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Abstract: Apoptosis induction by short hairpin RNA (shRNA) expression vectors could be 

an efficient and promising strategy for cancer gene therapy. Ultrasound-targeted 

microbubble destruction (UTMD) is an appealing technique. In this study, we investigated 

the apoptosis induction and suppression of cell proliferation in vivo transfected by  

the UTMD-based shRNA delivery system. Nude mice with transplanted tumors of cervical 

cancer were randomly arranged into three groups: control group, plasmid injection and 

ultrasound (P + US), P + UTMD group. Expressions of Survivin and proliferating cell 

nuclear antigen (PCNA), Bcl-2, Bax, Caspase-3, Ki-67, nucleostemin (NS) were 

investigated by immunohistochemistry. Furthermore, microvessel density (MVD) was 

detected by CD34 protein expressions and apoptotic index (AI) was measured by TUNEL. 

As compared with those in the control and P + US groups, protein expressions of PCNA, 

Ki-67, Bcl-2, Survivin and NS in P + UTMD groups were down-regulated markedly,  

while those of Bax, Caspase-3 were up-regulated significantly (p < 0.05). MVD  

decreased significantly, whereas AI increased remarkably (p < 0.05). We suggested that  

UTMD-based shRNA delivery system could induce apoptosis and inhibit proliferation 
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significantly, without causing any apparently adverse effect, representing a new, promising 

technology that would be used in the future gene therapy and research. 

Keywords: ultrasound; microbubble; apoptosis; gene therapy; RNA interference;  

non-viral vector 

 

1. Introduction 

In recent years, gene silencing mediated by RNA interference (RNAi) technology shows  

therapeutic potential on solid cancer, and an in-human Phase I clinical trial that used a targeted  

nanoparticle-delivery system has been conducted [1]. Now, two types of RNAi-based therapeutics are 

available: the chemically synthesized double-stranded small interfering RNA (siRNA) or vector based 

short hairpin RNA (shRNA) [2]. Compared with other methods, shRNA is a better and more effective 

tool for cancer treatment. 

For all the existence of the specific and effective gene silencing, the major hurdle for delivering 

RNA effectively to the target cell still remains. Lots of gene delivery systems such as cationic 

polymers or liposome exist, which are effective in transfecting cells in vitro. However, they cannot be 

used in vivo due to low target specificity. To achieve successful gene therapy, it is important that gene 

delivery systems be safe and easy to apply. Because of considerable immunogenicity related to use of 

viruses, non-viral gene transfer still needs to be developed. Recently, among non-viral gene transfer 

methods, it has been shown that ultrasound targeted microbubbles destruction (UTMD) increases cell 

membrane permeabilization and induces sonoporation, which has been explored to provide a safe and 

potentially effective approach for gene delivery. 

There are a few articles that demonstrate sonoporation using microbubble promoted plasmid 

siRNA/shRNA transduction [3–8]. For potential use of UTMD as a therapeutic gene delivery system, 

it is critically important to investigate apoptosis induction under actual physiological conditions. 

Hence, xenograft tumors in nude mice are further investigated. However, there have been few reports 

regarding the transfection of shRNA into a targeted solid tumor using the UTMD-based delivery 

system in vivo. Solid tumor is the main cause of death. Although the anti-cancer drugs can effectively 

induce tumor cell death, their therapeutic effect in vivo is not so ideal [9]; this is related to nonuniform 

and insufficient identifiable medicine or therapeutic gene level in tumor microenvironment. Tumor 

vasculature and the extracellular matrix are the key influencing factors of drug or gene delivery. 

Our previous study has already reported use of UTMD combined with polyethylenimine (PEI) 

could enhance targeted gene delivery and gene expression in tumor xenografts at intravenous 

administration effectively without causing any apparently adverse effect. We also observed that 

survivin gene could be regarded as a potential target for gene therapy in cervical cancer.  

Survivin-shRNA facilitated by UTMD technology could efficiently and specifically knock down 

surviving gene expression, induce cell apoptosis and inhibit proliferation in vivo significantly [6,7]. 

We have described a study of UTMD combined with shRNA technique. Survivin gene  

knocking-down using UTMD combined with shRNA can result in apoptosis induction and 

proliferation inhibition by evaluating the expressing levels of multiple apoptotic and anti-apoptotic 
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markers. This current work is further analysis based in the previous study to evaluate the therapeutic 

value of this promising approach. We applied multiple assays to support the conclusion. In this study, 

UTMD-based system was applied to delivery shRNA targeting Survivin gene to suppress tumor 

growth within nude mice models transplanted with HeLa cells and to explore its feasibility and 

effectiveness. The results showed that UTMD-based shRNA delivery system could significantly 

induce apoptosis of transplanted tumor cells in nude mice, inhibit cell proliferation without any 

obvious side effects by evaluating the expression levels of multiple apoptotic and anti-apoptotic 

markers that were not studied previously. Moreover, microvessel density (MVD) and the apoptotic 

index (AI) were detected to support the conclusion. UTMD-based delivery system is an effective, 

noninvasive, promising new method for cancer gene therapy. This study concerns an interesting area 

of investigation and is compelling to researchers working in this field. 

2. Results 

2.1. Down-Regulation of Survivin Retarding Tumor Growth in Nude Mice 

To explore possible effect of Survivin on tumor growth in vivo, tumor formation assay in nude mice 

was performed. As shown in Figure 1A, on the first day and third day after treatment, the difference of 

tumor volume in each group was not significant (p > 0.05). Seven days after treatment, the volumes of 

tumor sizes in P + UTMD group were decreased significantly (p = 0.031), while at the 11th and 14th 

day, the tumor volume was significantly reduced, and the difference was significant as compared with 

the first day and third day (all p < 0.05). After treatment, the tumor volume was still increased in  

P + US group and control group gradually. At the end of treatment, the tumor volumes in P + UTMD 

group were smaller than those of control group and P + US group significantly (p = 0.000, 0.010). As 

compared with control group, tumor volumes of P + US group were decreased significantly  

(p = 0.010). Average weight of transplanted tumor in P + UTMD group was significantly less than 

those in in control group and P + US group (p < 0.05). The inhibition rate was significantly higher than 

that of P + US group (72.20% ± 9.28% vs. 37.00% ± 4.33%), and the difference was significant 

(Figure 1B, p < 0.01). The data showed that UTMD-based shRNA delivery system could mediate 

down-regulation of Survivin expression exerted a potent growth inhibitory effect in vivo. 

2.2. Immunohistochemical Findings in Vivo 

Positive expression of Survivin, PCNA, Ki-67, Caspase-3, Bcl-2, Bax or NS protein are those 

significant yellow or brown particles were observed within tumor cells. Positive reactions of PCNA, 

Ki-67, NS were mainly located in the nucleus, while Survivin, Caspase-3, Bax and Bcl-2 positive 

reaction were mainly located in intracytoplasm. 

The scores of Survivin expression in control group (4.33 ± 0.69) and P+US group (4.11 ± 0.67) 

were higher than that of UTMD group (1.27 ± 0.57) significantly (both p < 0.01). Scores of Ki-67, 

PCNA protein expression of control group were (4.06 ± 0.73) and (3.83 ± 0.62), and that of (P + US 

group were (3.22 ± 0.88) and (3.39 ± 0.61). In P + UTMD group, scores of Ki-67, PCNA protein 

expression of were (1.22 ± 0.43) and (1.56 ± 0.51), respectively. As compared with P + US group and 

control group, the difference was significant (p < 0.01). As showed in Figure 2, some part of the tumor 
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sample displayed no Survivin or Ki-67 protein expression, indicating that UTMD-based shRNA 

delivery system could effectively silence the Survivin gene expression and inhibit cell proliferation. 

Figure 1. Comparison of the tumor volume in different groups. Control: control group;  

P ＋ US: plasmid + ultrasound irradiation group; P + Ultrasound-targeted microbubble 

destruction (UTMD): plasmid + microbubble + ultrasound irradiation group; D1–D14:  

day 1–day 14; At the same time point, as compared with control group, * p < 0.05; as 

compared with P + US group, # p < 0.01; as compared with D1, † p < 0.01. 

Figure 2. Expression of Survivin, Ki-67, Bax and Bcl-2 of tumor specimens in xenografts 

(400×). C: control group; P + US: plasmid + ultrasound irradiation group; P + UTMD: 

plasmid + microbubble + ultrasound irradiation group. 
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Figure 2. Cont. 

 

Compared with control group and P + US group, a lower number of Bcl-2 positive cells was 

observed in P + UTMD group (score, 4.17 ± 0.62 vs. 3.72 ± 0.57 vs. 1.94 ± 0.64, all p < 0.01). 

Moreover, score of Bax protein expressions in P + UTMD group was upregulated remarkably as 

compared with control group and P + US group (4.22 ± 0.65 vs. 2.22±0.65 vs. 1.61 ± 0.70, all  

p < 0.01). Moreover, little caspase-3 positive cells were showed in control group, and score of  

P + UTMD group was significantly increased (score, 1.56 ± 0.51 vs. 4.33 ± 0.59, p < 0.01). The results 

indicated that inhibition of Survivin by UTMD-based shRNA delivery system resulted in apoptosis 

induction by downregulating Bcl-2 expression and upregulating the activity of caspase-3 and Bax. 

As shown in Figure 3, NS gene was highly expressed in the control group (3.89 ± 0.47), and 

expression was slightly reduced after treatment with P + US (3.44 ± 0.51). Silence of Survivin gene 

mediated by UTMD resulted in down-regulation of NS gene expression significantly, score was 

significantly decreased than that of the control group and the P + US group (1.38 ± 0.50), and the 

differences were statistically significant (both p < 0.01). 

Figure 3. Comparison of NS gene expressions in different groups (×200). C: control 

group; P + US: plasmid + ultrasound irradiation group; P + UTMD: plasmid + microbubble 

+ ultrasound irradiation group. 
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2.3. Microvessel Density 

CD34 was located in cell membrane or cytoplasm of microvascular endothelial cells. Appearance of 

CD34-tagged capillary was irregular and its distribution was uneven, which concentrated mainly at the 

edge of tumor invasion (Figure 4). Stronger CD34 expression in the control group (59.33 ± 9.07) 

indicating high MVD which was significantly higher than that of P + US group (35.33 ± 3.21) and  

P + UTMD group (10.33 ± 2.08), and the differences were statistically significant (p = 0.005, 0.000). 

But MVD of P + UTMD group was decreased than that of P + US group significantly (p = 0.004). 

Figure 4. Comparison of CD34 expression in different groups (×400). C: control group;  

P + US: plasmid + ultrasound irradiation group; P + UTMD: plasmid + microbubble + 

ultrasound irradiation group. 

 

2.4. H & E Staining 

H & E staining showed that (Figure 5A–C), in the control group, tumor cells that had large, 

hyperchromatic and irregular nucleuses that were arranged in masses, with large nuclear-cytoplasmic 

ratios. A small number of the tumor cells experienced necrosis, and an increasing number of 

karyokinesises were visible. In the P + US and P + UTMD group, the tumor cells became smaller, 

apoptotic bodies were appeared but karyokinesis rarely was observed. The heart, liver, muscle, 

pancreas, lung, kidney in P + UTMD groups underwent histological examination (Figure 5D–I). The 

results showed that the samples maintained good integrity and had no infection. No inflammatory cell 

infiltration, hemorrhage or edema was observed. 

Figure 5. Expression of H & E in different groups. A: control group, ×200; B: plasmid + 

ultrasound group, ×200; C–I: plasmid + microbubble + ultrasound group, ×400;  

A–C: Transplanted tumor; D: muscle; E: liver; F: lung; G: kidney; H: heart; I: pancreas. 
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Figure 5. Cont. 

 

2.5. TUNEL Assay 

AI of the tumor samples in P + UTMD group (29.07% ± 2.38%) were obviously higher than that of 

control group (1.70% ± 0.66%) and P + US group (7.27% ± 1.04%), and the differences were 

significant (Figure 6, p < 0.01). 

Figure 6. Detection of TUNEL expressions in different groups (400×). C: control group;  

P + US: plasmid + ultrasound irradiation group; P + UTMD: plasmid + microbubble + 

ultrasound irradiation group, A–C: Tunel assay; D–F: DAB detection. 

 

3. Materials and Methods 

3.1. Cell Culture 

Human cervical cancer cell lines (HeLa) were obtained from China Center for Type Culture 

Collection (CCTCC) and incubated in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, 
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Invitrogen Corporation, Grand Island, NY, USA) with 10% fetal bovine serum (FBS, Gibco, 

Invitrogen Corporation, Grand Island, NY, USA) and 100 U/mL penicillin, 100 μg/mL streptomycin, 

at 37 °C in a humidified environment of 5% CO2 and 95% air. Total cell count was determined with a 

hemocytometer (Burker Turk). Initial cell viability was determined by means of exclusion with trypan 

blue dye (Sigma-Aldrich Corp. St. Louis, MO, USA). 

3.2. shRNA Design and Plasmid Construction 

shRNA expression vector targeting human survivin gene was designed and synthesized as described 

previously [6]. The specific recombinant shRNA vector was named survivin-shRNA. The selected 

reconstructed plasmid was extracted and purified using an endoFree plasmid maxi kit (Qiagen, 

Crawley, UK). The concentration of isolated plasmid DNA was determined and resuspended to a final 

concentration of 1 μg/μL in buffer. 

3.3. Preparation of shRNA-Microbubble Complexes 

The suspension of SonoVue® microbubbles (Bracco Research, Geneva,, Switzerland) were 

reconstituted before use by injecting 5 mL of 0.9% saline solution according to the manufacturer’s 

protocol. SonoVue® contained 2 × 108–5 × 108 microbubbles/mL and the shell is composed of 

phospholipid and encapsulates sulfur hexafluoride gas. Microbubble diameter is typically 1–10 μm. 

Before the experiments, plasmid DNA (30 μg/mouse) and SonoVue® microbubble (100 μm,  

11.8 μg/μL) were gently agitated with phosphate buffered saline (PBS) to a final volume of 200 μL to 

prepare the transfection complexes, and then they were transferred to the polystyrene tube and 

incubated at room temperature for 30 min. The total dose of injection was 200 μL. 

3.4. Experimental Grouping of Gene Delivery 

To analyze the impact of apoptosis induction and proliferation inhibition, nude mice bearing tumor 

xenografts were selected, randomly divided into three groups, six mice each group: control group 

(PBS), plasmid injection and ultrasound (P + US group), P + UTMD group. 

3.5. Experiment Protocol 

Female Balb/c (nu/nu) mice, 4–6 week old, weighing 15–21 g, were purchased from experimental 

animal research center. The animal study protocols were conducted according to approved institutional 

guidelines for animal use. The mice were inoculated subcutaneously into the flank with 2 × 106 Hela 

cells per mouse after local sterilized. Animal modeling was prepared using methods described 

previously [6]. The mice were raised at specified pathogen free (SPF) qualification after operation, 

being observed one time every two days. Two weeks later, the experiments were initiated when the 

tumors reached a size of 5–10 mm. 

The mice were anesthetized by diethylether and fixed on the flats. All the plasmid DNA or 

complexes were administrated by tail vein. After the injection, the tumor xenografts were sonicated 

immediatly by a therapeutic ultrasound transducer with surface area of 0.8 cm2 (Accusonic, Metron 

Medical Australia Pty. Ltd., Carrum Downs Victoria, Australia) placed on the skin with contact gel 



Int. J. Mol. Sci. 2013, 14 1771 

 

 

(Aquasonic 100, Parker Laboratories Inc., Fairfield, NJ, USA). Ultrasound parameters were set at  

3 MHz, 2 W/cm2, 2 min, duty cycle 20% (i.e., 2 ms “on” time and 8 ms “off” time). After inoculation, 

animals were observed every day, tumor size was determined by measuring two diameters 

perpendicular to each other with a caliper at 3, 5, 7, 11, 14 days. Tumor volume was calculated 

according to the following equation: V (mm3) = width2 (mm2) × length (mm)/2. Tumor volumes were 

measured weekly with an electronic caliper. Tumor growth curve was based on tumor volume. 

Inhibition rate = (tumor weight in control group − tumor weight in treatment group)/tumor weight in 

control group × 100%. 

14 days after ultrasound treatment, animals were humanely sacrificed, tumor masses were rapidly 

removed and weighed, then fixed in 10% formalin, embedded in paraffin, and subjected to H & E or 

immunohistochemical staining. 

3.6. Histopathology 

Serial sections of tumor tissue were processed for histological examination. The specimens were 

washed with PBS to remove blood, fixed with formaldehyde, dehydrated with a graded alcohol series, 

and embedded in paraffin. Hematoxylin eosin staining (H & E) was performed on the specimens, for 

histopathologic evaluation of hemorrhage, necrosis, and inflammation. 

3.7. Immunohistochemistry 

The samples were fixed with formaldehyde, dehydrated with a graded alcohol series, and embedded 

in paraffin. The sections were incubated with primary antibodies against Survivin, Proliferating cell 

nuclear antigen (PCNA), Ki-67, Caspase-3, Bcl-2, Bax and Nucleostemin (NS) (1:100 dilution, all 

purchased from Santa Cruz Biotechnology) and then incubated with appropriate biotinylated secondary 

antibody. The colorimetric detection was performed by using a diaminobenzidine detection kit (Boster 

Biological Technology Co. Ltd., Wuhan, China). Images were acquired with a microscope (BX51, 

Olympus, Tokyo, Japan). The assessment of the immunohistochemical results were modified from that 

described previously [10,11].  

Six slices were randomly selected as sample for semi-quantitative expression grading by three 

observers in order to achieve blinding observation. Only the scores that the observers agree to are used 

for analysis. The percentage of cells expressing the marker were classified qualitatively based on the 

intensity of staining and the percent of cells as follows [10,11]: score 1: no reactivity; score 2: low 

intensity staining in less than 10% of cells; score 3: low to moderate intensity staining in 11% to 30%; 

score 4: moderate to strong staining in 31% to 50%; score 5: diffuse, strong intensity staining in 50%. 

3.8. Dection of Microvessel Density 

By counting microvessels, angiogenesis can be quantified as an angiogenesis index, defined as 

MVD. Different endothelial markers, including CD31, CD34 and vWF, are used for staining vascular 

endothelial cells. As CD34 is the most sensitive of the three investigated markers for angiogenesis in 

cancer [12], the slides of the tumor tissues were incubated sequentially with CD34 polyclonal antibody 

(1:200; New Mark Co. Ltd., Kidlington, Oxford, UK), biotinylated anti-IgG antibody (1:300;  
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Sigma-Aldrich Corp. St. Louis, MO, USA) and streptavidin-biotinylated-complex/horseradish 

peroxidase (Sigma). The sections were counterstained with hematoxylin andevaluated independently 

by two blinded investigators. 

MVD is the average of the vessel counts obtained in the three sections. The areas representing  

the highest neovascularization were chosen, and microvessel counting was performed at 200× 

magnification in three chosen fields. Any immunoreactive endothelial cell or endothelial cell cluster 

that was separated distinctly from adjacent microvessels was considered a single countable vessel. The 

results regarding angiogenesis in each tumor were expressed as the absolute number of vessels/200× 

magnification field. 

3.9. TUNEL Assay 

TdT-mediated dUTP nick end labeling (TUNEL) staining was carried out using the cell apoptosis 

detection kit (Roche, Applied science, Indianapolis, IN, USA) according to the manufacturer’s 

instructions. The tissues present obvious apoptotic cells were regarded as positive control, and the 

reagent 2 (deoxyribonucleic acid mixture) without terminal TdT instead of TUNEL reaction mixture 

was regarded as negative control. We used light microscope to select 400× magnification fields 

randomly in the strongest immune response region for each tissue sections. Nuclei with clear brown 

staining were regarded as positive. The positive cells and total cells were counted. We identified that 

AI = number of apoptotic cells/total number of cells. 

3.10. Statistical Analysis 

Statistical analyses were performed by the SPSS 13.0 software package (SPSS, Inc, Chicago, IL, 

USA). All values were expressed as mean ± SD. Analysis of variance with t test and analysis of 

variance (ANOVA) test were used to determine the significance of the difference in a multiple 

comparison. If the ANOVA was significant, the Tukey’s procedure was used as a post hoc test. 

Differences with a p value of less than 0.05 were considered to be statistically significant. 

4. Discussion 

Since it is a challenge to efficiently deliver shRNA plasmid into tumor tissues in animals, in this 

study, we used UTMD to enhance the targeted delivery of Survivin-shRNA. When mixtures of 

microbubbles with shRNA plasmids were injected into tail vein of mice, the shRNA-microbubble 

complexes would circulate in the blood. When applied to the region of implanted tumor cells (i.e., 

HeLa in this study), ultrasound would destroy microbubbles and perhaps trap plasmids in the tumor 

tissues, resulting in a targeted delivery of shRNA plasmids into tumor tissues. The current study was 

comprised of two concepts: silencing Survivin gene expression to repress tumor growth in a mouse 

model, and enabling targeted delivery of shRNA to tumor tissues by using UTMD. Although the 

concepts have been tested by many studies [6–8], different expressions of multiple apoptotic and  

anti-apoptotic markers were not studied previously. Moreover, this study attempted to use UTMD to 

change the tumor microenvironment, and the results indicated that, UTMD could effectively achieve 
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uniform and adequate gene transfer, thereby resolving the problem of local gene delivery into  

the targeted tumor. 

Survivin is an ideal target for cancer gene therapy. Survivin gene is essential to the growth of tumor 

cells in culture and in vivo as shown by numerous studies [13–15]. RNAi is an important  

down-regulation technology of specific Survivin gene expression. It produces a marked effect through 

directly inhibiting the activity of molecule Caspase-3 in the downstream of apoptosis signal  

pathway [13]. Caldas et al. [14] showed that application of the RNAi targeting Survivin could cure 

malignant tumors that highly express Survivin, causing apoptosis and micrangium degeneration.  
Zhang et al. [15] showed that intratumoral injection of adenovirus-delivered Survivin shRNA 

suppressed tumor growth by spontaneous apoptosis of cancer cells and significantly prolonged animal 

survival. In this study, we used RNAi as a tool to silence expression of survivin in nude mice bearing 

HeLa cells and then tested the therapeutic effects of silencing Survivin gene expression by RNAi 

achieved through shRNA plasmid. ShRNA-Survivin gene could effectively inhibit cell proliferation 

and promote apoptosis. 

However, anti-cancer genes could not be completely transported to the tumor cells. Compared with 

normal tissues, tumor vascular permeability is larger, and there was greater interstice between 

endothelial cells [16]. Both spatial distribution of tumor vasculature and length and diameter of the 

capillary are irregular, which causes abnormal function of the vascular system [17]. Proliferative tumor 

cells can oppress blood vessels, thereby affecting their blood stream distribution. Another reason is the 

average distance between tumor and the blood vessels is farther, which reduces oxygen delivery and 

forms a hypoxic environment, resulting in accumulation of metabolites, limiting anti-cancer genes to 

reach the tumor cells far away, thereby reducing the curative effect [9]. On the other hand, 

extracellular matrix of cancer cells further limits the gene delivery [17]. McGuire [18] pointed out that, 

the larger collagen within the extracellular matrix of tumor cells, the higher perfusion pressure required 

to start the flow within tumor interstitium of drug or gene. Currently, strategies to strengthen tumor 

local delivery are being developed, such as the use of external energy [19]. 

UTMD is a new non-viral gene delivery method [20–22]. It is the incorporation of both ultrasound 

and microbubbles, which makes the UTMD system. Ultrasound itself can promote gene transfection 

and the destruction of microbubbles carrying genes can significantly increase gene transfection 

efficiency. SonoVue® was widely used in clinic, which is an aqueous suspension of stabilized sulfur 

hexafluoride microbubbles. In the gene delivery system, therapeutic gene could be simply and  

non-invasively located in specific tissues or organs by ultrasound, which is safer and more effective 

compared with other methods. Tomizawa et al. [23] reported that ultrasound irradiation could increase 

the sensitivity of tumor tissues to bleomycin. Nie et al. [24] found that, compared to use of ultrasound 

irradiation alone, the tumor growth in ultrasound combined with SonoVue® group was significantly 

inhibited, with the average life span of mice was prolonged, the expression of TK mRNA within the 

tumor increased, AI of tumor cells increased too. UTMD can effectively increase membrane 

permeability and promote specific drug or gene delivery. 

Apoptosis can be spontaneous or induced by many factors [25]. Apoptosis induction provides an 

effective and promising cancer treatment. Studies [26–28] showed that, low intensity ultrasound also 

could induce apoptosis under certain in vivo/in vitro conditions. Honda et al. [26] pointed out that 

ultrasound induced apoptosis through the mitochondrial-Caspase pathway. On the other hand, 
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apoptosis could be induced by transporting related genes through promoting the intracellular plasmid 

DNA delivery using ultrasonic energy [29]. Iwanaga et al. [30] found that, the growth of Ca9-22 

cancer cells were significantly inhibited when microbubbles were insonated after being added into a 

bleomycins solution, while no apoptosis was detected when ultrasound or UTMD was applied 

separately. Duvshani-Eshet et al. [20] reported that, compared to ultrasound + plasmid group, the 

addition of ultrasound microbubbles was more conducive in increasing the target gene transfection, 

significantly reducing cell proliferation and migration in prostate cancer, and causing a significant 

increase in apoptosis. 

The IAP family plays an important role in the regulation of apoptosis. In this study, we use  

the UTMD-based shRNA delivery system to perform a histological experiment and observe its 

influence on apoptosis and proliferation. Results showed that UTMD could achieve a high level of 

transgene activity within the target organs. And apoptosis induction and proliferation inhibition were 

located on the internal transplanted tumors, which received ultrasound irradiation, and maintained 

great sample integrity with no infection. The expressions of PCNA, Ki-67, Bcl-2, Survivin, NS protein 

in tumor samples were significantly decreased in P + UTMD group, while those of Bax and Caspase-3 

were up-regulated significantly. MVD decreased significantly, whereas AI increased remarkably. 

Bcl-2 is a suppressor gene of apoptosis. It can resist apoptosis induced by many factors, and 

enhance cell viability without affecting cell proliferation [31]. It also participates in the homeostasis 

regulation of apoptosis. Bax is an apoptosis activating gene, and it can form a heterodimer with Bcl-2 

protein, and inhibit the function of Bcl-2 to promote cell apoptosis. Because Survivin is known to 

directly interact with caspase-3 and subsequently inhibit its activity, we analyzed caspase-3 expression 

in tumor sections. Microscopic examination of caspase-3 staining showed fewer positive cells in 

control group compared with UTMD group. UTMD-based shRNA delivery system can effectively 

start apoptosis induced by Caspase-3, and form a positive circulation with Bax, Bcl-2. 

The results showed that, NS gene was highly expressed in the control group, which related with 

proliferation, development and metastasis of tumor cells. Survivin-shRNA transfected by UTMD 

delivery system could induce a significant down-regulation of NS gene expression to induce apoptosis, 

inhibit proliferation and promote differentiation. Moreover, we observed its moderate inhibitory effects 

on cell proliferation and tumor angiogenesis by CD34 staining, enhancing levels of caspase-3 protein 

and placing strong enhancing effect on apoptosis by TUNEL staining.  

Higher efficiency of site-specific non-viral gene delivery is required to achieve therapeutic effects 

in clinical practice. In this view, UTMD is a feasible and effective tool to carry out gene therapy to 

treat diseases. However, many aspects of this experiment still need further studies, such as quantitative 

analysis of gene expression using better methods, and development of specific microbubbles and 

vectors to enhance gene transfection rate. 

5. Conclusions 

UTMD-based shRNA delivery system established in this work could specifically induce apoptosis 

in cervical cancer cells, inhibit proliferation in vivo and provide a powerful tool for gene function 

analysis. It also offers an efficient and safe new method for cancer gene therapy. 
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