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Abstract: This study investigated the effect of Icariin (ICA) supplementation on diabetic 

retinopathy (DR) in a streptozotocin-induced diabetic rat model system. Fifty Sprague 

Dawley rats were randomly distributed into a control group and a streptozotocin-induced 

diabetes group. Diabetic rats were randomly divided into two groups; one group received 

ICA 5 mg/kg/day for 12 weeks by oral gavage; the other group received saline gavage as a 

placebo. Retinal morphological changes, endothelial markers (RECA), collagen IV (Col-IV), 

vascular endothelial growth factor (VEGF), and neuropathic changes (Thy-1 and Brn3a 

expression) of the retinal ganglion cells (RGCs) were investigated. The effects of ICA at 

various concentrations (0, 101, 102, 103 nmol/mL) on neurite growth were investigated also 

in retinal ganglion cells (RGC) cultured from both diabetic and normal animals. Numerous 

pathological changes (deceased expression of RECA, VEGF, Thy-1, and Brn3a as well as 

decreased Collagen IV and Müller cell content) were noted in the retinal vessels of diabetic 

rats; these changes were attenuated in diabetic animals that received ICA. ICA enhanced 

neurite growth in RGC from both normal rats and diabetic rats in a dose dependent  
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fashion. ICA may be useful in the treatment of diabetic retinopathy. Further investigations 

are indicated. 
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1. Introduction 

Diabetic retinopathy (DR) is a leading cause of post-natal blindness and one of the most common 

complications of diabetes [1,2]. Epidemiologic studies indicate that, most patients with type 1 diabetes 

or insulin-dependent patients with type 2 diabetes will experience retinopathy within 20 years of 

diagnosis, even patients with non-insulin-dependent type 2 diabetes have an approximately 50% 

prevalence of retinopathy within 20 years of diagnosis [3]. 

Microvascular lesions such as microaneurysms, increased vascular permeability caused by the 

breakdown of the blood-retinal barrier (BRB), and capillary dropout are thought to be key causes of  

DR [4–6]. The sole purpose of retinal circulation is to support the metabolic demands of the inner retinal 

neurons and glial; these cells may also be damaged by the diabetic state. Retinal ganglion cells (RGC) 

are the sole output neurons from the eyes, assuming the critical role of transmitting visual signals to the 

higher visual center at the brain cortex before signal processing. Thus, neuronal, glial, and specifically 

RGC dysfunction may occur in unison with blood flow abnormalities and often before the appearance of 

overt microvascular damage [7]. 

The Diabetes Control and Complications Trial (DCCT1993) investigated the effect of hyperglycemia 

in type 1 diabetic patients, as well as the incidences of diabetic retinopathy, nephropathy, and neuropathy. 

Intensive diabetes management with three or more daily insulin injections or a continuous subcutaneous 

insulin infusion decreased the risk of progression of retinopathy by 54% (95% CI 39–66), While insulin 

therapy has been shown to be efficacious in preventing progression of retinopathy in diabetes, problems 

with administration and some variability in efficacy warrants a need for continued development of new 

therapies for diabetic retinopathy. 

Traditional Chinese Medicine (TCM) has been utilized for centuries and has a unique therapeutic role 

in the treatment of many human diseases. Many herbal therapies used in TCM contain compounds with 

demonstrablebiological activities in both experimental and clinical settings. Icariin (ICA, C33H40O15, 

molecular weight: 676.67) is thought to be the principal active moiety of Epimedii herba (Scheme 1).  

Scheme 1. The chemical structures of Icariin. 
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Xin and colleagues, in a pharmacological study, reported that icariin was a cGMP-specific 

phosphodiesteras5 (PDE5) inhibitor; the selectivity of icariin for PDE5 over PDE4 is approximately 

167-fold [8] and ICA has been shown to bind to the active catalytic domain of PDE5A1, similar to the 

activity of the erectogenic medication Sildenafil [9]. Liu et al. have reported that icariin improves 

erectile function and nitric oxide synthase (NOS) expression in the corpora cavernosa of castrated rats 

without influence on serum testosterone levels [10]. Shindel et al. reported that icariin enhanced growth 

of neurite from cultured major pelvic ganglia (MPG) fragments and improved penile hemodynamics  

in rats with injury to the cavernous erectile nerves [11]. Icariin has also shown efficacy in treatment  

of impaired penile hemodynamics in rodents with streptozotocin-induced diabetes by regulation 

TGF-β-Smad signaling pathway [12]. Also Icariin can evidently relieve renal damage in rats with 

diabetic nephropathy induced by streptozocin, which might be related to modulating the expression of 

collagen IV and TGF-beta1 protein [13].  

We are not aware of any studies on ICA for management of complications related to diabetic 

retinopathy. Given the apparent neurologic and vascular benefits of ICA, we hypothesized that ICA 

supplementation might help to ameliorate pathological changes of the retina in rats with experimentally 

induced diabetes. We investigated the effects of ICA on regulation RECA and Col-IV expression in 

retinal endothelium and Thy-1 and Brn3a expression in RGC from rats with Streptozotocin-Induced 

Diabetes compared to controls.  

2. Results 

2.1. Metabolic and Physiological Variables  

The initial body weight and initial fasting serum glucose level in normal rats and diabetic rats were 

not significantly different (Table 1, P for difference > 0.05). At the end of study mean body weight was 

decreased significantly, and final fasting serum glucose level increased in diabetic rats compared to 

sham controls (Table 1, P for difference < 0.01). ICA treatment did not significantly alter blood glucose 

or weight in diabetic rats (P > 0.05) (Table 1). 

Table 1. The effects of Icariin (ICA) on Metabolic and physiological variables. 

Variable 
Diabetic ED Model 

Sham 
(n = 12) 

placebo 
(n = 18) 

ICA 
(n = 18) 

Initial weight(g) 253.5 ± 7.2 251.3 ± 11.9 264.1 ± 12.4
Final weight(g) 247.6 ± 12.2 ** 254.2 ± 15.2 ** 568.2 ± 16.4
Initial fasting glucose(mg/dL) 107.1 ± 4.8 102.4 ± 5.3 115.2 ± 6.1
Initial postprandial glucose(mg/dL) 128.2 ± 8.2 119.5 ± 11.4 131.9 ± 14.6
Final fasting glucose(mg/dL) 382.4 ± 31.4 ** 392.6 ± 32.4 ** 102 ± 13.6 
Final postprandial glucose(mg/dL) 485.2 ± 31.7 ** 516.7 ± 23.6 ** 136.1 ± 11.8
Values are the mean values (±standard deviation) ** P < 0.01 compared with the sham group. 
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2.2. Morphological Changes of the Retina 

Comparing placebo treated diabetic to control animals, numerous Morphological changes were 

observed in inner nuclear layer (INL), outer nuclear layer (ONL), retinal ganglion cells (RGCs), and the 

intensity and number of bipolar cells in the INL and ONL. RGC were considerably reduced in diabetic 

group as compared with those of the controls. The thickness of the basal membrane in diabetic group 

was significantly decreased (79.18 ± 5.4 um vs. 67.12 ± 4.8 um). In the ICA group, the thickness of basal 

membrane was 76.53 ± 6.1 um (P < 0.05). The morphological structure of the retinal specimens was 

qualitatively better in the ICA treated group (Figure 1). 

Figure 1. The effect of icariin on morphological changes of disbetic retinopathy.  

The notable morphological changes were observed in diabetic retina, however, these 

changes were improved by ICA treated diabetic retina and the average thickness of retina in 

different groups.  

 

2.3. RECA, Col IV and VEGF Expression in Microvasculature of the Retina 

Retinal blood vessels are clearly defined in retinal pigment epithelium (Figure 2). Collagen IV 

expression was less in the diabetic retina, consistent with thickening of the micro-vessel basement 

membrane. Basement membrane thickening was less in the ICA treated diabetic group compared to 

placebo-treated diabetic animals. ICA treated animals also had greater expression of VEGF and 

microvessel density (Table 2, Figure 2). 

Table 2. The effects of ICA on Col IV, RECA and VEFG expression micro blood vessels in 

diabetic retina. 

Groups Col IV VEGF RECA 
Normal 1510 ± 121 3128 ± 181 1521 ± 95 
DM + placebo 1227 ± 198 2145 ± 97 1103 ± 101 
DM + ICA 1466 ± 101 * 3678 ± 110 ** 1359 ± 87 * 
P value <0.05 <0.01 <0.05 

RECA, Col-IV, and VEGF were used to check the retinal microvessls. Values are the mean values 
(±standard deviation) from N = 18 animals per group. * P < 0.05, ** P < 0.01 compared with the 
placebo group.  
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Figure 2. The effects of ICA on Col IV, RECA and VEFG expression micro blood vessels  

in diabetic retina. RECA, Col-IV, and VEGF were used to check the retinal microvessls. 

RECA and Col-IV clearly demonstrated the distribution of retinal vessels. As described in the 

text, DM decreased the blood vessels density in retina while ICA improved these conditions. 

It is noted that ICA improved the expression of VEGF significantly. 

 
(A) 

 
(B) 

2.4. Effects of ICA on Thy-1 and Brn3a Expression in RGCs of DR 

Thy-1 and Brn3a expression in diabetic retinas were significantly decreased in the inner nuclear  

layer (INL), outer nuclear layer (ONL), retinal ganglion cells (RGCs) compared to sham control retinas. 

Diabetic rats treated with ICA had greater expression of Thy-1 and Brn3a relative to placebo-treated 

diabetic animals (Figure 3). More importantly, those cells were re-organized well along the retina. 

Müller cells support neuronal activity and the integrity of the blood-retinal barrier, whereas gliotic 

alterations of Müller cells under pathological conditions may contribute to retinal degeneration and 

edema formation [14]. CA-II was used to detect the Müller cells (in middle panel); it is notable that there 

was a significant difference in retinal Müller cells in rats treated with ICA. (Table 3, Figure 3) 
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Figure 3. The effects of ICA on RGCs Thy-1 and Brna-3 and CA II expression in Diabetic 

retina. Thy-1 and Brn3a were used to detect the RGCs (in up panel and lower panel),  

CA-II was used to detect the Müller cells (in middle panel). Diabetes significantly  

decreased the RGCs and increased Müller cells in the retina, while ICA improved both 

pathological situations.  

 
(A) 

 
(B) 

Table 3. The effects of ICA on RGCs Thy-1 and Brna-3 and CA II expression in  

Diabetic retina. 

Groups CA-II Thy-1 Brna3 
Normal 1728 ± 101 2138 ± 143 1923 ± 98 
DM + placebo 1219 ± 192 1106 ± 87 870 ± 65 
DM + ICA 1601 ± 121 * 1820 ± 110 ** 1213 ± 126 ** 
P value <0.05 <0.01 <0.01 

Thy-1 and Brn3a were used to detect the RGCs (in up panel and lower panel), CA-II was used to 
detect the Müller cells (in middle panel). Values are the mean values (±standard deviation) from  
N = 18 animals per group. * P < 0.05, ** P < 0.01 compared with the placebo group.  
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2.5. Effects of ICA on RGC Neurite Outgrowth from Retina in Vitro  

Neurite outgrowth was measured in cultured RGC from diabetic and normal rats. Paired comparisons 

were made between retina derived from normal control and DM rats at the treatment of 0, 10, 100 and 

1000 nmol/mL ICA at the 72 h time point, all retina treated with ICA had significantly longer average 

neurite length when compared to DM group. (Table 4, Figure 4)  

Table 4. The neurites sprout from retina after stimulation with ICA in normal rats and 

diabetic rats. 

Groups Sham 10 nM 100 nM 1000 nM 
Normal 182 ± 4.1 ** 261 ± 2.1 ** 283 ± 3.3 ** 321 ± 4.6 ** 
DM 108 ± 5.3 135 ± 2.3 163 ± 4.1 195 ± 3.8 
P value <0.01 <0.01 <0.01 <0.01 

Paired comparisons were made between retina derived from normal control and DM rats at the 
treatment of 0, 10, 100 and 1000 nmol/mL ICA at the 48 h time point. Values are the mean values 
(±standard deviation) from N = 12 animals per group. ** P < 0.01 compared with the DM group.  

Figure 4. The neurites sprout from retina after stimulation with ICA in normal rats and 

diabetic rats. Paired comparisons were made between retina derived from normal control 

and DM rats at the treatment of 0, 10, 100 and 1000 nmol/mL ICA, all retina treated with 

ICA had significantly longer average neurite length in different dose of ICA in normal rats 

and diabetic rats when compared to DM group.  

 
(B) 
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3. Discussion 

In the present study, we provided evidence that icariin may be of benefit in the DR prevention in 

diabetes. Icariin treated diabetic rats had significantly greater microvessel density, thinner basement 

membranes, greater expression of endothelial and ganglia markers, compared to the control group. 

Importantly, there was no significant difference in metabolic and physiological variables between the 

diabetic control and ICA treated group, implying that these effects showed independent of serum 

glucose level. 

Our previous study of ICA improving diabetic erectile dysfunction demonstrated that ICA improves 

erectile hemodynamics in castrated animals and animals with STZ-induced diabetes without significantly 

influencing testosterone or glucose levels, and ICA influenced the nitric oxide synthase (endothelial and 

neuronal) in microvascular complications of diabetes mellitus [12]. It is suggested that the effect of ICA 

in diabetes is not hyperglycemic control but rather some other mechanism that is yet to be elucidated. 

Among the pathological changes that occur early and linked causally to the development of retinopathy 

in diabetes are inflammation, altered extracellular matrix (ECM) gene expression, and premature demise 

of retinal capillary and ganglion cells [7,15]. Other potentiall important mediators include advanced 

glycosylation end products and its receptor (AGEs/RAGEs), oxidative stress by oxygen free radical, 

inflammation, fibrosis, neuropathy and hypogonadism [16,17] It is not yet clear which of these 

components are most important for disease initiation and development of DR. Identification of the 

principal effectors of DR I of import as this may permit selection of ideal therapeutic targets. 

Retinal microvascular changes in DR might be related to hyperglycemia-induced intramural pericyte 

death and thickening of the basement membrane. This may lead to incompetence of the vascular walls 

and disruption of the blood-retinal barrier [18]. In our study, retinal microvessell density is significantly 

decreased in diabetic animals compared to normals.  

Endothelial deterioration and neuropathy are also important pathological process in diabetic retinopathy 

models [19]. Intracellular hyperglycemia has been linked to an overproduction of ECM; hyperglycemia 

may also decrease production of trophic factors for endothelial and neuronal cells, and the intracellular 

oxidative stress in endothelial cells plays a key role in endothelial dysfunction [20]. Together, these 

changes lead to neuropathy and endothelial lesions [21,22]. Collagen IV is one of the major components 

in the blood vessel basement membrane. The expression of collagen IV during diabetes has been 

extensively studied. It has been reported that collagen IV is highly expressed in the diabetes and related 

to many diabetic pathological disorders [23]. The major expression of VEGF is related with the 

revascularization and a number of clinical studies have shown a strong correlation between increases in 

intraocular VEGF concentration and the development of proliferative diabetic retinopathy. Interestingly, 

our results demonstrate that Col IV, RECA and VEGF expression the retina were decreased in diabetic 

rats compared to normal controls.  

Cultured retinal ganglion is an important and almost an indispensable tool for the study of retinal 

visual physiology and pathophysiology, and it may easily evolve as state-of-art technology for studying 

the inter-cellular or intra-cellular processes associated with various retinopathies and neuropathies [24]. 

In our study ICA appeared to enhance neurite length in both normal and diabetic rat retinas. This effect 

was dose dependent, with greater concentrations leading to greater mean neurite length. 
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Our data are limited in that functional assay of visual acuity was not performed in the various treatment 

groups. This sort of investigation is challenging in rodent subjects but should be a consideration for future 

work. Future studies on ICA in DR should also incorporate different treatment time courses as well as 

additional mechanisms such as AGEs/RAGEs, oxidative stress, growth factor, etc. 

4. Materials and Methods 

4.1. Animal and Treatment 

A total of 50 male 8 week-old Sprague-Dawley rats weighting 200–250 g were used in this study. The 

experiments were approved by the Institutional Animal Care and Use Subcommittee at our university. Rats 

were fasted for 16 h, and 38 rats (diabetes mellitus group, DM) were injected intraperitoneally with freshly 

prepared streptozocin (STZ, Sigma Chemical Co, St Louis, MO, USA) (60 mg/kg) and 12 rats (sham group) 

injected vehicle (0.1 mol/L citrate-phosphate buffer, pH 4.5) according to the references [25,26]. Blood 

glucose levels were monitored 72 h later after STZ or vehicle injection, at regular intervals of every 

week throughout the study, and immediately prior to euthanasia. Blood samples were obtained by tail 

prick, and blood glucose concentration measured using a blood glucose meter (B.Braun, Germany). Only 

rats with fasting glucose concentrations (≥300 mg/dL) were included in the DM group. A total  

36 rats were developed into diabete and been divided into 2 groups and fed with 50:50 mix of normal 

saline and dimethyl sulfoxide (DMSO, placebo, N = 18) or Icariin (ICA) in 50% DMSO (ICA, N = 18) at 

5 mg/kg (the best effective dose in our previous study [12]) daily doses respectively for 12 weeks.  

Rats in the sham group received standard husbandry care, gavage feeded with PBS, but were not treated 

with STZ. At the end of 12 weeks rats were euthanized and retinas harvested for histological and  

molecular study. 

4.2. Selection of Tissue Markers 

Rat endothelial cell antigen protein (RECA) and vascular endothelial growth factor (VEGF) are 

important biomarkers in vascular biology. Collagen IV (Col-IV) is an important marker of basement 

membrane competence in blood vessels and the relationship between Col-IV and diabetes has been 

extensively studied [27,28]. 

Important markers for RGC damage include oxidative stress, Thy-1 (a surface glycoprotein of  

the immunoglobulin superfamily specifically expressed in RGC), and the transcription factor Brn3a (a 

transcription factor specifically expressed in cells of the developing mammalian nervous system) [29–31]. 

4.3. Immunofluorescence Stain 

After euthanasia, the retina was harvested and immersed in neutral buffered formalin containing 4% 

formaldehyde for a period of 6 h, embedded in liquid nitrogen. Sections of 8 μm thickness were cut 

using a freezing microtome.  

For immunofluorescence, the tissues were cryoprotected in sucrose, frozen and sectioned at 8 μm in a 

cryostat. Slides were incubated successively with blocking solution. The tissue sections were incubated 

with primary antibody to Rat Endothelial Cell antigen (RECA, Abcam, Cambridge, MA, USA; 1:200), 

Collagen IV antibody (Col-IV, Abcam, Cambridge, MA, USA; 1:800), Vascular Endothelial Growth 
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Factor (VEGF, Abcam, Cambridge, MA, USA; 1:400), Thy-1 cell surface antigen (Thy-1, Santa Cruz 

Biotechnology, CA, USA; 1:200), Brain-specific homeobox/POU domain protein 3A (Brn3a, Abcam, 

Cambridge, MA, USA; 1:400), Carbonic Anhydrase II (CA-II, Abcam, Cambridge, MA, USA; 1:400). 

After the hybridization of secondary antibodies, and DAPI staining for the cell nucleus, the sections 

were observed at the fluorescence microscope (Leica DM 6000 Laser Station). Semiquantitative 

analysis was performed to evaluate the intensity of RECA, Col-IV, VEGF, Thy-1, Brn3a, and CA-II 

staining by the use of Image pro plus software 6.0 (Media Cybernetics, Silver Spring, MD, USA). 

4.4. Retina Ganglion Cell Tissue Culture in Vitro 

The retinal ganglion tissue of sham group and DM placebo group (untreated) (n = 18) were cultured  

in vitro, stimulation with different concentration of ICA and the length of neurite outgrowth  

was measured.  

Each retinal tissue specimen was divided into two sections. After PBS rinsing, the freshly dissected 

retina ganglion fragment was placed on a coverslip, to which a 14 µL drop of growth-factor-reduced 

Matrigel™ (Becton Dickinson, Mountain View, CA, USA) had been added and kept in liquid form 

using a cold 35-mm plastic culture dish on ice. The growth factor reduced Matrigel™ was polymerized 

(5-min incubation at 37 °C) and 2 mL of serum-free RPMI-1640 (Cell Culture Facility, University of 

California, San Francisco, CA, USA) added. Tissue fragments from the control and diabetic group were 

treated at various concentrations of ICA for 3 days (0, 10, 100, 1000 nmol/mL ICA). Ganglial cultures were 

maintained at 37 °C in a humidified atmosphere with 5% CO2. Photographs of neurite growth at 6 days 

were captured using a Nikon DXM 1200 digital still camera attached to Leica Laborluxmicroscope and 

ACT-1 software (Nikon Instruments Inc., Melville, NY, USA). Digital images were analyzed using 

Image-Pro Plus software to determine the longest neurite length per specimen. Mean maximal neurite 

length was calculated for the control and diabetic group by averaging the longest neurite length from 

each individual specimen. 

4.5. Statistical Analysis 

Results are expressed as means ± standard deviation. One-way ANOVA followed by Bonferroni 

multiple comparisons’ test was used to evaluate whether differences between groups were significant. 

All calculations were performed using SPSS statistical software (version 13.0, SPSS, Chicago, IL, USA). 

Probability values of less than 5% were considered significant. 

5. Conclusions 

ICA may be useful in the management of DR by modulating both RECA and Col-IV expression in 

retinal microvessls and Thy-1 and Brn3a expression in RGC (5 mg/kg/day p.o.). These effects appear to 

occur independently of serum glucose levels.  
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