Outside the field of measurement science, the concept of traceability is often not well understood, despite being a precondition for comparing results within and between laboratories. We elaborate this concept for the DCF assay investigating the bioactivity of NPs and also highlight the serious difficulty of establishing it by comparing 24 individual experiments (see Section 2.1.2.). We also enumerate some aspects of the different chemical reaction controls that can reliably detect potential interference between NPs and the assay itself.
2.1.1. Establishing Traceability for the DCF Assay: Theoretical Considerations
The principle of traceability demands, as a precondition, a clear and unambiguous definition of the measurand, which is the “quantity subjected to measurement” [
47]. In the case of the DCF assay, the quantity of interest is the measured intensity of fluorescence from the DCF dye that has been oxidized by ROS in the cells. However, the system detects the total fluorescent signal of all generated DCF dye and because further reactions with other compounds in the assay system can also oxidize H
2DCF, additional elaborate chemical reaction controls have to exclude any such interference.
Actual traceability is established by introducing a measurement scale that allows comparison of results [
48]. Currently, it is not feasible to directly measure the amount of NPs interacting with a cell, so an indirect measurement scale uses the amount of NPs applied to the assay as a practicable alternative. This considerably affects the minimal set of parameters characterizing the NPs. Besides direct physical measures, such as chemical composition, diameter, shape and morphology
etc., indirect physical chemical properties, such as the degree of agglomeration/aggregation under experimental conditions, protein coating and surface charge, have to be known before the measurement scale for the NPs can be described with enough validity. All these parameters define a measurement scale describing the amount of “available” NPs that can interact with cells. Furthermore, our current knowledge of the interactions between NPs and cells is limited and therefore, prediction of the size of a bioactive reaction is not feasible. Even a small change in one of the many parameters describing NPs can cause considerable effects in cells (
Figure 2A). The ever present batch-to-batch variability in NP production prevents creation of a stockpile of homogeneous NPs. Therefore an alternative approach has to be found to establish a measurement scale within the assay.
Figure 2B shows an alternative solution. The chemical reaction control is used not just as a 100% effect control, but also as a calibrator in a concentration series. This allows rigorous assessment of the assay’s performance by determining the EC
50 in each measurement round. With that, we establish traceability between different measurements over time and space, because EC
50 results can be compared for the chemical reaction controls (
x0 in
Figure 2B) of each experiment. If the EC
50 results are in agreement, then we know that the assay is fully functional and so comparison of the results for NPs is feasible. Otherwise, if there are significant differences in the EC
50 results of the chemical reaction controls, we know that there are some sources of errors or even blunders in the different experiments, which have to be investigated and detected before any further comparison of results can take place.
When a concentration series is prepared from the positive control, its chemical properties need to satisfy more stringent requirements. The chemical compound used should be of known purity and composition, chemically stable, easily weighable and readily available. Such a chemical compound is cadmium sulfate (CdSO4), which is often used for acute toxicity assays such as 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) or 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS). CdSO4 is a white and easy weighable powder of known high purity, and can be dried if necessary. As the cadmium ion causes the acute toxic reaction, it is also inherently chemically stable.
Finding a suitable and chemically stable positive control for the DCF assay (or other ROS-detecting assays) has proven very difficult. ROS-inducing compounds are very short-lived species because of their radical nature. As such, their chemical precursors that are used practically as chemical reaction controls (e.g., H
2O
2 or Sin-1) must also exhibit considerable reactivity to produce the desired radical species (NO
•, NO
3−etc.). As an example, Sin-1 releases NO to spontaneously form peroxynitrite (ONOO
−) when it is in solution [
27]. Because the preparation of a dilution series takes time, a certain amount of Sin-1 will spontaneously decompose and will no longer be available for the induction of ROS in the cellular system. Accordingly, the actual concentration of the chemical reaction control is unknown after it has been added to the
in vitro assay. Even for freshly prepared stock solution, the concentration will vary with the time taken to prepare the solution and then dilute it to the required concentrations.
This aspect causes great uncertainty about the concentration series of the chemical reaction control and hence a reliable and reproducible EC50 value cannot be determined. Lacking traceability, no direct quantitative comparison of any result is feasible. The extent of the concentration uncertainty also determines the usability of the DCF assay even as a qualitative measure of ROS activity as “severe”, “medium” or “light”. The lack of any chemically stable compound that can be used to generate any functional concentration series demands an alternative solution. On a qualitative level, at least, several readily available and suitable NPs that induce a range of ROS reactions in the DCF assay could be used to create a semi-quantitative ladder from “light” to “medium” to “severe” effects. Thus, the level of ROS production by an unknown NP could be gauged as lying between the “light” and “medium” reactions caused by two well-characterized NPs. Such NPs need to fulfill the criteria of a reference material and need to be available on a larger scale, because with each DCF assay part of this stock will be used up.
Beside this, any interference by the investigated NP with the DCF chromophore will further hinder the traceability chain by quenching the fluorescent signal. This demands a correction for the loss of signal in the equation of the measurand. Moreover such a quenching behavior does often not display a linear relation with the concentration of the NPs. Hence the overall uncertainty of the assay measurement is increased additionally disabling any quantitative statement. Also the proposed semi quantitative ladder needs to be tested for the effect of the interference, as soon as this ladder becomes available.
2.1.2. Establishing Traceability for the DCF Assay: Practical Experiments Using Sin-1 as a Potential Chemical Reaction Control
Our initial experiments were carried out using a shortened dilution series of Sin-1 (10 μM, 100 μM, 1000 μM) (
Figures 3A and
4A).
Figure 3A shows 15 independent experiments performed over a time frame of almost two years. At a concentration of 10 μM Sin-1, a considerable amount of ROS can already be detected in every single experiment. However, relative fluorescence values varied between approximately 360 arbitrary units (a.u.) (Experiment 10) and 2200 a.u. (Experiment 1). Besides that, dose dependency is only obvious from 10 to 100 μM Sin-1 and only in some experiments (e.g., Experiment 10), while in other cases (e.g., Experiment 4) the maximum values are already reached at 10 μM of Sin-1. We investigated Sin-1 cytotoxicity using the MTS (3-(4,5-dimethyl-2-yl)- 5-(3-carboxymethoxyphenyl)-2-(3-sulfophenyl)-2
H-tetrazolium) cell viability assay (
Figure 3C). Even though microscopic inspection revealed morphological changes of cultures treated with 1000 μM Sin-1 no cytotoxicity could be detected at this concentration; not even after 24 h of incubation (
Figure 3C). To match Sin-1 concentrations of cell-free (see
Figure 4B and Experimental Section) and cellular experiments we reduced the Sin-1 concentrations in subsequent experiments to 5 μM, 50 μM and 500 μM. This reduction also allowed us to elucidate whether or not the observed morphological changes account for the reduced fluorescence values in 1000 μM Sin-1 treated samples. However, there was still no further increase in fluorescence intensity measureable between 50 and 500 μM. Values measured after treatment with 5 μM Sin-1 varied between 40 and 550 a.u. Thus, reducing the Sin-1 concentration offered no improvement in terms of quantitative traceability.
Nevertheless, because in each and every experiment Sin-1 treatment resulted in detectable induction of ROS we conclude that its usage as a ROS inducer in the DCF assay per se is possible. However, a quantitative estimation of the amount of ROS produced and its relation to an absolute scale is not possible. Hence quantitative comparison of one experiment to another is impossible and with it the establishment of traceability is not feasible.
2.1.3. Experimental Data Adding Quality Control Measures in terms of NP Interference: Multiwalled Carbon Nanotubes as an Example
In parallel to the Sin-1 samples shown in
Figure 3, we also performed NP treatments.
Figure 4A shows induction of ROS by multiwalled carbon nanotubes (MWCNT) as an illustrative example. Sin-1 controls were performed as described and the results showed a highly similar profile to that shown in
Figure 3. Multiwalled carbon nanotubes (MWCNTs) induced ROS in a dose-dependent manner up to 20 μg/mL. However, fluorescence decreased at higher concentrations. Microscopic observation as well as additional acute toxicity assays revealed no obvious signs of cell death (data not shown). Cell-free control experiments were performed to investigate two possibilities: (i) the NPs’ intrinsic ability to induce ROS (
i.e., to process the deacetylated H
2DCF molecule without any involvement of cellular reactions); and (ii) a quenching effect caused by MWCNT agglomerates that reduced the existing fluorescent signal from the processed DCF dye.
Sin-1 was also able to process H
2DCF in a cell-free environment and, as such, proved to be useful as a chemical reaction control in this setting. Nevertheless, and according to the cellular setup, this is only true in a qualitative manner because the absolute fluorescence values varied similarly (data not shown). As no cells were involved and hence cell death could not limit Sin-1 activity, we observe a dose-response relationship. MWCNTs themselves only marginally process the H
2DCF molecule (
Figure 4B).
Adding MWCNTs to the fluorescent DCF dye revealed a dose-dependent quenching effect of these NPs (
Figure 4C). At a concentration of 3.9 μg/mL, a 40% reduction in fluorescence intensity was already observed. We conclude that the reduction in signal intensity detected in the cellular assay (
Figure 4A) was due to this quenching effect. However, the quenching starts already at very low concentrations. It is thus most likely that the MWCNT preparation used here [
46] induced even more ROS production in cells than can be detected with the DCF assay performed as described. It is impossible to re-calculate, extrapolate or even estimate the real level of ROS production in cells from our cell-free controls. Rather, the control results served as qualitative evidence for whether or not interference by a particular type of NP occurred.