was 

selected as the most efficient method to evaluate the cross-linking effect and calculate the 

molecular coupling ratio. 
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1. Introduction 

Fumonisins, which assume significance due to their deleterious effects on animals, are a group of 

potent, carcinogenic, hepatotoxic and nephrotoxic secondary metabolites produced mainly by 

Fusarium verticillioides (formerly Fusarium moniliforme Sheldon) and Fusarium proliferatum [1–3]. 

Fumonisin B1 (FB1), the most common and highest toxic of fumonisins species, is the focus of 

governments and scientists throughout the world due to the strong toxicity and potent carcinogenicity 

shown in animal studies [4]. FB1 is hepatotoxic and nephrotoxic and it can cause serious diseases in 

equine species, swine and rodents. Furthermore, FB1 may be correlated to the high incidence of human 

esophageal cancer [5–7]. Due to its widespread existence in agriculture, the pollution in cereal and 

products has been reported, which may cause potential health hazards [8–10]. Switzerland has 

proposed legislation for FB1; the limit was determined as 1000 μg/kg [11,12]. The Food and Drug 

Administration (FDA) has issued maximum residue limits in maize, maize byproducts in food and 

animal feeds, which are 2000–4000 and 5000–10,0000 μg/kg total fumonisins (FB1 + FB2 + FB3) for 

human foods and animal feeds, respectively [13,14]. The Commission regulation of European 

Community (EC) has regulated the maximum levels of FB1 + FB2 for certain contaminants in foodstuffs 

vary from 200 to 4000 μg/kg depending upon the intended use of the maize [14]. Thus, there are strong 

economic and safety reasons for establishing more sensitive, selective, inexpensive, large-scale and 

rapid analytical methods for routine screening of FB1. To date, the methods for detecting FB1 have 

been mainly based on instrumental and immunological methods [15–18]. These extensive 

investigations and applications have resulted in rapid progress of immunoassays for FB1 that have led 

to a great demand for specific antibodies. 

The molecular formula of FB1 is C34H59NO15 and its formal name is 1,1′-[(1S,2R)-1-[(2S,4R,9R, 

11S,12S)-12-amino-4,9,11-trihydroxy-2-methyltridecyl]-2-[(1R)-1-methylpentyl]-1,2-ethanediyl-1,2,3- 

(2R,2′R)-propanetricarboxylic acid ester. The constitutional formula of FB1 is shown in Figure 1. 

Figure 1. Constitutional formula of FB1. 

 

Small molecules such as mycotoxins, pesticides, drugs, etc. are usually nonimmunogenic and hence 

do not elicit an immune response unless coupled with some macromolecules such as proteins [19]. The 

modification of these substances is therefore required in order for them to couple with macromolecules 

(carriers) to make a stable carrier-hapten complex [20]. Synthesis of hapten for linking with carrier 

protein is the most important aspect of specific antibody generation against a small molecule for 

immunoassay applications [21]. The most frequently used carrier proteins for conjugation are bovine 
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serum albumin (BSA), ovalbumin (OVA), conalbumin (CONA), thyroglobulin (TG), immunoglobulin 

(Ig), fibrinogen, and keyhole limpet hemocyanin (KLH). To prepare an effective hapten-protein 

conjugate for the desired immune response, it is important to characterize the resulting hapten-protein 

conjugate to determine the hapten molecular coupling ratio on carrier protein (numbers of FB1 molecules 

per carrier) [22]. 

There has been significant progress in recent years in hapten-protein conjugates for the generation 

of anti-hapten antibodies with applications in immunoassays for small molecules [23–25]. Verification 

of the coupling reaction and determination of the molecular coupling ratio can be accomplished  

by ultraviolet (UV) spectroscopy scan, mainly by evaluating the available free amino groups before 

and after conjugation by radiolabeled haptens [26]. The characterization for conjugation by 

spectrophotometer method depends on the UV character of hapten and protein. However, it is difficult 

to determine the molecular coupling ratio of FB1 to carrier protein due to the lack of UV absorption 

groups in structure of FB1. It is necessary to develop a technique for determining the conjugation for 

FB1. The aim of the present study is to find an available method for identifying the conjugation of FB1 

to carrier proteins and six commonly used methods are described and compared. 

2. Results and Discussion 

The functional group of the hapten governs the selection of the conjugation method to be employed. 

In this study, GA is utilized as a short cross-linker reagent to aid FB1 linking to BSA and OVA, 

respectively. This approach ensures stable cross-linking of hapten with protein along with acid amide 

and carbons bridge formation. The molecular coupling ratio of hapten per protein in the conjugate is  

an important parameter which generally defines the quality and quantity of antibody produced.  

A good antibody titer with higher specificity can be generated with an optimum number of haptens per 

protein molecule. 

The characters of the new FB1-protein conjugates (FB1-OVA and FB1-BSA) are confirmed by 

ultraviolet (UV) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, nondenaturing 

agarose gel electrophoresis (N-AGE), nondenaturing polyacrylamide gel electrophoresis (N-PAGE), 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser 

desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis, respectively. In 

order to develop a technique for determining the conjugation, the performance of the six various 

methods are described and compared. 

The absorption spectra from UV spectroscopy experiments with FB1-BSA, FB1-OVA, and the 

controls (FB1, BSA and OVA) in the range of 250–400 nm are shown in Figure 2. In this case, the 

characteristic absorbance contribution of FB1 is not detected due to the lack of ultraviolet functional 

groups. The characteristic absorbance contribution of FB1-OVA and FB1-BSA are observed at 285 nm 

and 281 nm, respectively, whereas that contribution of the carrier protein (OVA or BSA) is observed at 

280 nm. In the condition of the equivalent weight, there is a different absorbance between conjugate 

and carrier protein; the absorbance of conjugate is higher than the carrier protein. Theoretically, UV 

method is not used to identify FB1 conjugates due to the character of FB1. In this study, it is proved 

that the method of UV spectroscopy can be used to determine the course of conjugation by monitoring 

the relative shift in wavelength due to the contribution of the red shift and intensity of conjugate. 
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Figure 2. Comparative ultraviolet absorption spectra with conjugates and controls. One 

milligram of FB1 was dissolved in acetonitrile-water (50:50, v/v) (1.0 mg/mL) and the same 

concentrations of ovalbumin (OVA) and bovine serum albumin (BSA) were prepared.  

FB1-OVA and FB1-BSA were concentrated to the concentration of 1.0 mg/mL, respectively. 

One hundred microliters of the reaction mixture were injected into the UV apparatus. The 

scan range was from 250 nm to 400 nm. 
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FT-IR spectroscopy is a measurement of wavelength and intensity of the absorption of IR radiation 

by a sample. The IR spectral data of high polymers are usually interpreted in terms of the vibrations of 

a structural repeat unit. The polypeptide and protein repeat units give rise to nine characteristic IR 

absorption bands, namely, amide A, B, and I−VII. Of these, the amide I and II bands are the two most 

prominent vibrational bands of the protein backbone. The most sensitive spectral region to the protein 

secondary structural components is the amide I band (1700–1600 cm−1), which is due almost entirely to 

the C=O stretch vibrations of the peptide linkages. The amide II band (1575–1480 cm−1), in contrast, 

derives mainly from in-plane NH bending and from the CN stretching vibration [27]. The characteristic 

IR groups of the FB1-BSA, FB1-OVA, BSA OVA and FB1 in the range of 4000–400 cm−1 are shown in 

Figure 3. There are the strong absorption from BSA and OVA, in the regions 3400–3300 cm−1,  

1700–1600 cm−1 and 1575–1480 cm−1, which are the sensitive spectral region for Amide A, I and II of 

proteins. Compared with that of BSA, the characteristic absorption peaks of FB1-BSA could be found 

in the regions 3400–3300 cm−1, 1700–1600 cm−1 and 1575–1480 cm−1. The functional groups of OVA 

and BSA are contained in FB1-OVA and FB1-BSA, respectively. There is no strong absorption from 

FB1, in the regions 3400–3300 cm−1, 1700–1600 cm−1 and 1575–1480 cm−1, these spectral regions are 

particularly important for the study of proteins. It is proved that the conjugation of the hapten and 

proteins is successful by the similar absorption peak of conjugates and proteins. FT-IR method can be 

used to detect the cross-linking effect due to the apparent difference of specific spectra between  

FB1-protens and the controls. 
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Figure 3. Fourier transform infrared (FT-IR) transmittance spectra of the conjugates and 

controls. One milligram of FB1 (OVA, BSA, FB1-OVA or FB1-BSA) was milled with KBr 

to form a very fine powder, respectively. This powder was then compressed into a thin 

pellet which could be analyzed using the intelligent FT-IR spectrometer. The scan range of 

4000–400 cm−1. KBr was also transparent in the IR. 

 

The gel electrophoresis of conjugates is shown in Figure 4. The pure proteins and conjugates in  

N-AGE and N-PAGE show well-defined bands, respectively. The band of FB1-OVA is moved further 

than OVA obviously in both N-AGE (Figure 4a) and N-PAGE (Figure 4b). Compared to that of BSA, 

the migration of FB1-BSA changes obviously in N-AGE, whereas it changes indistinctively in  

N-PAGE, which is probably due to the fact that the molecular weight of FB1-BSA is similar to that of 

BSA. For SDS-PAGE (Figure 4c), it is observed that the molecular weights of FB1-BSA and  

FB1-OVA are approx 70 kDa and 48 kDa, respectively. Although the electrophoresis analyses of 

conjugation cannot give definite information about the degree of the molecular coupling ratio, its main 

advantage is in detecting the course of cross-linked conjugation. 

The optimum use of high grade of reagents along with thorough dialysis to remove unbound hapten 

and ion resulted in good coupling efficiency of hapten to protein as shown by the results of SDS-PAGE, 

N-AGE and N-PAGE and each conjugate generated well-defined band. 
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Figure 4. Gel electrophoresis of conjugates. (a) nondenaturing agarose gel electrophoresis 

(N-AGE); (b) nondenaturing polyacrylamide gel electrophoresis (N-PAGE) and (c) sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Note: (1) FB1-OVA;  

(2) OVA; (3) BSA; (4) FB1-BSA and (M) protein marker. The concentration of protein 

standard (BSA or OVA) and conjugate (FB1-OVA or FB1-BSA) was diluted in dH2O to  

0.2 mg/mL. 

   

Conjugation density for hapten resultes in a detectable increase in the molecular weight of the 

conjugate as determined by observing the peak shift of MALDI-TOF-MS (Figure 5). The parent 

molecular ion is formed by adding a charged species (usually a proton), signed as (M + H)+, and the 

m/z value of the molecular ion peak is approximately equal with the molecular weight of sample. The 

fragment ion is formed by adding multiple protons; an ion formed by adding single or multiple  

non-proton charging species; an ion formed by clustering of parent molecular species; or a combination 

of the latter, signed as (M + 2H)+2, (M + 3H)+3, (M + Na)+, (2M + H)+, (2M − H + 2Na)+, respectively. 

The incremental change in molecular weight due to incorporation of hapten molecules to protein 

corresponded to the number of hapten molecules per protein molecule. In Figure 5a, the m/z of the 

parent molecular ion is 74,355.301, and the m/z of 24,811.378, 37,411.709 are the fragment ions 

concomitantly. The weight of modified FB1-protein is significantly higher than the molecular weight 

of the native protein. The molecular weight of FB1-BSA is 74,355.301 Da, and the conjugation 

increases the protein molecular weight by 8144.33 Da (Figure 5a,c), thus the molecular coupling ratio 

of FB1 per BSA in conjugate is 11. The molecular weight of FB1-OVA is 48,009.212, and the 

incremental change is 3721.904 compared with OVA (Figure 5b,d), and the molecular coupling ratio 

of FB1 per OVA in conjugate is 5. 

The method of MALDI-TOF-MS has been developed because the traditional approaches are often 

limited by sensitivity, selectivity or speed of method development [28]. The accuracy of this method is 

demonstrated by the coefficients for a TOF calibration function in a previous study [29].  

Multiply-charged or cluster ions have different total kinetic energies when compared to their parent 

molecular ions. 
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Figure 5. MALDI-TOF-MS of conjugates (FB1-OVA and FB1-BSA) (a) FB1-BSA;  

(b) FB1-OVA; (c) BSA; (d) OVA. The standard powder of controls (BSA, OVA) and 

lyophilized conjugates (FB1-OVA and FB1-BSA) were used for the scan. 
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Figure 5. Cont. 
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To prepare an effective hapten-protein conjugate for the desired immune response, it is important to 

characterize the resulting hapten-protein conjugate to determine the hapten molecular coupling ratio on 

carrier protein (numbers of hapten molecules per carrier). The higher ratio of hapten usually increases 

the strength and specificity of the immune response. However, there is a risk that a high degree of 

substitution could adversely affect the activity and specificity of antibodies produced [30]. At present, 

no official method for the determination of hapten-protein is available. Generally, the evidence as to 

whether hapten has been successfully conjugated to the carrier protein is obtained after the putative 

conjugate is injected into laboratory animals and antibodies are detected, but this method is problematic, 

since it is time-consuming and wasteful [24]. Some methods have been tested in comparative 

studies [25,30], and UV is the technique commonly used for qualitation of the hapten-protein, including 

mycotoxins; however, this technique is not compatible in terms of the accuracy of FB1 due to the lack 

of ultraviolet absorption functional group. MALDI-TOF-MS allows the determination of FB1-protein 

with good accuracy and precision and is appropriate for determining the other hapten-protein [31]. 

3. Experimental Section 

3.1. Chemicals and Regents 

Fumonisin B1 (FB1, mw 721.8 Da, 98% purity), ovalbumin (OVA, mw 44,287 Da), glutaraldehyde 

solution 25% (W/V) were all purchased from Sigma-Aldrich (Shanghai, China). Bovine serum 

albumin (BSA, average mw 66 kDa) was obtained from Roche (Nanjing, China). Protein molecular 

weight standard (10–170 kDa) was obtained from Tianwei Biotechnology Co., Ltd. (Nanjing China). 

All chemicals, reagents, and solvents used in this study were of high purity analytical grade. Buffers 

were made in Milli-Q double distilled water. 

3.2. Conjugation of Hapten with Protein 

Two commercially available carrier proteins for modifying hapten, BSA and OVA, were tested for 

linking FB1 to produce the FB1-protein conjugates (FB1-OVA and FB1-BSA) in order to make its 

immunogenic. Due to its high efficiency, GA was used as cross-linker reagent for the reaction. The 

conjugation procedure was performed as previously described by F.Y. Yu, F.S. Chu [32], with minor 

modifications. In particular, the experiment was performed with a reagent molar ratio of 50:1  

(FB1: protein). Protein solution (OVA or BSA) was prepared in phosphate-buffered saline (PBS, 0.01 M, 

pH 7.4) at concentration of 1 mg/mL. GA solution (25%, W/V) was diluted to 2% (W/V) with PBS. 

One milligram FB1 was place in a screw-cap amber vial and 1.8 mL of BSA solution, followed by the 

same volume of GA solution, were added to the vial. The vial was closed and mixed by magnetic 

agitation for 1 h at 4 °C. After the cap was removed, the powder of sodium borohydride (NaBH4) was 

added to the mixture (final concentration of 10 mg/mL), and the mixture was allowed to magnetic 

agitate for 1 h at 4 °C. The reaction solution was dialyzed for 72 h at 4 °C against ultra pure water, 

then, it was centrifuged for 15 min at 12,000 r/m to remove the precipitate. The supernatant was 

concentrated with ultrafiltration centrifugal tube (Millipore Amicon Ultra-4, Billerica, MA, USA) and 

stored at 4 °C. A portion of conjugation solution was placed in another 1.5-mL micro centrifuge tube 

and lyophilized with freeze-dryer (Labconco, Kansas, MO, USA). 
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3.3. Identification of FB1-Protein Conjugates by UV 

The concentration of the new FB1-protein conjugate was determined by UV spectrophotometer 

(Tecan infinite M200, Seestrasse, Switzerland) at a wavelength of 280 nm. Moreover, full scan 

experiments (scan range 250 to 400 nm) were performed to analyze the changes of the absorption 

spectra and the characteristic absorbance contribution of the new FB1-protein conjugate. The samples 

were prepared as followed. One milligram of FB1 was dissolved in acetonitrile-water (50:50, v/v)  

(1.0 mg/mL) and the same concentrations of OVA and BSA were prepared. FB1-OVA and FB1-BSA 

were concentrated to the concentrations of 1.0 mg/mL, respectively. One hundred microliters of the 

reaction mixture were injected into the UV apparatus. 

3.4. Identification of FB1-Protein Conjugates by FT-IR 

In order to find the characteristic functional groups in FB1-protein conjugate, FT-IR full scan range 

from 4000 to 400 cm−1 were performed using an intelligent FT-IR spectrometer (Thermo NICOLET380, 

Waltham, MA, USA). The lyophilized powders were used in this test. One milligram of solid sample 

(FB1, OVA, BSA, FB1-OVA and FB1-BSA) was milled with potassium bromide (KBr) to form a very 

fine powder, respectively. This powder was then compressed into a thin pellet which could be analyzed. 

KBr was transparent in the IR. The mixture tablets were put into the intelligent FT-IR spectrometer. 

The changes of functional groups and structure before and after conjugation were analyzed. 

3.5. Identification of FB1-Protein Conjugates by Gel Electrophoresis 

The N-PAGE, N-AGE and SDS-PAGE of the conjugates and proteins were performed using  

Bio-Rad electrophoresis apparatus (Mini PROTEAN, Hercules, CA, USA) equipped with a Bio-Rid 

gel auto imaging system (Bio-Rid GelDocXR+, Hercules, CA, USA) and quantity one 1-D analysis 

software [33] to compare the difference of transport ratio. 

The SDS-PAGE and N-PAGE procedure were performed as previously described by Sambrook [34]. 

In particular, 12% separated gel and 5% concentrated gel was used. 

The modified procedure of N-AGE method was followed. Briefly, TAE buffer (40 mM tris-acetic 

acid, 2 mM EDTA) was employed for electrophoresis buffer and prepared at 4 °C. The loading buffer 

was prepared as followed, 20 mM EDTA, 0.04% (W/V) bromophenol blue (BPB) and 6.67% (W/V) 

sucrose. 1% agarose gel was 3–5 mm thick. Ten microliters of each sample (0.2 mg/mL), mixed with 

an equal volume of loading buffer, was applied to the gel and samples were separated at 240 V for 

30 min in 4 °C. The gel was fixed with 20% trichloroacetic acid for 20 min, stained with Coomassie 

blue staining solution (0.1% W/V coomassie blue R-250, 25% V/V isopropanol, 10% V/V acetic acid) 

for 1 h, and then destained with destaining solution (10% V/V acetic acid, 5% V/V ethanol) with 

several changes until clear. 

3.6. Identification of FB1-Protein Conjugates by MALDI-TOF-MS 

MALDI-TOF-MS analysis was carried out using a MalDI-ToF/ToF/MS spectrometer (Bruker 
Ulfvaflex Ⅱ, Bremen, Germany) to analyze the presence of molecular ions and the fragment ions for 

each conjugate. The molecular weight of each conjugate and the molecular coupling ratio of FB1 per 
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protein were calculated, respectively. The lyophilized powders were used in this test. Gentisic acid  

(Sigma-Aldrich, Shanghai, China) was used as a matrix. The matrix solution was prepared as follows. 

Ten milligram of gentisic acid was dissolved in 1 mL of mixed solution of acetonitrile and 0.1% 

trifluoroacetic acid (TFA) (2:3, V/V). It is necessary to use a method of dropping to a sample plate  

that is suitable for different samples or matrices individually. The basic method procedure is described 

below. First, prepare an unused clean sample plate. Second, drop 0.5 μL of sample solution to the 

specified sample well using a pipette, etc. Take care not allow the pipette end to touch the plate. Third, 

drop a matrix solution onto 0.5 μL of sample solution before the crystallization of the sample (within 

approximately 10 s). Forth, air-dry. Caution: exchange the pipette tips every drop irrespective of 

matrices or sample solutions. The dropping order of a matrix and that of a sample may be  

reversed mutually. 

4. Conclusions 

In this comparing experiment of the six characterization method, MALDI-TOF-MS has been shown 

to be an efficient method due to its high accuracy and high performance in evaluating the cross-linking 

effect and calculate the molecular coupling ratio. The other methods, such as UV, FT-IR,  

MALDI-TOF-MS and gel electrophoresis are very useful in detecting for the cross-linking effect of 

hapten-protein conjugates intuitively. MALDI-TOF-MS is simple to perform and shows laboratory 

performances superior to other published methods for the determination of hapten-protein in terms of 

sensitivity, accuracy and precision. 
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