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Abstract: Acute ultraviolet (UV) B exposure causes photokeratitis and induces apoptosis 

in corneal cells. Geranylgeranylacetone (GGA) is an acyclic polyisoprenoid that induces 

expression of heat shock protein (HSP)70, a soluble intracellular chaperone protein 

expressed in various tissues, protecting cells against stress conditions. We examined 

whether induction of HSP70 has therapeutic effects on UV-photokeratitis in mice.  

C57 BL/6 mice were divided into four groups, GGA-treated (500 mg/kg/mouse) and  

UVB-exposed (400 mJ/cm2), GGA-untreated UVB-exposed (400 mJ/cm2), GGA-treated 

(500 mg/kg/mouse) but not exposed and naive controls. Eyeballs were collected 24 h after 

irradiation, and corneas were stained with hematoxylin and eosin (H&E) and terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). HSP70, reactive oxygen 

species (ROS) production, nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB) and protein kinase B (Akt) expression were also evaluated. Irradiated corneal 

epithelium was significantly thicker in the eyes of mice treated with GGA compared with 

those given the vehicle alone (p < 0.01). Significantly fewer TUNEL-positive cells were 
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observed in the eyes of GGA-treated mice than controls after irradiation (p < 0.01). 

Corneal HSP70 levels were significantly elevated in corneas of mice treated with  

GGA (p < 0.05). ROS signal was not affected by GGA. NF-κB activation was reduced but 

phospho-(Ser/Ther) Akt substrate expression was increased in corneas after irradiation 

when treated with GGA. GGA-treatment induced HSP70 expression and ameliorated  

UV-induced corneal damage through the reduced NF-κB activation and possibly increased 

Akt phosphorilation. 
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1. Introduction 

Ultraviolet (UV) irradiation is one of the several environmental hazards that may cause 

inflammatory reactions in ocular tissues. In recent years the decrease in atmospheric ozone has 

increased the chances of photochemically-induced ocular damage that previously had been limited to 

professional accidents when protective gear glasses were improperly used or not used at all [1]. Prolonged 

eye exposure to UVB (320 nm–280 nm) induces photokeratitis that affects all tissues of the cornea [2] 

and causes expression of various inflammatory agents including nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-κB), Prostaglandin E2 (PGE2), and others [1]. UVB exposure affects all 

tissues of the cornea [2] and causes apoptosis in corneal cells by direct cell membrane damage, 

deoxyribonucleic acid (DNA) damage, reactive oxygen species (ROS) induction, as well as a result of 

an inflammatory reaction.  

Geranylgeranylacetone (GGA) is an acyclic polyisoprenoid widely used in Japan as an antiulcer 

drug. GGA reduces gastric mucosa damage and ulcer formation without affecting secretion of gastric 

acid or pepsin [3]. GGA induces heat shock protein (HSP)70 expression, as reported previously [4]. 

HSPs are soluble intracellular proteins expressed in various tissues, including the eyes [5]. We 

previously demonstrated that GGA administration had protective effects against ocular inflammatory 

disorders such as ischemia-induced retinal injury and experimental autoimmune uveoretinitis (EAU) in 

murine models [6,7]. Under stress conditions, HSPs are increased and function as molecular 

chaperones that protect proteins from damage or refold defective polypeptides in an attempt to restore 

their native conformation [8]. The HSPs are reported to protect cells against inflammation, infection, 

and autoimmune reactions [9,10]. A retinal phototoxicity study in rats showed that hyperthermic 

preconditioning contributed to retinal protection against light-induced photoreceptor degeneration [11]. 

In experiments with gene-modified drosophila, tissues from flies with up-regulated expression of HSP 

had fewer apoptotic changes after UV irradiation compared to naive flies [12].  

Recent reports indicated that HSP70 activated protein kinase B (Akt) phosphorylation, inhibiting 

dephosphorylation and further activation of cell death pathways in the photorecepter cells of the  

eye [13] and ameliorated H2O2-induced apoptosis of corneal epithelial cells by suppressing caspase-3 

and caspase-9 in vitro [14]. Therefore, HSP70 not only saves important components of the cell proteins 

but also directly saves the cell as whole. However, the relationship between HSP70 expression and 

corneal damage is not known. 
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In the present study, we investigated whether oral administrations of GGA induced a protective 

effect against UV-induced corneal damage in mice.  

2. Results and Discussion 

2.1. Hematoxylin and Eosin (H&E) and Terminal Deoxynucleotidyl Transferase dUTP Nick End 

Labeling (TUNEL) Staining 

Twenty-four hours after UVB irradiation, at a dose of 400 mJ/cm2, the corneal epithelium was  

well preserved and the thickness remained close to naive controls in mice treated with 500 mg/kg 

GGA (Figure 1A). However, thinning of the corneal epithelial layer was observed in the eyes of mice 

not treated with GGA after UV exposure (Figure 1B). The corneas of mice administered GGA without 

UVB irradiation (Figure 1C) showed no differences from naive corneas (Figure 1D). The mean values 

of the corneal epithelium thicknesses were calculated. The mean thicknesses were 22.3 ± 2.0 µm in the 

eyes of mice of the (GGA + UVB) group treated with GGA and UVB irradiation; 14.7 ± 2.0 µm after 

UVB-exposure in the eyes of the mice not treated with GGA (UVB) group; 31.3 ± 0.9 µm in the eyes 

of GGA-treated but non-irradiated mice (GGA); and 33.7 ± 0.6 µm in the eyes of naive mice. Corneal 

epithelia were significantly thicker in eyes treated with GGA compared with vehicle-given eyes after 

irradiation (p < 0.01, Figure 1E).  

Figure 1. Morphological properties of ultraviolet (UV) B-irradiated corneas (A) Irradiated 

eyes of mice treated with geranylgeranylacetone (GGA); (B) Irradiated eyes of mice without 

GGA administration; (C) Unirradiated eyes of mice administered with GGA; (D) Naive 

corneas; (E) Mean corneal epithelium thickness. Data are shown as mean ± SEM (n = 10), 

** p < 0.01; n.s. p > 0.05 (Mann-Whitney U-Test). 
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Figure 1. Cont. 

 

Cell-death response was decreased in corneas of the GGA + UVB group (Figure 2A) compared 

with the vehicle-given mice UVB group (Figure 2B) where multiple terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL)-positive cells were detected. There were no apoptotic 

cells detected in corneas not exposed to UVB (Figure 2C,D). The mean numbers of TUNEL-positive 

cells in mice with irradiated corneas were only (3.75 ± 2.2)/slide in the eyes of mice treated with GGA 

(GGA + UVB), by contrast 29.0 ± 8.5 in the eyes of vehicle-given mice (UVB). After irradiation, there 

were significantly fewer apoptotic cells in the corneas of mice given GGA than those receiving vehicle 

alone (p < 0.01, Figure 2E).  

Figure 2. Number of terminal deoxynucleotidyl transferase dUTP nick end labeling 

(TUNEL) positive corneal cells after of ultraviolet (UV) B exposure. (A) Irradiated eyes of 

mice treated with geranylgeranylacetone (GGA). (B) Irradiated eyes of mice without GGA 

administration. (C) Unirradiated eyes of mice administered with GGA. (D) Naive corneas. 

(E) Mean number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive 

nuclei. Data are shown as mean ± SEM (n = 10), * p < 0.05 (Mann-Whitney U-Test).  
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2.2. Effect of GGA on HSP70 Expression 

HSP70 were detected in the corneas of GGA-treated mice after UVB irradiation (Figure 3A),  

GGA-untreated irradiated mice (Figure 3B), and GGA-given unirradiated mice (Figures 3C). HSP70 

was induced in cytoplasm and nuclei in these three groups. However, low a HSP70 signal was 

observed in naive controls (Figure 3D).  

Figure 3. Immunohistochemical evaluation of heat shock protein 70 expression after 

treatment with geranylgeranylacetone and ultraviolet B exposure. (A) Irradiated eyes of 

mice treated with geranylgeranylacetone (GGA). (B) Irradiated eyes of mice without GGA. 

(C) Unirradiated eyes of mice administered with GGA. (D) Naive corneas.  
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2.3. Quantification of HSP70 Levels 

Next, corneal HSP70 levels were quantified with enzyme-linked immunosorbent assay (ELISA). 

GGA administration significantly increased HSP70 concentrations in corneal epithelia of GGA + UVB 

mice with 142.13 ± 7.3 ng/mL compared with those of the UVB group not treated with GGA with 

111.77 ± 4.8 ng/mL (p < 0.05). Even when mice were not irradiated, HSP70 expression was also 

significantly increased in the GGA-treated group (126.44 ± 2.8 ng/mL) compared with those of naive 

subjects (12.4 ± 1.5 ng/mL, p < 0.01). Considerable production of HSP70 in the corneal tissue was 

induced in the GGA-treated (GGA+UVB and GGA) groups (Figure 4). 

2.4. Detection of ROS 

Reactove oxygen species (ROS) expression was examined in the corneal epithelium of irradiated 

mice treated with GGA (Figure 5A), exposed to UVB only (Figure 5B), and naive mice (Figure 5C). 

The mean gray values of the corneal epithelium on dihydroethidium (DHE) stained slides were 

evaluated by the Image J software and are summarized in Figure 5D. Mean gray values were  

18.73 ± 2.0, 17.48 ± 1.0, and 12.04 ± 1.7, in mice irradiated with GGA, irradiated without GGA, and 
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naive mice, respectively. ROS production was significantly increased after irradiation regardless of 

GGA administration. GGA had little effect on ROS production. 

Figure 4. Enzyme-linked immunosorbent assay (ELISA) evaluation of HSP70 expression 

after treatment with geranylgeranylacetone and ultraviolet B exposure. Data are shown as 

mean ± SEM (n = 4), ** p < 0.01; * p < 0.05 (Mann-Whitney U-Test).  

 

Figure 5. Reactive oxygen species (ROS) signal expression after UVB exposure. (A) Eyes 

of mice treated with 500 mg/kg GGA and irradiated at a dose of 400 mJ/cm2. (B) Eyes not 

treated with GGA and irradiated at a dose of 400 mJ/cm2. (C) Naive corneas. (D) Mean 

gray values of the corneal epithelium of DHE stained slides. ** p < 0.01; n.s. p > 0.05 

(Mann-Whitney U-Test). 
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2.5. NF-κB Immunohistochemistry Staining  

To examine whether GGA administration affects NF-κB in corneal epithelium, we 

immunohistochemically analyzed NF-κBp65 translocation with a confocal microscope. NF-κB 

positive nuclei (yellow) were rarely seen in corneal epithelial cells in UV-irradiated mice treated with 

GGA 500 mg/kg except for some keratinized cells (Figure 6A). However multiple NF-κB positive 

nuclei were detected in corneal epithelial cells in UV-irradiated mice untreated with GGA (Figure 6B). 

Corneal tissues without UVB irradiation showed a weak cytoplasmic response to anti-NF-κB 

antibodies with no nuclear colocalization observed. (Figure 6C,D).  

Figure 6. Immunohistochemical evaluation of NF-κB expression after treatment with 

GGA. (A) Eyes of mice treated with GGA and irradiated. (B) Eyes with no GGA but 

irradiated. (C) Eyes of mice treated with GGA but not irradiated. (D) Naive corneas.  
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2.6. Effect of GGA on Akt Phosphorylation 

Markedly increased Phospho-(Ser/Ther) Akt substrate was observed in irradiated corneas when 

mice were treated with GGA to induce HSP70 (Figure 7A). However, when untreated with GGA, little 

phosphorylated Akt expression was detected in corneal epithelium (Figure 7B). A certain 

phosphorylated Akt immunolabeling of corneal epithelium was also observed in naive mice (Figure 7C).  

Figure 7. Immunohistochemical evaluation of phospho-(serine/threonine) Akt substrate 

expression after treatment with geranylgeranylacetone and ultraviolet B exposure.  

(A) Irradiated eyes of mice treated with GGA. (B) Irradiated eyes without GGA.  

(C) Naive corneas.  

 

3. Discussion 

The corneal epithelium protects eye structures against UV damage by absorbing a substantial part of 

the UV energy applied to the ocular surface. In the present study, it was shown that UVB-induced 

corneal damage was ameliorated by oral administration of GGA, and HSP70 was markedly elevated in 

corneas. The possible molecular mechanisms of GGA following HSP70 induction are the following:  

(1) Inhibition of inflammatory pathways, (2) suppression of oxidative stress, and/or (3) activation of cell 

survival signals.  

As other investigators and we have reported, UVB induces excessive ROS production in the cornea 

and affects several cellular pathways, including the activation of nuclear factor-κB (NF-κB) and other 
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pro-inflammatory mediators as well as direct DNA and protein damage [1,2,15]. However, GGA 

administration ameliorated UVB-induced corneal damage without affecting ROS production but 

increased the expression of HSP70 in the corneal tissue in the present study. Several recent reports 

have indicated that increased HSP70 expression reduces NF-κB activation in vivo [16] and  

in vitro [17,18] without ROS suppression, and one of the proposed mechanism of the phenomenon is 

the interaction with TNF receptor associated factor (TRAF6) and the inhibition of its ubiquitination [17]. 

Other previous studies have shown that corneal NF-κB activation is necessary for the retention of 

transparency in the cornea of UVB-exposed mice [19], and a proinflammatory cytokine, macrophage 

migration inhibitory factor (MIF), up-regulated NF-κB [20]. In fact, we reported more corneal damage 

in MIF over-expressing mice than in the wild type, but less corneal damage in MIF knockout mice 

than in the wild type [21]. Although it has long been speculated that proinflammatory cytokines may 

play an important role in the wound repair of ocular tissue, this mechanism has never been fully 

understood. Since our present immunohistochemical findings showed a decrease of NF-κB nuclear  

co-localization in UVB irradiated corneas after GGA treatment, in a way, the milder corneal damage 

when treated with GGA should owe its HSP70 induction to the suppression of inflammatory signals, 

not to deoxidation.  

The third possible effective pathway of GGA administration may be the activation of cell survival 

signals. It may lead to cell survival under stress condition by GGA administration by increased Akt 

phosphorylation by HSP70. In this study, a marked phospho-(Ser/Ther) Akt substrate expression was 

observed in irradiated corneal epithelium when mice were pre-treated with GGA. The results were 

consistent with previous studies reporting the association of GGA/HSP70 and Akt/caspase signals in 

retinas of the eye [13]. Thus, induced HSP70 by GGA administration suppresses cell death signals by 

reducing NF-κB activation, and possibly activates cell survival pathway Akt phosphorylation. These 

newly identified mechanisms may contribute to our understanding of photo-induced ocular damage. 

A small amount (0.2%) of vitamin E was contained as additive in the solution in this study. 

Previous studies have reported that vitamin E itself has a certain level of anti-inflammatory effect in 

eyes [22]. Though 150 mg/kg of vitamin E was reported to be effective in an ocular inflammation 

model, only 1 mg/kg of vitamin E was applied to mice along with the GGA solution in our current 

study. The vitamin E contained in the GGA solution was 150 times lower than the reported effective 

dose. Moreover the protective features of vitamin E are mostly attributed to its antioxidant  

activity [23]. Our ROS (DHE)-staining section slides never showed significant reduction of ROS 

production in the vehicle group. So it is expected that the ameliorative effect of the cornea against UV 

is mostly attributed to GGA, not to vitamin E additives. The present results in mice allow us to 

speculate about a similar effect of HSP70 in humans.  

For future clinical application, post-UV treatment of GGA may be preferable. However, this model 

took around 24 h to metabolize and to elevate HSP70 expression in vivo. Also, it showed severe 

corneal damage/epithelial cell death immediately after UV exposure, and eyes should be collected 24 h 

after irradiation. Further studies are required, using another design to examine the effectiveness of 

post-UV treatment with GGA. 
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4. Experimental Section 

4.1. Animals and Reagents 

Six- to eight-week-old C57BL/6 male mice were obtained from CLEA Japan (Tokyo, Japan). Mice 

were maintained under specific pathogen-free (SPF) conditions. All procedures involving animals 

were performed in accordance with the Association for Research in Vision and Ophthalmology 

(ARVO) resolution on the use of animals in research. GGA and gum arabic were provided by Eisai Co., 

Ltd (Tokyo, Japan). GGA was emulsified with 0.5% gum arabic and distilled water containing 0.2% 

vitamin E. Unless stated otherwise, all experiments were performed in triplicate, involving at least five 

animals (10 eyes) per group. 

4.2. UV Irradiation and Sample Collection  

Four groups of C57BL/6 mice were established in the experiment; the GGA + UVB group was 

orally administered GGA (500 mg/kg body weight) by using feeding needles, while the control group 

(UVB) received the vehicle alone. UV-photokeratitis was induced as reported recently [15].  

Twenty-four hours after GGA pre-treatment, anesthetized mice were irradiated with UVB at a dose of 

400 mJ/cm2 from a FS-20 (Panasonic, Osaka, Japan) fluorescent lamp. To examine HSP70 expression, 

corneas were irradiated with 200 mJ/cm2. These bulbs have a broad emission spectrum (250–400 nm) 

with a high output, primarily in the UVB spectrum (290–320 nm). Two additional groups without UVB 

irradiation were used, the “GGA” group was orally administered GGA (500 mg/kg body weight) to 

evaluate the effects of GGA on the corneal surface without UVB damage, and “naive” mice were used 

as controls. Euthanasia was performed by intraperitoneal injection of sodium pentobarbital  

(Sigma, Tokyo, Japan, 100 mg/kg). Eyeballs were collected 24 h after irradiation and stained with 

hematoxylin-eosin (H&E), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), 

anti-HSP70 antibody [24] and anti-phospho-(Ser/Ther) Akt substrate antibodies (Cell Signaling 

Technology, Tokyo, Japan).  

4.3. H&E and TUNEL Staining 

The eyes were dissected from the mice 24 h after UVB exposure and fixed with 4% 

paraformaldehyde and embedded in paraffin, tissue sections were prepared and stained with H&E for 

morphological analysis. At least eight sections were used to evaluate the epithelial thickness by 

performing measurements of 10 randomly selected areas of epithelium of the central cornea and the results 

were averaged. Other sections were stained by terminal deoxynucleotidyl transferase dUTP nick end 

labeling (TUNEL) assay to detect cell death, with a cell death detection kit (Roche Diagnostics Japan, 

Tokyo, Japan) containing all necessary reagents for staining. Slide imaging, cell counting, and thickness 

evaluations were performed with a BZ-9000 fluorescence microscope (Keyence, Osaka, Japan).  

4.4. Immunohistochemical Staining for HSP70 and Akt Substrate in Corneal Tissue 

GGA induced HSP70 expression in the retinas of mice [7], and we checked HSP70 induction in the 

corneas. The eyes were dissected from mice 24 h after UVB exposure and fixed with 4% 
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paraformaldehyde and then paraffin-embedded. To evaluate the HSP70 expression in the corneal 

epithelium, slides were rehydrated and blocked with bovine albumin 5% solution 30 min and then a 

1:500 dilution of anti-HSP70 antibody was applied for 12 h, washed with phosphate buffered saline 

(PBS) (NaCl 8 g, (Na2HPO4)12H2O 2.9 g, KCl 0.2 g, KH2PO4 0.2 g, H2O 1 L; pH 7.4), and then 1:1000 

dilution of secondary goat anti-rabbit 546 nm antibody dye conjugate (Invitrogen, Carlsbad, CA, USA) 

was applied, as described previously [7]. Anti-HSP70 antibody was developed as follows: 

Recombinant human HSP70 (amino acids 1–641) fused to glutathione-S-transferase was immunized 

into rabbits in a TiterMax (CrtRx Co., Georgia) water-in-oil emulsion. Antiserum specific for HSP70 

was generated and the antibody showed great specificity [24]. Cell nuclei were stained with 1:1000 

dilution of YO-PRO® (Invitrogen).  

Some histological sections were prepared as described above and then a 1:100 dilution of  

phospho-(Ser/Thr) Akt substrate antibody (Cell Signaling) was applied for 24 h. Sections were then 

rinsed again with PBS and secondary 546 nm goat anti-rabbit antibody dye conjugate (Invitrogen). 

Cell nuclei were stained with 1:1000 dilution of YO-PRO® (Invitrogen). 

4.5. Quantifying HSP70 with Enzyme-Linked Immunosorbent Assay (ELISA) 

Eyes were enucleated 24 h after UVB irradiation and 48 h after GGA treatment. Corneal tissues 

were carefully dissected from the eyes under the microscope and emulsified with 500 μL of 

radioimmunoprecipitation assay (RIPA) buffer with a protease inhibitor cocktail (Roche, Penzberg, 

Germany), then centrifuged at 20,000g for 20 min at 4 °C. Total protein concentration was adjusted 

using a bicinchoninic acid (BCA) protein assay kit (Pierce Biotechnology, Rockford, IL, USA). The 

HSP70 concentration was evaluated with a HSP70 high-sensitivity ELISA kit (Enzo Life Sciences, 

New York, NY, USA). All experiments were performed in triplicate with four or more wells for each 

group in each experiment. 

4.6. Detection of Reactive Oxygen Species (ROS)  

The eyes were dissected from mice 24 h after UVB exposure and fresh frozen at optimal cutting 

temperature (OCT) compound with liquid nitrogen. Dihydroethidium (DHE; Sigma-Aldrich, St. Louis, 

MO, USA), an oxidative fluorescent dye, was used for the immunohistochemical detection of  

cytosolic superoxide anion (O2-) to evaluate ROS production in corneal epithelium tissue, as reported 

recently [15,25]. Confocal microscopic images of ROS production were examined in mouse corneal 

tissue. ROS production was determined by conversion of DHE to ethidium bromide (EtBr). All images 

were made in parallel at identical settings.  

4.7. NF-κB Immunohistochemistry Staining 

The eyes were dissected from mice 24 h after UVB exposure and fixed with 4% paraformaldehyde 

and then paraffin-embedded. To evaluate the NF-κB positive cells in the corneal epithelium, slides were 

rehydrated and a 1:50 dilution of NF-κB p65 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, 

USA) was applied for 12 h, then washed with PBS, and a secondary goat anti-rabbit antibody dye 

conjugate (Invitrogen) with a 1:1000 dilution was applied. NF-κB is widely present in intercellular 
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tissues. To detect expression of NF-κB in cell nuclei, slides were stained with 1:1000 dilution of  

YO-PRO®-1 (Invitrogen), and colocalization of NF-κB (yellow) in nuclei was observed in merged images. 

4.8. Statistical Analysis 

All values were expressed as the mean ± standard error of mean (SEM) from the respective groups 

of experimental or control data. Statistical significance was evaluated by using non-parametric  

Mann-Whitney U Test. p values less than 0.05 were considered significant. 

5. Conclusions  

GGA administration induces HSP70 in cornea under stress condition and limits the corneal cell 

damage by UVB exposure to reduce NF-κB activation and possibly to suppress phosphorylation of  

Akt, a cell survival signal. Considering that GGA is now well established in the treatment of  

stomach ulcers, it may also be a promising supplemental treatment for protecting ocular surfaces from 

UV-photo damage. 
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