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Abstract: The Oncotype DX® recurrence score (RS) predictor has been clinically utilized 

to appropriately select adjuvant chemotherapy for patients with estrogen receptor  

(ER)-positive early breast cancer. However, the selection of chemotherapy for patients 

with intermediate RSs remains controversial. We assessed the prognostic value of a  

70-gene signature (70GS) among patients with ER-positive breast cancer and intermediate 

RSs. In addition, we sought to identify genes associated with poor 70GS scores based on 

gene expression profiling (GEP). GEP was performed using gene expression data from  

186 patients with ER-positive breast cancer. The RS and 70GS score were calculated on 

the basis of GEP. Among 186 patients, 82 ER-positive patients with intermediate RSs were 

identified. These patients were stratified by 70GS, overall survival (OS) significantly 

differed according to 70GS (p = 0.013). In a supervised hierarchical analysis according to 

70GS, the expression of several representative genes for cell proliferation was significantly 
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higher in the poor 70GS cluster than in the good 70GS cluster. Furthermore, among these 

patients, FOXM1, AURKA, AURKB, and BIRC5 displayed prognostic significance for OS. 

In conclusion, 70GS can help to discriminate survival differences among ER-positive 

patients with intermediate RSs. FOXM1, AURKA, AURKB, and BIRC5, are associated with 

poor 70GS scores. 

Keywords: breast cancer; estrogen receptor; recurrence score; 70-gene signature; FOXM1; 

AURKA; AURKB; BIRC5  

 

1. Introduction 

In estrogen receptor (ER)-positive breast cancer, which comprises approximately 75% of all breast 

cancers [1], endocrine therapies targeting the ER or estrogen synthesis have been the standard adjuvant 

therapies [2–4]. Despite the successes of endocrine therapy in reducing annual recurrences by 41% and 

deaths by 34%, treatment failure occurs in approximately 30% of patients treated with tamoxifen [2], 

and adjuvant chemotherapy has an important role for patients with a high risk of relapse. Therefore, 

prognosis predictors, which allow early decision making concerning appropriate adjuvant therapies in 

ER-positive women, have great significance in daily clinical practice. 

For this purpose, the Oncotype Dx® recurrence score (RS) assay, which evaluates the expression of 

a panel of 16 tumor-related genes and five reference genes, can be helpful in predicting the benefit of 

chemotherapy in patients with ER-positive breast cancer [5,6]. Specifically, the assay helps to identify 

patients with a poor prognosis who can derive a benefit from chemotherapy. This quantitative assay 

stratifies ER-positive patients into low-, intermediate-, and high-risk groups according to a numerical 

recurrence score. Adjuvant chemotherapy can be indicated for patients with high RSs and avoided in 

patients with low RSs. However, among patients with intermediate RSs, it is unclear whether the 

benefits of chemotherapy exceed the risks [6]. TAILORx, a large prospective study evaluating the 

benefits and risks of chemotherapy in these patients, had been designated to further refine the accuracy 

of the RS predictor [7]. This trial is closed to accrual but data collection is ongoing. 

In addition to the RS predictor, several molecular predictors have been developed and clinically 

validated. One of these predictors is the 70-gene signature (70GS), which divides patients into those 

with good 70GS scores and those with poor 70GS scores [8–10]. 70GS is also commercialized and 

known as Mammaprint®. One of the differences between the RS and 70GS is that 70GS was developed 

in a breast cancer cohort including patients with ER-positive and ER-negative tumors. 

In this study, we calculated RS and 70GS using gene expression profiling (GEP). We assessed the 

prognostic value of 70GS among patients with ER-positive breast cancer and intermediate RSs.  

In addition, we sought to discover genes associated with poor 70GS scores based on GEP. 
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2. Results and Discussion 

2.1. Results 

2.1.1. Clinical Characteristics 

We used a single data set of breast cancer samples from 312 women. Using exclusion criteria 

described in the experimental section, the clinical information of 297 patients whose tumors were 

donated for GEP were collected and used for analyses. ER-positive patients comprised 63% (n = 186) 

of the cohort. To classify ER-positive patients, the RS was calculated according to the algorithm 

presented in the experimental section. Using the RS predictor, these patients were stratified into three 

groups: low (n = 27), intermediate (n = 82), and high (n = 77). The clinical and tumor characteristics of 

the patients with ER-positive tumors according to the RS predictor are summarized in Table 1. The 

patients with high RSs exhibited higher histologic grades (p = 0.006), and higher proportions of 

progesterone receptor negativity (p = 0.016) and human epidermal growth factor receptor-2 (HER-2) 

negativity (p < 0.001). 

Table 1. Baseline characteristics according to the recurrence score (RS) predictor in 

estrogen receptor (ER)-positive patients (n = 186).  

Characteristics 
Low  

(n = 27) 
Intermediate 

(n = 82) 
High  

(n = 77) 
p-value 

Age (median, range) 48 (33–72) 45 (25–74) 47 (22–69) 0.868 
Tumor size    0.099 
T ≤ 2 cm 15 34 25  
T > 2 cm 12 48 52  

Nodal status    0.383 
Negative 11 46 40  
Positive 16 36 37  

Stage    0.221 
I 9 24 19  
II 10 47 40  
III 8 11 18  

Histologic grade    0.006 
I, II 25 68 50  
III 1 7 17  

Unknown 1 7 10  
Progesterone receptor    0.016 

Positive 25 74 58  
Negative 2 8 19  
HER-2 *    <0.001 
Positive 0 4 18  
Negative 24 59 46  
Unknown 3 19 13  

Adjuvant chemotherapy    0.089 
Yes 22 68 72  
No 5 14 6  
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Table 1. Cont. 

Characteristics 
Low  

(n = 27) 
Intermediate 

(n = 82) 
High  

(n = 77) 
p-value 

Adjuvant endocrine therapy    0.760 
Yes 24 68 65  
No 3 14 12  

Adjuvant radiotherapy    0.107 
Yes 10 31 41  
No 17 51 36  

HER-2, human epidermal growth factor receptor-2; * HER2 positivity was defined by three positive findings 

in an immunohistochemical examination or amplification in fluorescence in situ hybridization. 

After a median follow-up of 8.66 years, the 10-year overall survival (OS) rate for ER-positive 

patients was 90.1% (95% confidence interval, 87.0–93.4). During the follow-up period, 12 breast 

cancer specific-mortalities and one non-breast cancer specific-mortality occurred. No mortalities 

occurred among patients with low RSs. In the patients with intermediate and high RSs, five and six 

mortalities were observed, respectively. A Kaplan-Meier plot for OS according to the RS predictor is 

illustrated in Figure 1 (p = 0.361, log-rank test). 

Figure 1. Kaplan-Meier plots for OS according to RS predictor in ER-positive patients  

(p = 0.361, log-rank test).  
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2.1.2. Survival Analysis Using 70GS in ER-Positive Patients with Intermediate RSs 

We further analyzed ER-positive patients with intermittent RSs (n = 82). Survival analysis using 

70GS was performed in this group. The 70GS score was also calculated according to the algorithm 

described in the experimental section. The 70GS score stratified these patients into two groups: good 

(n = 66) and poor (n = 16). Baseline characteristics are presented in Table 2. The patients with  

poor 70GS scores had larger tumor sizes and higher histologic grades (p = 0.040 and p = 0.034, 

respectively). In a survival analysis using the log-rank test, OS significantly differed according to the 

70GS predictor (p = 0.013, Figure 2). In the univariate analysis using other characteristics, receipt of 

adjuvant chemotherapy was only analyzed as a significant factor (p = 0.024; Table S1). In multivariate 

analysis using Cox regression hazard model, poor 70GS (adjusted HR 10.19) was demonstrated as an 

independent prognostic factor for OS, whereas non-receipt of adjuvant chemotherapy (adjusted HR 

64.18) was also associated with an increased risk of mortality (Table 3). For this model, Harrell  

c-index was 0.844. From this analysis, we confirmed the prognostic ability of 70GS in this subset. 

Table 2. Baseline characteristics according to 70-gene signature (70GS) predictor in  

ER-positive patients with intermediate RSs (n = 82).  

Characteristics Good (n = 66) Poor (n = 16) p-value 

Age (median, range) 44 (28–62) 48 (22–69) 0.059 
Tumor size   0.040 
T ≤ 2 cm 31 3  
T > 2 cm 35 13  

Nodal status   0.989 
Negative 37 9  
Positive 29 7  

Stage   0.059 
I 21 3  
II 9 8  
III 6 15  

Histologic grade   0.034 
I, II 56 12  
III 3 4  

Unknown 7 0  
Progesterone receptor   0.650 

Positive 60 14  
Negative 6 2  
HER-2 *   0.754 
Positive 3 1  
Negative 40 11  
Unknown 15 4  

Adjuvant chemotherapy   0.200 
Yes 53 15  
No 13 1  
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Table 2. Cont. 

Characteristics Good (n = 66) Poor (n = 16) p-value 

Adjuvant endocrine therapy   0.348 
Yes 56 12  
No 10 4  

Adjuvant radiotherapy   0.978 
Yes 25 6  
No 41 10  

HER-2, human epidermal growth factor receptor-2; * HER2 positivity was defined by three positive findings 

in an immunohistochemical examination or amplification in fluorescence in situ hybridization. 

Figure 2. Kaplan-Meier plots for OS according to 70GS predictor in ER-positive patients 

with intermediate RSs (p = 0.013, log-rank test). 

 

2.1.3. Supervised Hierarchical Clustering Analysis According to 70GS 

Next, to identify genes associated with poor 70GS scores, supervised hierarchical clustering 

analysis, according to 70GS, was performed using 82 tumor samples. Genes with expression levels that 

differed by at least two-fold in at least eight tissues relative to the median value across tissues were 

selected. Among genes expressed in the Illumina BeadArray, we selected genes with significantly 

differences in expression between the poor and good 70GS clusters using Student’s t-test (p < 0.01). 

We identified 487 gene features that were differentially expressed between the two clusters based on 

an average linkage clustering method (Figure 3, Table S2). We further investigated overexpressed 

genes in the poor 70GS cluster. In this study, under-expressed genes in the poor 70GS cluster were not 

evaluated. To identify the favored genes in the poor 70GS cluster, we used Ingenuity Pathway 

Analysis™ Tool. In addition, genes showing at least two-fold change between two clusters were 

explored by review of references. In this way, among highly expressed genes in the poor 70GS cluster, 



Int. J. Mol. Sci. 2013, 14 23691 

 

 

FOXM1, AURKA, AURKB, BIRC5, BUB1, and TOP2A, were identified, and the prognostic 

significance of these genetic markers was analyzed. These genes, which are mainly associated with 

cell cycle progression (FOXM1), mitosis (AURKA, AURKB, BUB1), apoptosis (BIRC5), DNA 

transcription and replication (TOP2A), were significantly higher in the poor 70GS cluster than in the 

good 70GS cluster. 

Table 3. Multivariate analysis using the log-rank test according to the characteristics. 

Characteristics p-value HR (95% CI) 

Tumor size 0.115 11.94 (0.55–260.07) 
T ≤ 2 cm vs. T > 2 cm   

Nodal status 0.987 1.91 (0.26–13.99) 
Negative vs. Positive   

Progesterone receptor 0.525 1.03 (0.04–27.97) 
Positive vs. Negative   

70GS 0.045 10.19 (1.05–99.01) 
Good vs. Poor   

Adjuvant chemotherapy 0.013 64.18 (2.44–1685.7) 
Yes or No   

2.1.4. Identification of Genetic Markers Associated with a Poor Prognosis in ER-Positive Patients with 

Intermediate RSs 

Following the identification of genetic markers related with poor 70GS scores, we then proceeded 

to perform survival analysis using these markers in ER-positive patients with intermediate RSs. 

Among 82 patients, the expression levels of these genetic markers were confirmed in 81 women.  

The cutoffs of each marker were determined as the median values of the expression scores. Using the  

log-rank test, we investigated the clinical significance of these markers for OS in this subset.  

We discovered that FOXM1, AURKA, AURKB, and BIRC5 were associated with a poor prognosis in  

ER-positive patients with intermediate RSs (p = 0.007, p = 0.008, p = 0.032, and p = 0.002, 

respectively; Figure 4). The other two genes were not demonstrated to be associated with a poor 

prognosis in these patients (BUB1, p = 0.570; TOP2A, p = 0.185). Harrell’s c-indices, in which 

increasing values between 0.5 and 1.0 indicate improved prediction, were calculated for OS for each 

significant marker. These values were 0.796 for FOXM1, 0.792 for AURKA, 0.755 for AURKB, and 

0.821 for BIRC5. Additionally, these proliferative gene markers displayed 72%–85% agreement with 

70GS (FOXM1, 85%; AURKA, 80%; AURKB, 75%; BIRC5, 72%; Table 4). 
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Figure 3. Hierarchical clustering analysis of 487 gene features according to 70GS among 

patients with ER-positive breast cancer and intermediate risk scores. Columns represent 

individual samples, and rows represent individual genes. Red and green reflect high and 

low expression levels (log2-transformed scale), respectively. 

 

Table 4. Agreement between each genetic marker and 70GS. 

  FOXM1 AURKA AURKB BIRC5 

  
Low  

(n = 57) 

High  

(n = 24) 

Low  

(n = 57) 

High  

(n = 24) 

Low  

(n = 51) 

High  

(n = 30) 

Low  

(n = 52) 

High  

(n = 29) 

70GS 

Good  

(n = 65) 
55 10 53 12 48 17 47 18 

Poor  

(n = 16) 
2 14 4 12 3 13 5 11 
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Figure 4. Kaplan-Meier plots for OS according to each genetic marker in ER-positive 

patients with intermediate RSs. All p-values were measured by the log-rank test.  

(A) FOXM1, p = 0.007; (B) AURKA, p = 0.008; (C) AURKB, p = 0.032; (D) BIRC5,  

p = 0.002. 

 

2.2. Discussion 

The RS predictor, which is based on the expression of 21 genes using reverse  

transcriptase-polymerase chain reaction in formalin-fixed, paraffin-embedded tissue, has been widely 

adopted in clinical practice for early decision making concerning adjuvant therapy in patients with  

ER-positive breast cancer. The RS predictor has prevented the unnecessary use of adjuvant 

chemotherapy in a large proportion of patients with ER-positive breast cancer. However, in patients 

with intermediate RSs, the RS predictor remains questionable for selecting adjuvant treatment.  

To fulfill an unmet need for this group, the TAILORx trial, which is randomizing patients with 

intermediate RSs to receive either hormonal therapy alone or hormonal therapy and chemotherapy, 

was launched and closed to recruitment of patients [7]. 

In this study, we showed that 70GS can identify a survival difference among ER-positive patients 

with intermediate RSs, who the TAILORx trial is primarily targeting. It is interesting finding that 

70GS can provide prognostic information for patients in the gray zone according to the RS predictor. 

70GS has been validated as a significant prognosticator in various cohorts, including node-negative [11], 

node-positive [12], postmenopausal [13], metastatic [14], and neoadjuvant cohorts [15]. This predictor 
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is used to avoid unnecessary adjuvant systemic treatment in patients with good gene signatures. 

Regarding this issue, MINDACT trial is prospectively validating 70GS in the patients with  

N0–N1 tumors [16]. 

In supervised hierarchical analysis according to 70GS, we discovered 487 genes that were 

differently expressed between two clusters. Among these genes, we identified enriched gene signatures 

related to cell proliferation in the poor 70GS cluster. Further, we showed the prognostic value of four 

genes. One of the genes, FOXM1, is an oncogenic transcription factor of the Forkhead family, and it 

has a master role in cell proliferation and cell cycle progression [17–19]. In quiescent or differentiated 

cells, FOXM1 is expressed at a lower level, whereas FOXM1 is consistently detected in highly 

proliferating cells [20]. High FOXM1 expression has been found in various human malignancies [21], 

and it also correlates with poor prognosis in patients with breast cancer [22]. Increased FOXM1 

transcriptional activity can stimulate genes involved in diverse hallmarks of cancer and contribute to 

tumorigenesis [18]. Recently, scientists with The Cancer Genome Atlas also emphasized that 

hyperactivated FOXM1 as a transcriptional driver of enhanced proliferation signatures is important in 

differentiating between luminal A and luminal B tumors [23]. Therefore, FOXM1 can provide 

additional prognostic information, even in ER-positive tumors with intermediate RSs. 

AURKB is also related to FOXM1 proliferation gene signatures. AURKB is directly upregulated by 

activated FOXM1, which results in a malignant change of cell phenotype [24]. The other two genes, 

AURKA and BIRC5, were originally categorized as proliferative genes in the RS predictor [5]. Our data 

imply that these two genes play an important role in predicting prognosis using the RS predictor for 

patients with intermediate RSs. 

Similar gene signatures as observed in our results are also in the gene expression grade index (GGI) 

developed by Sotiriou et al. [25]. The GGI was developed to reclassify patients with histologic grade 2 

tumors into two different prognostic groups. Most of these genes in the GGI are involved in cell cycle 

regulation and proliferation, and it is noteworthy that FOXM1, AURKA, and BIRC5 are among the  

top 20 overexpressed genes in the GGI [25]. 

Among several molecular predictors developed for predicting prognosis or early decision making 

concerning adjuvant chemotherapy among patients with ER-positive breast cancer, key genes are 

commonly categorized as proliferation genes. Several papers demonstrated that these proliferation 

genes can predict outcome [25,26]. In an era of tailored medicine, based upon molecular analyses, 

better tools to accurately categorize these tumors will be anticipated in clinical practice. Thereby, 

proliferation genes including FOXM1 and associated gene signatures may become more important 

markers in future discrimination. 

Interestingly, in the multivariate analysis, we found that adjuvant chemotherapy significantly 

affected overall survival in patients with intermediate RSs. During the study period, our patients 

received adjuvant chemotherapy according to the St. Gallen’s guideline. Thus, this finding does not 

allow to draw the conclusion that adjuvant chemotherapy might offer a survival benefit for patients 

with intermediate RSs. 

Our study possesses several caveats. The retrospective design is associated with inherent 

limitations. Our study, which is not based on clinical trials, could not control for individual variations 

in adjuvant therapy that influenced survival. In addition, our 21-gene recurrence scores were not 

directly compared with real OncotypeDx® assays. 
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Despite the limitations of the retrospective design and uncontrolled adjuvant treatments, our results 

provided relevant evidence to be considered in ER-positive patients with intermediate RSs. 

3. Experimental Section 

3.1. Tumor Samples Used for Gene Expression Profiling 

We used a single data set of breast cancer samples from 312 women. We prospectively collected 

tumor tissues from specimens of surgically resected breast carcinoma at the Gangnam Severance 

Hospital, Yonsei University College of Medicine, Seoul, Korea between July, 1997 and December, 

2007. Following exclusion criteria, 297 patients with invasive breast carcinoma were finally utilized 

for GEP. Patients with pure in situ carcinoma of the breast, recurrent or metastatic disease, bilateral 

breast cancers, or nonepithelial origin breast cancer, such as phyllodes tumor, sarcoma, or lymphoma, 

as well as those receiving neoadjuvant chemotherapy, were excluded. The clinical data of the patients, 

including age, tumor size, histologic grade, lymph node status, and the expression status of ER, PR, 

and HER-2, were retrieved from the database. TNM disease stage was classified according to the 

American Joint Committee on Cancer staging manual, 7th edition. The modified Scarf-Bloom-Richardson 

grading system was used for tumor grading. HER-2 positivity was assessed by three positive results on 

immunohistochemistry or fluorescence in situ hybridization amplification. 

3.2. Ethics Statement 

The institutional review board of Gangnam Severance Hospital, Yonsei University, Seoul, Korea, 

approved the study in accordance with good clinical practice guidelines and the Declaration of 

Helsinki. The requirement for informed consent was waived because of the retrospective design. 

3.3. RNA Extraction, Microarray Experiments, and Data Processing 

Total RNA was isolated from the tissues with Trizol (Life Technologies, Carlsbad, CA, USA) 

reagent according to the manufacturer’s protocol. Five hundred nanograms of total RNA were used for 

labeling and hybridization according to the manufacturer’s protocols (Illumina, San Diego, CA, USA). 

The quality of the RNA obtained from each tumor sample was assessed via the RNA profile generated. 

Samples with a total area under the 28S and 18S bands of less than 15% of the total RNA band area,  

as well as a 28S/18S ratio of less than 1.1, were degraded and not analyzed further (approximately 

20% of the samples). Only tumor samples with good-quality RNA were considered for further 

analysis. RNA amplification, hybridization, and scanning were performed. After the bead chips were 

scanned with an Illumina BeadArray Reader (San Diego, CA, USA), the microarray data were 

normalized using the quantile normalization method in the Linear Models for Microarray Data package 

in the R language environment. The default options of RMA (with background correction, quantile 

normalization, and log transformation) were used. Microarray study was performed by the Shared 

Research Equipment Assistance Program by Korea Basic Science Institute, MEST. 
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3.4. Multigene Assay Calculation 

To classify tumors using the RS predictor, we used the microarray data for all 21 RS genes and 

applied the algorithm and scaling methods described by Paik et al. [5]. First, the 21 genes were 

identified on the current platform using gene symbols and a single probe set was selected as 

representative expression measure. Next, the expression levels of the 16 prognostic genes were 

normalized by dividing these with the mean expression values of the five reference genes (ACTB, 

TFRC, RLPL0, GUS, and GAPDH). The normalized expression levels of each prognostic gene were 

then scaled by subtracting the minimum expression values across all 16 genes as in the original 

publication. The reference normalized- and scaled-expression values ranged from 0 to 8.25 on  

log2-scale and were used to calculate gene group scores. Group scores were generated by multiplying 

the expression level of a gene by the pre-determined constant of the gene group according to the 

original published algorithm and a raw recurrence score was calculated as RS = 0.47 × GRB7 group 

score −0.34 × ER group score + 1.04 × proliferation group score + 0.1 × invasion group score [5].  

This raw score was rescaled by multiplying it with 20 and subtracting the minimum score as in the 

original manuscript [5]. Using the cutoffs described by Paik et al. (0–18, 19–30, 31–100), we assigned 

each patient into a low-, intermediate-, or high-risk group. 

For the 70-gene prediction, genes in 70GS were identified on the Illumina platform using gene 

symbols, and their expression data were centralized across the patients before calculation of the 

prognostic index. Each gene was represented by a single probe set and when multiple probes  

targeted the same gene, probes with the highest variance were selected 70GS was calculated as the 

weighted sum of the gene-expression values. The weight was calculated as the expression level of a 

gene multiplied by its predetermined correlation coefficient that was taken from the original  

publication [9,10]. Patients with a correlation coefficient >0.4 were classified as good, and whereas 

those with coefficients ≤0.4 were categorized as poor [9,10,27]. 

3.5. Statistical Analysis 

To visualize gene expression values using heat maps, the values for each probe were centered by 

subtracting the mean expression value across patients. No gene-specific scaling (standardization) was 

performed, and, thus, information about the relative signal strength between probes was retained.  

The color tone in the heat maps was calibrated so that saturated red and saturated green were reached 

at values equal to three-fold the standard deviation of the expression values of the entire matrix.  

Red and green reflect high and low expression levels (log2-transformed scale), respectively. 

Age is presented in the study as the median value and range and compared using the Mann-Whitney 

U test. Other discrete variables were compared using the chi-square test. OS was measured from the 

date of the first curative surgery to the date of the last follow-up or until death from any cause during 

follow-up. The Kaplan-Meier method was utilized to estimate OS, and the estimated survival curves 

were compared using the log-lank test. The significant prognostic factors associated with disease-free 

survival were selected using Harrell c-statistic [28] and a Cox proportional hazard regression model 

was applied for multivariate survival analysis. Harrell’s c-statistic was also used to identify the 

predictive ability for OS in each genetic marker. SPSS version 18 (SPSS; Chicago, IL, USA) and  
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R (http://www.r-projet.org) were used to perform these analyses. Statistical significance was defined  

by p < 0.05. 

4. Conclusions 

70GS can discriminate survival differences among ER-positive patients with intermediate RSs. 

Proliferative gene signatures including those of FOXM1, AURKA, AURKB, and BIRC5 are associated 

with poor 70GS scores. 
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