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Abstract: Gelatinized wheat, potato and waxy maize starches were treated enzymatically 

in order to increase the degree of branching of the amylopectin fraction and thereby change 

the starch degradation profile towards a higher proportion of slowly digestible starch 

(SDS). The materials were characterized by single-pulse 1H HR-MAS NMR spectroscopy 

and in vitro digestion profile according to the Englyst procedure. Using various 

concentrations and incubation times with branching enzyme (EC 2.4.1.18) without or with 

additional treatment with the hydrolytic enzymes; β-amylase (EC 3.2.1.2), α-glucosidase 

(EC 3.2.1.20), or amyloglucosidase (EC 3.2.1.3) the proportion of α-(1-6) linkages was 

increased by up to a factor of 4.1, 5 and 5.8 in waxy maize, wheat and potato starches, 

respectively. The proportion of SDS was significantly increased when using hydrolytic 

enzymes after treatment with branching enzyme but it was only for waxy maize that the 

proportion of α-(1-6) bonds and the in vitro digestion profile was significantly correlated. 
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1. Introduction 

Starch is the most abundant storage carbohydrate in staple foods such as cereals, roots and tubers [1,2]. 

In addition, starch serves as the principal energy source in the human diet and plays a special role in 

glucose homeostasis [3]. Consumption of easily digestible food causes a rapid rise in blood glucose 

and substantial fluctuation of hormones, which places high stress on the regulatory system [4,5]. In this 

context it is well established that source, type and processing of starch has important implications for 

the glycemic response and control [6]. 

The rate and extent of starch digestion depend on intrinsic as well as extrinsic factors. Amylose is 

usually less readily digestible than amylopectin as shown in the study of Åkerberg, Liljeberg and 

Björck [7] where bread made from flour with a high proportion of amylose resulted in a lower rate and 

extent of digestion compared to a white wheat bread reference. Physical, chemical and enzymatic 

methods, however, may be used to modify the molecular structure of starch [8] and thereby delay its 

rate of digestion. Among these, enzymatic methods are of special interest as they are safer for the 

environment and consumers and the reaction can be more specifically controlled under mild conditions 

and result in fewer by-products [9]. Starch containing a higher proportion of α-(1-6) linkages can be 

produced using branching enzyme (EC 2.4.1.18) by itself or in combination with hydrolytic enzymes 

such as β-amylase (EC 3.2.1.2), α-glucosidase (EC 3.2.1.20) or amyloglucosidase (EC 3.2.1.3). A 

study of Takii et al. [10] showed that mice administered by highly branched dextrins via a stomach 

sonde resulted in a lower rate of glucose absorption compared to a glucose reference. 

The main objective of the present study was to examine how the content of α-(1-6) branch points in 

the starch structure affected the rate and/or extent of enzymatic digestion. We produced starches using 

different combinations of incubation time and dose of branching enzyme on different starch sources, 

and studied the effect of further treatment using different hydrolytic enzymes. The effect on starch 

structure was studied by 1H high-resolution (HR) magic-angle-spinning (MAS) NMR spectroscopy 

which in previously analysis has been used for quantification of anomeric linkages in various  

starches [11]. The effect on the rate of digestion was evaluated using the in vitro Englyst procedure [12]. 

By this procedure starch was separated into sub-fractions according to the rate of digestion: rapidly 

digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS). 

2. Results and Discussion 

2.1. Single-Pulse 1H HR-MAS NMR Spectroscopy 

The individual effect of branching enzyme (BE) and combined actions of BE and hydrolytic 

enzymes on the content of α-1,6-linkages in starches was examined by 1H HR-MAS NMR. Figure 1 

shows the spectral region 4.3–6.0 ppm in the 1H HR-MAS NMR spectra in which the gelatinized and 

selected enzymatically modified starches of the three cultivars are displayed. The two broad 

resonances at 5.38 and 4.98 ppm originate from the anomeric hydrogens in the α-(1-4) and α-(1-6) 

linkages, respectively. Furthermore, additional resonances from anomeric hydrogens in α- and  

β-glucose monomers or end groups at 5.24 (α) and 4.65 (β) ppm are observed in the BAM-treated 

starches. Relative ratios of these anomeric hydrogens are displayed in Table 1. Our study showed that 

gelatinized samples resulted in 2.1%, 2.6% and 3.6% of degree of branching (ratio of α-(1-6) linkages 
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to the sum of α-(1-6) and α-(1-4) linkages) in potato, wheat and waxy maize, respectively. This was a 

slightly different from previous studies where it has been shown that α-(1-6) linkages was 2.8–3.4% in 

potato, 3.1% in wheat, and 2.3–2.7% in maize [13,14]. Furthermore, there are also differences in the 

proportion of α-(1-6) branches in Glucidex consisting 2 and 6 dextrose equivalent, 4.7 vs. 3.3%, 

respectively. 

Figure 1. 1H HR-MAS NMR spectra of starch gels at 85 °C. Resonances of anomeric 

hydrogens in α-(1-4) and α-(1-6) glucose linkages in polysaccharides as well as α-glucose 

(aG) and β-glucose (bG) monomer or end-group units are indicated. 
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Table 1. Relative content (%) (±0.3%) of α-glucose, β-glucose monomers (or end-groups) 

and α-1,6 and α-1,4 branching in wheat, potato and waxy maize gelatinized and enzymatic 

modified starches.  

Source α-glucose β-glucose α-1,6 α-1,4 α-1,6/(α-1,6 + α-1,4)

Waxy maize      
Gelatinized   3.6 96.4 3.6 
20 U 20 h   4.9 95.1 4.9 
1000 U 20 h   6.2 93.8 6.2 
1000 U 120 h   7.9 91.9 7.9 
1000 U 120 h + BAM 0.4 1.9 13.1 84.6 13.4 
1000 U 120 h + AMG 0.5 2 11.2 86.4 11.5 
1000 U 120 h + AGLU 0.5 1.6 14.9 83 15.3 
Wheat      
Gelatinized   2.6 97.4 2.6 
1000 U 20 h   7.6 92.4 7.6 
1000 U 120 h   7.3 92.7 7.3 
1000 U 120 h + BAM 0.3 2 12.9 84.8 13.2 
Potato      
Gelatinized    2.1 97.9 2.1 
1000 U 20 h   5.1 94.9 5.1 
1000 U 120 h   7.5 92.5 7.5 
1000 U 120 + BAM 0.5 1.7 12.2 85.6 12.5 
Glucidex 2 0.6 1.8 4.6 93 4.7 
Glucidex 6 1.1 2.4 3.2 93.3 3.3 

Application of Rhodothermus amylo-(1,4→1,6)-transglycosylase (BE) induced transfer of the linear 

fragment of amylose (DP > 7, minimum substrate not determined) from the non-reducing end of the 

chain and attached it to a hydroxide oxygen on C6 in a glucose unit of the same or another chain. 

Hypothetically, the degree of converting amylose to amylopectin should be determined by the enzyme 

dose and time of incubation. In our study, using of a low dose of BE for a short time period (20 U for 

20 h) only slightly increased the proportion of α-(1-6) links compared to gelatinized waxy maize 

material (Table 1). However, increasing the BE dose to 1000 U (1000 U 20 h) significantly increased 

the content of α-(1-6) bonds by 72%, 143%, and 192% compared to the gelatinized samples in waxy 

maize, potato and wheat starches, respectively. Prolonging the BE reaction time by 100 h  

(1000 U 120 h) had a marginal effect on the proportion of branches in wheat starch, whereas an 

increase was seen in waxy maize and potato starches. This clearly implies that the degree of 

polymerization of the product varies depending mainly on the dose of the branching enzyme [15] and 

natural variation in proportion of α-(1-6) linkages in starch sources rather than time of incubation. The 

hydrolytic function of BEs induces a production of linear chains which act as donors for 

transglycosylation [9] that configure a new compound structure. Takata et al. have used BE from 

mesophile Bacillus cereus to change starch into a cyclic form [16]. The studied Bacillus cereus BE 

catalyzed a decrease of chain length, subsequently branching and cyclization of chains and induced a 

second branching action on the cyclic molecules. Even though we did not analyze the conformation of 

the branched molecules in our experiment, we may expect that either the cyclic or high complex 
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structure may also be obtained since we were using the BE with the similar mode of action  

as references. 

Inclusion of β-amylase (BAM) treatment to the BE treated starch (1000 U 120 h) enhanced the 

number of linkages in waxy maize by 5.2%, in wheat by 5.6% and in potato by 4.7%. For waxy maize 

amyloglucosidase (AMG) and α-glucosidase (AGLU) were also applied to BE treated starch (1000 U 

120 h) which resulted in an increase ratio of α-(1-6) linkages by 3.3% and 7.0%, respectively. 

Moreover it was demonstrated that AGLU was more efficient and AMG was less efficient than BAM 

in increasing the number of α-(1-6) linkages following BE treatment. BAM hydrolyzes α-(1-4) glucan 

linkages by successively removing maltose units from the non-reducing end of the chains. 

Consequently, BAM treated starches had 5.0%, 5.4% and 4.7% maltose in the final enzyme-treated 

waxy maize, wheat and potato products, respectively. AMG rapidly hydrolyzes α-(1-4) and α-(1-6) 

glucosidic bonds and AGLU slowly hydrolyzes exo-α-(1-4)-glucosidic linkages that resulted in 4.3% 

and 2.5% of glucose residue in AMG and AGLU material, respectively. This showed the presence of 

only a few by-products were left behind after purification (filtration) of the high branched starch from 

the low molecular weight carbohydrates. 

Finally, the combined action of branching and hydrolytic enzymes led to the highest progressive 

formation of α-(1-6) linkages. Additionally, a higher proportion of α-(1-6) linkages found in waxy 

maize, was also probably due to a greater number of short branched chains present in waxy maize 

compared to potato and wheat, and a reduced number of long branched chains after BE treatment [17].  

2.2. In vitro Digestion 

The nutritional properties of gelatinized and enzymatically treated starches were evaluated by the 

Englyst procedure [12] (Table 2). The reference Glucidex 6 had a faster digestion rate than Glucidex 2, 

which is most likely due to a higher degree of hydrolysis the starch in Glucidex 6 than Glucidex 2. The 

raw waxy maize used for enzymatic modification in the current study contained 39% RDS, 51% SDS, 

and 10% RS, which was different from a previous study where it was reported to comprise of 29% 

RDS, 67% SDS, and 4% RS, respectively [18]. In waxy maize starch there is a large amount of short 

chains with a degree of polymerization (DP) of 6–12 [19]. Therefore, after gelatinization the 

proportions of RDS increased dramatically at the expense of SDS. Exposing the waxy maize to a low 

dose of BE for a short time (20 h) led to a significant increase in SDS, but not to a concurrent 

significant decrease in RDS. Surprisingly, in spite of a slight increase in the degree of α-(1-6) 

branching in waxy maize treated with a high dose of BE for 20 h, the proportion of RDS was 

significantly increased and the proportion of SDS significantly decreased compared to the low dose 

treated waxy maize. Prolongation of the incubation time to 120 h more than doubled the degree of 

branching compared to the untreated starch. This led to a small but significant decrease in the 

proportion of RDS, whereas the concomitant increase in the proportion of SDS was not significant.  
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Table 2. The effect of branching enzyme at different dosages and incubation of time on  

in vitro starch digestion rate of waxy maize starch. 

  TS RDS/TS SDS/TS RS/TS 

  % of d.m. * % of TS (total starch) 

Gelatinized  98 a  74 bc 25 b 2 ab 
20 U 20 h 96 bc  72 cd 29 a −1 b 
1000 U 20 h 95 c  76 a 25 b −1 b 
1000 U 120 h 95 bc  69 d 27 ab 4 a 
Glucidex 2 95 bc  70 d 29 a 1 ab 
Glucidex 6 97 ab  74 ab 25 b 0 b 
SE 0.6   0.8  0.9  0.9  
p value 0.0065   0.0003  0.0217  0.0268  

*d.m. is dry matter. Values on the same column, followed by different letters, are significantly different (p < 0.05). 

The gelatinization treatment and the three major enzymatic starch modifications studied here were 

extended to wheat and potato starch also. A comparison between the three sources can be seen in  

Table 3. The native wheat starch used in the current experiment contained 47% RDS, 53% SDS, and 

1% RS on total starch basis. In comparison Zhang et al. [20] found 40% RDS, 50% SDS and 10% RS 

in their starch source. The native potato starch used as the basis for enzymatic modification in the 

current study had a distribution of 21% RDS, 22% SDS, and 57% RS. This has a somewhat lower  

RS-level than our potato starch reference used in the Englyst procedure (14% RDS, 13% SDS, 73% 

RS) and than previously reported by Englyst et al. [12]. The short-term treatment with a high dosage 

of branching enzyme significantly increased the proportion of RDS in potato and wheat starches, and 

tended to decrease the proportion of SDS in potato starch. For all starches, increasing the incubation 

time led to a significant reduction in the proportion of RDS, while the proportion of SDS tended to 

increase (not significant). In spite of this, there was no change in the proportion of α-(1-6) linkages in 

the wheat starch, whereas the proportion increased slightly for waxy maize and potato starch. BE 

treatment with BAM increasing the proportion of branches, concomitantly enhanced the proportion of 

SDS by 6, 13 and 5% in waxy maize, wheat and potato compared to gelatinized starches, respectively. 

Apart from hydrolysis of α-(1-4) linkages, amyloglucosidase also release α-(1-6) bonds to produce 

glucose. However, the hydrolysis of α-(1-6) linkages, takes place at a slower rate than that of  

α-(1-4) bonds [17,21]. Therefore, a greater number of α-(1-6) linkages in produced starches limited the 

hydrolysis rate in the in vitro digestion assay.  
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Table 3. Effect of branching enzyme at different incubation of time and addition of  

β-amylase on different starch sources. 

  TS RDS SDS RS 
  % of d.m.* % of TS 
Waxy maize          
Gelatinized 98 a  74 cd 25 cd 2 cd 
1000 U 20 h 95 bcd  76 bc 25 cd −1 d 
1000 U 120 h 95 bc  69 ef 27 c 4 bc 
1000 U 120 h + BAM 90 fg  69 efg 31 b 1 cd 

Wheat          
Gelatinized 97 ab  70 ef 22 d 8 a 
1000 U 20 h 92 ef  76 b 22 d 2 cd 
1000 U 120 h 94 bcd  69 efg 25 cd 6 ab 
1000 U 120 h + BAM 85 h  67 g 35 a −2 d 

Potato          
Gelatinized  93 cde  67 fg 25 cd 8 a 
1000 U 20 h 90 f  79 a 22 d −1 d 
1000 U 120 h 93 de  73 d 24 d 4 bc 
1000 U 120 h + BAM 88 g  70 e 30 b 0 d 

SE 0.8   0.9  1.1  1.2  
Source <0.0001   0.0169  0.1164  0.0372  
Treatment <0.0001   <0.0001  <0.0001  <0.0001  
Source × Treatment 0.0435   0.0002  0.0344  0.0151  

*d.m. is dry matter. Values on the same column, followed by different letters, are significantly different (p < 0.05). 

Regarding the proportion of RS in the starches a similar trend was seen; in wheat and potato short 

term incubation with BE alone, or long-term BE treatment plus additional BAM treatment, led to a 

lower proportion of RS than gelatinization or long-term BE treatment alone. While long-term BE 

treatment alone led to a reduced proportion of RS compared to its gelatinized counterpart in potato, 

starch treated for a long time with addition of BAM resulted in a significantly lower content of RS in 

both wheat and potato compared to their gelatinized counterparts. Ao et al. [17] suggested that 

enzymatic branching not only increases the amount of α-(1-6) branches and shortens chains, but also 

leads to a new structure with more exposed long interior chains that might retrograde and thereby 

reduce the enzyme susceptibility.  

The effect of using different hydrolytic enzymes after the high-dose long term treatment with BE 

was investigated on the waxy maize (Table 4). Addition of AGLU after the BE treatment led to the 

largest reduction in proportion of RDS and simultaneously increased the proportion of SDS more than 

any other treatment. Hence, this preparation also had the highest content of α-(1-6) branches, 

indicating that a major change in degree of branching is necessary in order to have an impact on the in 

vitro digestion rate. Addition of BAM and AMG did not have a similar effect and was not significantly 

different from the BE treated waxy maize starch concerning the proportion of RDS rate, and led only 

to insignificant increases in SDS. Therefore, the selection of hydrolytic enzyme after branching 

treatment had significant meaning.  
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Table 4. The effect of application of the additional branching enzymes on waxy maize 

starch. 

  TS  RDS SDS RS 

  % of d.m.*  % of TS 

Gelatinized  98 a 74 a 25 c 2 
1000 U 120 h 95 b 69 b 27 bc 4 
1000 U 120 h + BAM 90 d 69 b 31 ab 1 
1000 U 120 h + AMG 93 c 69 b 29 abc 2 
1000 U 120 h + AGLU 93 c 64 c 33 a 3 
SE 0.5 0.7 1.5 1.1 
p value <0.0001    <0.0001   0.0201   0.3588  

*d.m. is dry matter. Values on the same column, followed by different letters, are significantly different (p < 0.05). 

In the present investigation, there was significant reduction in the total starch content for all 

enzymatic treatments compared to the non-enzymatic treated starch. A similar study [17] has shown 

that branching resulted in by-products such as isomaltose, isomaltotriose and panose. However, apart 

from the previously mentioned maltose found in BAM treated starches, our analysis showed only trace 

amounts of maltotriose and maltotetraose in a few starches, and a complete lack of isomaltotriose and 

panose in the products. Measurement of nitrogen showed that the protein content was below 1.5% in 

all starches. Furthermore, the level of ash was below 1% with the exception of the jet cooked potato 

starch, which had a content of 3.4%. In summary, BE decreased the content of total starch, and 

additional treatment by hydrolytic enzymes further reduced the total starch level. This tendency was 

more pronounced for BAM than for AMG and AGLU.  

2.3. Relation between Degree of Branching and in vitro Digestion Rate 

The relationship between the proportion of α-(1-6) linkages and RDS, SDS, RS was investigated. In 

waxy maize starch, RDS decreased and SDS increased in parallel with a higher proportion of  

α-(1-6)-linkages; the correlations for RDS was r = 0.85 (p = 0.0153), and for SDS r = 0.87 (p = 0.0111). 

For wheat and potato starches the same trends were seen but the correlations were not significant  

(p > 0.05) probably because the comparisons were based on only a few samples. Across starch sources 

and treatments, the results also indicate trends for decreasing proportion of RDS and increasing 

proportion of SDS, but with much weaker correlations (RDS r = 0.49, p = 0.0447 and SDS r = 0.76,  

p = 0.0004).  

Le et al. [9] have shown the combined effect of amylo-(1,4-1,6)-transglycosylase (BE) and Bacillus 

stearothermophilus maltogenic amylase (BSMA) on tapioca starch which resulted in 9.7% of extra 

branch linkages and significantly lowered α-amylase affinity, turnover and efficiency. Furthermore, 

another study [19] has shown the combined effect of β-amylase- and transglucosidase-treated  

maize starch which resulted in 13% of α-(1-6)-linkages, significantly decreased RDS content and 

significantly increased SDS proportion compared to reference, indicating 61% RDS, 34% SDS and 5% 

RS of TS. Presently, BE + BAM treated wheat starch and BE + AGLU treated waxy maize starch 

resulted in 35% and 33% SDS, respectively, whereas the content of α-(1-6)-linkages was 13.2% and 

15.3%, respectively. For comparison the BE + BAM treated waxy maize starch contained 13.4%  
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α-(1-6)-linkages but only 31% SDS. Overall, the results indicate that enzymatic modification of starch 

changed the degree of branching but the impact on in vitro digestion varies, which may be attributed to 

starch source [9], enzyme sources [22], dose, time of incubation and other processing conditions e.g., 

the storage temperature [23].  

3. Experimental Section 

3.1. Preparation of Enzymatically Modified Starches 

Commercially available wheat-, potato- (KMC, Denmark) and waxy maize starches (Cargill Nordic 

A/S, Denmark) were prepared in the following ways: 11.1%–12.5% w/v starch slurry was mixed with 

Milli Q-water in a glass reactor. For reference, gelatinized sample was processed by the adjustment of 

pH to 6.1 at room temperature, heated to 75 °C, adjusted to pH = 6.1, kept at 75 °C for 20 h, adjusted 

pH to 3.5, incubated at 93 °C for 30 min and finally adjusted pH to 5.5 at 93 °C. Part of the gelatinized 

sample was then transferred to another glass reactor, pH was adjusted to 6.1 and 20 or 1000 U/g DM 

Rhodothermus Obamensis amylo-(1,4→1,6)-transglycosylase (BE, EC 2.4.1.18) was added, the 

temperature was raised to 75 °C and the reaction mixture incubated for 20 or 120 h. Enzyme catalysis 

was terminated by lowering pH to 3.5 with HCl increasing the temperature to 93 °C and maintained it 

30 min. In three cases, an additional step was performed for waxy maize in which addition of 

hydrolytic enzymes was included; the mixtures were incubated with either β-amylase (BAM, EC 

3.2.1.2) for 24 h at pH 5.5, amyloglucosidase (AMG, EC 3.2.1.3) for 2 h at 4.5 with previous 

inhibition of branching enzyme, and α-glucosidase (AGLU, EC 3.2.1.20) for 23 h at pH 5.0 without 

inactivation of branching enzyme. The enzymes were inactivated by adjustment pH to 5.5 (BAM, 

AMG) and 3.5 (AGLU), increasing the temperature to 93 °C and maintain it for 15 min (BAM, AMG) 

and 30 min (AGLU). Low molecular weight sugars formed by the BE alone, BE+BAM, BE+AMG, 

and BE+AGLU were subsequently removed by ultrafiltration (Amicon, cut off 5000-3000 Da). After 

filtration, the materials were freeze dried. Two samples of commercially available Glucidex 2 and 6 

containing maltodextrins with 2 and 6 percent of dehydrated glucose syrup (Roquette, France) were 

used as reference samples. An overview of treatments is shown in Table 5. 

Table 5. Overview of experimental treatments.  

 Waxy maize Wheat Potato 

No enzyme x x x 
20 U BE, 20 h x   
1000 U BE, 20 h x x x 
1000 U BE, 120 h x x x 
1000 U BE, 120 h + BAM, 24 h x x x 
1000 U BE, 120 h + AGLU, 23 h x   
1000 U BE, 120 h + AMG, 2 h x   

BE, branching enzyme; BAM, β-amylase; AGLU, α-glucosidase; AMG, amyloglycosidase. 
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3.2. Single-Pulse 1H HR-MAS NMR Measurement  

Samples for 1H HR-MAS NMR analysis were prepared by mixing 0.8–1.6 mg of starch powder 

with 55 µL D2O containing 5.8 mM Trimethylsilyl-2,2,3,3-tetra deuteropropionic acid (TSP-d4).  

All experiments were carried out on a Bruker Avance 400 NMR spectrometer (BrukerBioSpin, 

Rheinstetten, Germany) operating at a Larmor frequency of 400.13 MHz for 1H, using a double-tuned 

HR-MAS probe equipped with 4-mm (o.d.) rotors. Single-pulse 1H NMR spectra were acquired using 

a recycle delay of 5 s, a spectral width of 8278 Hz, an acquisition time of 1.98 s, 64 scans and a spin-rate 

of 14 kHz. In order to ensure gelatinization of the starches the experiments were carried out at 85 °C. 

All spectra were apodized by Lorentzian line broadening of 0.3 Hz prior to Fourier transformation 

and referenced to TSP-d4 at 0.0 ppm. Quantification of the anomeric α-(1-4) and of α-(1-6) hydrogens 

was performed by integration of the spectral regions 5.25–5.55 ppm and 4.9–5.1 ppm, respectively. 

3.3. In vitro Starch Digestion 

The samples were characterized with respect to rate and extent of digestion into RDS, SDS and RS 

according to the in vitro Englyst procedure [12] with minor modifications. All samples were analyzed 

in triplicate using raw potato starch as reference, which was analyzed in duplicate. Dry matter content 

of the samples was determined by drying to constant weight at 105 °C for 20 h. For the in vitro 

digestion assay, 600 mg of spray dried samples were mixed with 50 mg guar gum (Sigma Aldrich,  

St. Lois, MO, USA) in 50 mL centrifuge tubes with caps. Five glass beads were added to each tube. 

The samples were treated with 5 mg/mL of pepsin A (EC 232-629-3, P7000, 460 U/mg solid, Sigma 

Aldrich, St. Lois, MO, USA) in 0.05 M HCl in a shaking bath water (160 strokes/min) at 37 °C for  

30 min. pH was changed to neutral by addition of 10 mL 0.25 M sodium acetate buffer. Afterwards,  

5 mL of an enzyme mixture containing pancreatin 0.13 g/mL (E.C. 232-468-9, P7545, Sigma Aldrich, 

St. Lois, MO, USA), invertase 0.29 mL (EC 3.2.1.26, 857 EU/mL, BDH Chemicals), 

amyloglucosidase 0.15 mL (E.C. 3.2.1.3, 540 U/mL, Megazyme International Ireland Ltd., Wicklow, 

Ireland), was added at one min. intervals. After 20 and 120 min of incubation 500 µL was transferred 

to a tube containing 35 mL 66% ethanol and centrifuged. The remainder was gelatinized in a boiling 

water bath for 30 min. Subsequently the tubes were placed at room temperature to cool down. After 

cooling, 10 mL of 7 M KOH was added to the tubes and incubated for 30 min. One mL of the content 

was transferred to a tube containing 10 mL 0.5 M acetic acid and 200 µL of 80 U/mL 

amyloglucosidase solution (E.C.3.2.1.3 Megazyme International Ireland Ltd., Wicklow, Ireland) was 

added. The tubes were placed in a water bath at 70 °C for 30 min followed by a boiling water bath for 

10 min. After cooling to room temperature 35 mL of milli-Q water was added and the tubes were 

centrifuged. Measurement of glucose was performed in duplicate by transferring 25 µL sample into a 

micro test plate and adding 260 µL GODPOD (Megazyme, Ireland). The plate was incubated at 40 °C 

for 20 min. and the absorbance measured spectrophotometrically (UV-VIS Spectrophotometer, 

Shimadzu) at 510 nm.  
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3.4. HPAEC-PAD Measurement 

The starches were analyzed for their content of mono- and oligosaccharides. 50 mg sample was 

mixed with 10 mL 50% EtOH (v/v) containing 250 mg/L arabinose as internal standard and incubated 

at 65 °C for 60 min with occasional mixing (3 times). After centrifugation at 2000 × g for 10 min,  

0.25 mL of the liquid phase was diluted 20 times with water, and filtered with a 22 µm nylon filter. 

The oligosaccharides were analyzed by high pressure anion exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD) (Dionex, Sunnyvale, CA, USA). Separation of the carbohydrates 

was performed with a Dionex CarboPac PA-100 column (250 mm × 4 mm) equipped with a CarboPac 

PA-100 guard column (50 mm × 4). The carbohydrates were eluted by two different gradients prepared 

from water (eluent A), 0.225 M NaOH (eluent B), and 0.5 M NaOAc (eluent C). For determination of 

glucose, maltose and maltotriose, the flow was also 1 mL/min, and eluent B changed from 80% to 65% 

at 11 min, then to 60% at 13 min, and returning to 80% at 17 min and kept there for 8 min. 

Simultaneously eluent C was changed from 15% to 30% at 11 min, increasing to 35% at 13 min, and 

then returned to the initial concentration at 17 min. A long elution program with a flow rate of  

0.7 mL/min was used for determination of maltotetrose, panose and isomaltotriose. In this procedure 

eluent B changed from 7.5% to 11.5% at 17 min, was kept constant until 10 min, then increasing to 

25% at 27 min and kept constant until 57 min, where it increased to 53% and was kept there until  

69 min, where it was returned to the initial 7.5% and kept until 80 min. Eluent C was added at 1% at  

27 min, changed to 20% at 57 min, then aborted at 69 min. Quantification of the carbohydrates was 

carried by an external standard using mixtures in concentration ranging from 2–20 mg/L. 

3.5. Calculation and Statistical Analysis 

The values for total starch (TS), RDS, SDS and RS were calculated from the values of released 

glucose after 20 min (G20), 120 min (G120), FG (free glucose) and TG (total glucose) according to the 

method of Englyst et al. [12]: 

TS = (TG − FG) × 0.9 

RDS = (G20 − FG) × 0.9 

SDS = (G120 − G20) × 0.9, and 

RS = (TG − G120) × 0.9 

where, the factor 0.9 denote the conversion from monosaccharide to polysaccharides. TS is obtained 

after KOH hydrolysis which can result in loss of glucose, and TS could, consequently, be lower than 

G120. Therefore, RS can be negative in some materials. 

Statistical analysis was performed using SAS for Windows, version 9.2 (SAS, 2007) by the use of 

three following different variance models: 

Samples of waxy maize treated with different concentrations of BE at different time together with 

the untreated starch and two reference starches (Glucidex 2, Glucidex 6) were first analyzed by  

one-way Analysis of Variance (ANOVA). 

The effect of starch source and treatment for the samples treated with 1000 U BE for 20 and 120 h, 

1000 U 120 h + BAM, and untreated samples were followingly analyzed according to a  

two-way ANOVA: 
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Yijk = µ + αi + βj + αβij + εijk  

i = 1, 2, 3; j = 1, 2, 3, 4, 5; k = 1,2,3.  

where Yijk is the dependent variable, µ the overall mean, αi the effect of source, βj is the effect of 

treatment, αβij the interaction between source and treatment, and εijk the error.  

Waxy maize samples that had been treated with BE for 120 h either alone or in combination with either 

BAM, AGLU, or AMG was analyzed together with the untreated waxy maize in a one-way ANOVA.  

Finally, the relationships between the proportion of α-(1-6) linkages and rates of digestion (RDS 

and SDS) were tested by regression model:  

Yi = α + βxi + εi 

where α is the intercept on the Y-axis, β is the slope and εi is a random normally distributed  

variable [24]. Data are presented as least square means with their standard errors (SE). Differences 

were considered to be significantly different when p < 0.05. 

4. Conclusions  

By branching enzymes and additional hydrolytic enzymes, it is possible to enhance the degree of  

α-(1-6) branching of wheat, potato and waxy maize starches. At a high level of branching, the in vitro 

rate of digestion shifted towards more SDS and less RDS in waxy maize, wheat and potato starches. 

Assessing waxy maize starch sources, a significant relation was found between the degree of 

branching and the in vitro digestion pattern. However, even the double increase of branching ratio by 

individual BE treatment was insufficient to profoundly change the profile of digestion in all of  

the starches.  
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