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Abstract: In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO2) double 

layer coatings were successfully developed on titanium (Ti) substrates intended for 

biomedical applications. A TiO2 coating was firstly developed by anodization to improve 

bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface 

by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The 

surfaces of double layer coatings were uniform and crack-free with a thickness of about  

7 μm. The bonding strength of the HA-CNT/TiO2 coating was higher than that of the pure 

HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs 

promoted the adhesion of preosteoblasts on the HA-CNT/TiO2 double layer coatings. 

These unique surfaces combined with the osteoconductive properties of HA exhibited the 

excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO2 coatings 

on Ti substrates might be a promising material for bone replacement. 
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1. Introduction 

Titanium (Ti) has been widely used to fabricate biomedical materials because it has excellent 

biocompatibility, corrosion resistance, and mechanical properties [1,2]. However, the bio-inertness of 

the metallic surfaces inhibits the growth of bone tissue [3]. On the other hand, hydroxyapatite  

(HA; Ca10(PO4)6(OH)2) was widely used in hard tissue engineering such as bone and dentin formation, 

owing to its excellent osteoconductivity and biocompatibility [4]. However, the brittle nature and low 

fracture toughness of HA prevented its clinical application under load-bearing conditions. In order to 

overcome this shortage, HA has been applied as a coating on metallic surface, which combined the 

high mechanical strength of the metal with the excellent biocompatibility and bioactivity of the 

ceramic and is therefore suitable for implants in high load-bearing applications.  

Carbon nanotubes (CNTs) exhibited outstanding mechanical, structural, thermal, chemical and 

optical properties [5–7], which attracted attention as reinforcement for high strength composites. CNTs 

have been added to HA to obtain nanocomposite coatings that combine the mechanical and biological 

properties of the individual materials and thus showed the improved mechanical performance [8,9]. 

Moreover, CNTs dissipated the residual stress in HA coatings [10].  

Numerous strategies have been proposed to prepare HA, with the sol-gel method being the most 

favored. To prepare HA coatings from sol-gels, the calcium and phosphorus precursors were mixed at a 

molecular level for ensuring chemical homogeneity. In addition, the method is technically simple, 

cost-effective, and requires lower temperatures than do traditional processing methods [11,12]. Ti and 

HA have different thermal expansion coefficients, which may hinder the bonding strength between 

them. To improve the bonding between HA and Ti, a titania (TiO2) coating is formed on the Ti surface. 

Various methods have been adopted to form a TiO2 layer on the Ti substrate, such as anodization, 

thermal oxidation and the sol-gel process. Recently, anodization has been applied to obtain a rough, 

porous TiO2 layer on the surface of Ti [13,14]. This method is attractive because the TiO2 layer can be 

controlled by adjusting the processing conditions.  

In this study, we intended to develop a novel method for fabricating HA-CNT/TiO2 double layer 

coatings on Ti substrates. Firstly, we developed a TiO2 by anodization. Then, the HA-CNT composite 

coating was coated on top of the TiO2 layer by the sol-gel process. The crystallization of the HA phase 

and the microstructure of the double layer coatings were investigated. The bonding strength of the 

coatings and their in vitro biological properties were also evaluated. 

2. Results and Discussion 

2.1. TiO2 Coating Phase and Morphology 

Heat treatment plays a vital role in the synthesis of TiO2 coatings, since it affects their morphology, 

crystallinity, and porosity and induces phase transformations. The crystalline forms of the TiO2 layer 

on the Ti substrate were analyzed before and after heat treatment at two temperatures (Figure 1). 

Before heat treatment, the XRD spectra of the TiO2 layer showed only reflections corresponding to the 

Ti substrate. Neither rutile nor anatase Ti crystalline phases were observed, indicating that the 

anodized film was amorphous TiO2. In order to remove water from the product, the layer should be 

calcined to a high temperature (above 450 °C). Heat treatment at 450 °C afforded an anatase phase, 
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while treatment at 700 °C yielded a rutile phase. Hu et al. [15] have reported that TiO2 normally 

undergone an anatase-to-rutile phase transition at around 600–700 °C. 

Figure 1. X-ray diffraction (XRD) spectra of the TiO2 layers before heat treatment (a) and 

after heat treatment at various temperatures for 1 h in air: (b) 450 °C; (c) 700 °C. 
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FEG-SEM observations revealed that the TiO2 structure probably formed pores or nanotubes, 

depending on the anodization voltage (Figure 2). At 5 V, TiO2 formed only a rough surface (Figure 2a). 

With increasing voltage, the TiO2 layer showed a more three-dimensional structure that included 

numerous open pores (Figure 2b,c) [16]. It was found that the pores were uniform and arrange regularly, 

and their diameters varied from 50 to 200 nm when the voltage was changed. At the highest applied 

voltage, the surface became cracked and irregular (Figure 2d), which was in agreement with the results 

reported by Ishizawa et al. [17]. Compared with the untreated Ti substrate, the anodized substrates 

showed rougher surface morphologies and a greater number of pores. 

Figure 2. Field-emission gun scanning electron microscopy (FEG-SEM) images of the 

TiO2 surface structures obtained by anodizing the Ti substrates, at different voltages before 

heat treatment: (a) 5 V; (b) 10 V; (c) 20 V; (d) 30 V.  
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Figure 2. Cont. 

   

2.2. Double Layer Coating Phase and Morphology 

Figure 3 shows the XRD patterns of the HA-CNT/TiO2(Figure 3a)  and HA/TiO2(Figure 3b) 

double layer coatings on Ti substrates. No extraneous peaks appeared under the heat treatment, only 

peaks for HA, CNTs, TiO2 and Ti were detected. Weak and broadened peaks in the spectra might be 

due to the small grains of the coatings. There was a branched double peak at 2 = 26. Because the peak 

(26) of CNTs overlapped with the peak (25.8) of HA, the peak was weak and hardly confirmed 

CNTs in the double layer coatings. However, the existence of CNTs can be confirmed by SEM. The 

CNTs, as indicated by arrows in Figure 4e, were distributed in the HA matrix. These results suggested 

that the homogeneous dispersion of CNTs resulted in a higher rate of hydroxyapatite crystallization. 

The result was in agreement with the report by Najafi et al. [18], which showed that the synthesis of 

HA in the presence of CNTs had the best result in terms of homogenization of the carbon nanotube 

dispersion and faster crystallization of hydroxyapatite.  

Figure 3. XRD spectra of the double layer coatings on Ti substrates after heat treatment at 

550 °C for 30 min in air: (a) HA-CNT/TiO2 double layer coating; (b) HA/TiO2 double layer 

coating. (O): TiO2; (+): HA; (*): CNT. 
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Figure 4. SEM images of the two coating systems on Ti substrate: (a) HA coating; (b) HA 

coating at high magnification; (c) HA-CNT/TiO2 double layer coating; (d) HA-CNT/TiO2 

at high magnification; (e) micrograph of the fracture surface of the HA-CNT/TiO2 double 

layer coating; (f) HA-CNT/TiO2 double layer coating cross-sectional view.  

  

  

  

FTIR spectroscopy confirmed some features of the coatings that could not be observed by XRD 

analysis. The expected orthophosphate (PO4
3−) and hydroxyl (–OH) peaks were clearly presented in the 

spectra of both HA coatings (Figure 5). The PO4
3− ions in the apatite structure gave a sharp and broad IR 

absorbance between 800 and 1100 cm−1. PO4
3− stretching and bending modes were seen at 557 cm−1, 

944 cm−1, and 1121 cm−1. A broad peak at around 3000–3600 cm−1, centered at 3428 cm−1, could be 

attributed to OH stretching. Suchanek et al. have reported an OH vibration peak at around 630 cm−1 for 

HA, but this peak was not evident in our spectra [19]. Interestingly, a C=O stretching peak attributed to 

the carbonyl on the CNTs was visible at 1630 cm−1 (Figure 5A).  
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Figure 5. Fourier transform infrared spectroscopy (FTIR) spectra of the double layer 

coatings on Ti substrates after heat treatment at 550 °C for 30 min in air: (A) HA-CNT/TiO2 

double layer coating; (B) HA/TiO2 double layer coating. 
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With the SEM observation, the morphologies of the HA and HA-CNT/TiO2 double layer coatings 

on the Ti substrate were slightly different. The HA-CNT/TiO2 double layer coatings appeared to be 

highly dense and uniform, while the simple HA coating had numerous microcracks (Figure 4a,c). The 

discrepancy in the thermal expansion coefficients between HA (15.2 × 10−6 °C−1) and Ti (8.6 × 10−6 °C−1) 

probably resulted in excessive strain during the heating and cooling processes. In our method, the 

mismatch of thermal expansion coefficients between them was reduced byTiO2 layer (9.0 × 10−6 °C−1). 

The anodized coatings helped in reducing the microcracks, also yielding a denser coating [20]. 

Moreover, CNTs further reduced the crack propagation because of their function in transferring  

and eliminating residual stress in the HA/CNTs composite coatings, which had been proved by  

Lin et al [21]. The HA and HA-CNT/TiO2 double layer coatings had similar rough surface 

microstructures at high magnification (Figure 4b,d). The rough surface of the HA coatings has been 

reported to be advantageous for cell attachment and proliferation [22]. 

The cross sectional surface of coatings showed that the coatings with a uniform thickness of about  

7 μm were very compact and dense (Figure 4f). No pores or microcracks were detected in the coatings. 

The layer bonded firmly to the substrate and held a uniform thickness throughout the Ti surface. 

Moreover, there were no delaminations or cracks at the interlayer/topcoat interface, suggesting that 

both Ti substrate/TiO2 interlayer and TiO2 interlayer/HA-CNT topcoat interfaces had very good 

bonding capabilities.  

2.3. Bonding Properties 

To evaluate the mechanical properties of the double layer coatings, the bonding strength of the 

different coatings was measured, and the results presented in Figure 6. As expected, the insertion of the 

TiO2 layer and CNTs significantly improved the bonding strength of the layer to the Ti substrate. The 

HA-CNT/TiO2 double layer coatings bound more strongly than the HA, HA/TiO2 and HA-CNT 

coatings (p < 0.05). The bonding strength of the HA-CNT/TiO2 double layer coatings increased to as 

high as 35.2 MPa, which constituted an approximately 65.9% enhancement with respect to that of the 
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HA single coating (21.2 MPa) and was much higher than that of electrophoretic deposition HA 

coatings [9]. The HA-CNT layer bonded more tightly to the TiO2 layer than to the bare Ti substrate. 

Because the mismatch of the thermal expansion coefficients of HA and Ti was alleviated by the 

addition of TiO2, resulting in the decreased residual stress in the coatings. These results proved that the 

oxidation of Ti substrate improved the attachment of HA to metal substrates, which was in agreement 

with the findings of Hautaniemi et al. [23]. The CNTs also helped prevent the HA-CNT coating from 

peeling off by acting as a reinforcement network [24].  

Figure 6. Bonding strengths of different coatings deposited on Ti substrates. 

 

The images of the failure surfaces of HA-CNT/TiO2 and HA-CNT double layer coatings after 

adhesion strength tests were shown in Figure 7. Failure occurred entirely at the Ti substrate/coating 

interface for the HA-CNT coating (Figure 7a), While some debris of the coatings remained on the 

surface of HA-CNT/TiO2 double layer coatings, which showed failure occurred between interlayer and 

topcoat (Figure 7b). Based on these results, it was confirmed that the bonding strength of the coating 

layer was dictated by the coating defects and the substrate type. 

Figure 7. Morphology of failed surface of (a) HA-CNT and (b) HA-CNT/TiO2 showing 

the coatings peeled off from the substrate after adhesion test. 

   

2.4. In Vitro Cellular Assessment  

In order to evaluate cell attachment to the coatings, preosteoblast MC3T3-E1 cells were fixed after 

24 h of culturing with the different coatings and imaged (Figure 8). As is shown in Figure 8a, the cells 



Int. J. Mol. Sci. 2012, 13 5249 

 

did not spread out well on the bare Ti control. By contrast, the cells on the HA coating gradually adhered 

to and spread out on the substrates (Figure 8b). Furthermore, the cells on the HA-CNT/TiO2 double 

layer spread out further and had more filopods than those on the bare Ti and the HA/TiO2 coating 

(Figure 8c). The anodized substrates, which have rougher surface morphologies and numerous 

micron-sized pores, could improve protein adhesion. Moreover, the porous edges were beneficial for 

cell adhesion [25]. Recent studies have demonstrated that osteoblast cells adhered to the surface of 

functionalized MWCNTs. Zanello et al. tried to control cell growth on CNTs by functionalizing them 

and demonstrated that neutrally charged CNTs sustained osteoblast growth and bone formation [26]. 

These results indicate that during the initial incubation, the anodized Ti and CNTs in the double layer 

coating promoted preosteoblast cell attachment and adhesion.  

Figure 8. SEM images of preosteoblast MC3T3-E1 cells growing on each sample after  

24 h of incubation: (a) bare Ti; (b) HA coating; and (c) HA-CNT/TiO2 double layer coating. 

TiO2 was heat-treated at 450 °C for 1 h. 

   

 

To assay proliferation on the different coatings, preosteoblast MC3T3-E1 cells were cultured on 

each material for 5 d. Cell proliferation was enhanced on each HA coating when compared to that on 

bare Ti (Figure 9). All the coatings (HA, HA/TiO2, HA-CNT, and HA-CNT/TiO2) were assayed,  

and the HA-CNT/TiO2 double layer coating showed a significantly higher cell proliferation rate 

relative to the pure HA coating (P < 0.01). A study by George et al. tested the response of MWCNTs to 

human lung epithelial cells, osteoblast-like cells and primary osteoblast cells. They suggested that  

the dimensions and spacing of CNTs may be key to determining subsequent cell spreading and 

proliferation [27]. The findings in this research also suggest that adding CNTs to HA coatings enhance 

its bioactive properties.  
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Figure 9. Proliferation of MC3T3-E1 cells cultured on each sample for 5 d. Bare Ti 

substrate was used as a control. 

 

3. Experimental Section  

3.1. Preparation of Ti Substrates  

Ti sheets (TA2, Baoji Non-ferrous Metals Co., China) measuring 10 × 10 × 2 mm were used as the 

substrates. Their surfaces were polished with silicon carbide papers (grit #180, 320, 600, 800, and 

1000), followed by ultrasonic cleaning in acetone, ethanol, and distilled water. Before the experiment, 

samples were etched in an acidic solution (HF/HNO3/H2O = 1:3:10) for 3 min to remove the oxide layer 

that naturally formed in air atmosphere. 

3.2. Preparation of HA-CNT/TiO2 Coating 

Samples were anodized at room temperature with a direct current power supply. A graphite plate and 

the Ti sample were used as the cathode and the anode, respectively. The substrates were anodized in 

HF/H2O with H3PO4 at 5–30 V for 1 h to form nanostructured Ti surfaces. The solution was stirred to 

homogenize the electrolyte and allow gasses to escape from the Ti surface. After anodization, the 

samples were cleaned with distilled water, dried, and then heat treated at 450 °C or 700 °C in air for 2 h. 

After heat treatment, the samples were ultrasonically cleaned in acetone, ethanol, and distilled water 

and finally dried to obtain the TiO2 film. 

The HA sol was fabricated from its precursors, Ca(NO3)2·4H2O and P2O5. Stoichiometric amounts 

of Ca(NO3)2·4H2O and P2O5 were dissolved in separate ethanol solutions. Next, the P2O5 solution was 

slowly added to the Ca(NO3)2·4H2O solution to achieve a calcium (Ca)/phosphorus (P) ratio = 1.67. 

Then, 1 wt% carboxyl-multiwalled CNTs (MWCNTs) with a diameter of 10–20 nm and length of 

0.5–2 μm (Chengdu Institute of Organic Chemistry, China) were added to the HA sol with vigorous 

stirring for 24 h; the resulting mixture was subsequently aged at room temperature for 48 h to obtain a 

clear sol. Carboxylated MWCNTs are easily dispersible in solvents. 
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Next, the anodized Ti substrates (anodized in HF/H2O with H3PO4 at 20 V for 1 h and heat treated  

at 450 °C) were slowly dipped into the composite sols at a withdrawing rate of 5 cm/min. As a 

comparison, the Ti substrates and the anodized Ti substrates were dipped into the HA sols. The gels 

obtained from the sols were dried at 150 °C for 30 min and then heat-treated at 550 °C for 30 min in 

order to fix the double layer coatings. Controls with pure HA and HA-CNT (no TiO2) were also tested 

and characterized. 

3.3. Characterization 

The crystalline phases in the coatings were analyzed by X-ray diffraction (XRD; D8 Focus, Bruker 

Co., Germany) and Fourier transform infrared spectroscopy (FTIR; Equinox 55, Bruker Co., Germany). 

For FTIR analysis, the coating was scraped off from the treated surface, mixed with high-purity KBr 

powder, and compacted into pellet form. The surface and cross-sectional morphologies of the double 

layer coatings were studied by Field-emission gun scanning electron microscopy (FEG-SEM) 

(JSM-6700F, JEOL Co., Japan) and scanning electron microscopy (SEM; S3000N, Hitachi Co., Japan). 

The bonding strength of each coating layer was measured by adhering the double layer coating to 

an uncoated Ti plate with epoxy resin cured at 100 °C for 1.5 h. After cooling, the Ti plate was pulled 

away at a loading rate of 1 mm/min until the coating layer failed, and the bonding strength was 

determined by dividing the maximum load by the surface area. Five identical specimens were tested 

for each data point, which is represented as mean ± SD (n = 5). Single factor analysis of variance 

(ANOVA) technique was used to assess the statistical significance of results between groups.  

3.4. In Vitro Cellular Assessment 

Specimens were sterilized in 120 °C steam for 1 h and then placed in 24-well plates. MC3T3-E1 

preosteoblast cells, at a density of 1 × 104 cells/mL, were plated on each specimen, and CP Ti 

(unalloyed commercially pure Ti) was used as a control. The cells were cultured in α-minimum 

essential medium (α-MEM; GIBCO, USA) supplemented with 10% fetal bovine serum (FBS; GIBCO, 

USA), 2 mM L-glutamine, and 100 U/mL penicillin at 37 °C in humidified 5% CO2. After 24 h of 

incubation, the cells were washed with phosphate-buffered saline (PBS) solution; then, the cells were 

detached using a trypsin-EDTA solution, and the living cells were counted using a haemocytometer 

(Superior Co., Germany). To observe the cell morphology, the specimens were fixed in 2.5% 

glutaraldehyde for 4 h at 4°C and dehydrated gradually in 70%, 80%, 90%, and 95% (v/v) ethanol 

solutions for 15 min each and then twice in absolute ethanol. For examination by SEM (S3000N, Hitachi 

Co., Japan), surfaces with immobilized cells were dehydrated by critical point drying and coated with gold.  

Cell activity was determined by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide (MTT) assay, The cells (3 × 104 cells/mL) were seeded on the coating specimens in 24-well 

plates containing α-MEM and placed for 5 days at 37 °C, then washed with PBS solution, 20 μL of 

MTT (5 mg/mL) was added to each well and incubated for 4 h at 37 °C. At the end of the assay, the  

blue formazan reaction product was dissolved by adding 100 μL dimethyl sulphoxide (DMSO) and 

transferred to a 96-well plate. The absorbance was determined at a wavelength of 490 nm using a 

microplate reader (Infinite® M200 PRO, Tecan Group Ltd., Switzerland).  
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4. Conclusions 

Uniform, crack-free HA-CNT/TiO2 double layer coatings were successfully fabricated on Ti 

substrates, which a TiO2 interlayer obtained by means of anodization and a HA-CNT composite 

topcoat deposited by sol-gel process. The HA-CNT/TiO2 double layer coatings had the highest bonding 

strength, showing resistance up to 35.2 MPa, which were much higher than that of electrophoretic 

deposition HA coatings. The insertion of the TiO2 layer and CNTs in the coatings promoted 

preosteoblast cell adhesion and proliferation. These findings suggest that adding CNTs to HA coatings 

affords promising materials for bone replacement. Furthermore, this study suggests that a TiO2 bonding 

coat, introduced via anodization, may be useful to improve the adhesion of HA and HA-TiO2 coatings 

to titanium substrates. 
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