1. Introduction
The percutaneous treatment of coronary artery disease consists of catheter-based techniques to enlarge lumen of an artery narrowed by an atherosclerotic lesion. The development of this method began in 1977 with balloon angioplasty, which consisted of a mechanical dilatation of the atherosclerotic lesion with the hazard of thrombosis and vascular occlusions due to a combination of elastic recoil and vessel wall dissections (medial and/or intimal) [
1]. Furthermore, proliferative neointima and constrictive remodeling could abrogate the transient therapeutic benefit of the dilatation of the stenosis [
2]. In 1986, the introduction of metallic stents offered a mechanical solution to the dissection, elastic recoil and constrictive remodeling [
3–
5]. However, the implantation of these bare metal stents still caused neointimal proliferation leading to in-stent restenosis [
6]. A decade later, in 1999, coating and elution of cytostatic and cytotoxic drugs reduced, if not eliminated, the exuberant in-stent neointima in response to the implantation of a foreign body [
7–
9]. However, this medical device created new enemies: hypersensitive reaction mediated by eosinophils, lack of endothelialization and late persistent or acquired struts malapposition, which are source of late and very late stent thrombosis [
10–
12].
Considering these historical limitations, the next step in the evolution of percutaneous coronary intervention (PCI) was to create a device capable of dilating the coronary obstruction, providing vascular supports for dissections, preventing elastic recoil and constrictive remodeling, inhibiting neointimal hyperplasia and disappearing “after the job was done”.
Over the last 10 years, considerable efforts have been made to develop fully bioresorbable devices, called bioresorbable scaffolds (BRS). BRS technology has gradually matured, and there are numerous devices available, which are currently undergoing preclinical or clinical testing, and magnesium is an attractive alloy for this concept. The aim of this review is to describe the current concept, the mechanism of absorption and the data available on magnesium-based BRS.
2. Potential Benefits of a Transient Scaffold
PCI with BRS has potential advantages over the current generation of metallic bare-metal stent (BMS)/drug-eluting stent (DES) technology. Physiologically, the absence of a rigid metallic cage can facilitate the restoration of the vessel vasomotor tone, adaptive shear stress, late luminal enlargement, and late expansive remodeling. After bioresorption, there would be potentially no triggers for thrombosis, such as uncovered stent struts, durable polymer or remnant drug, with potential reductions in adverse events such as stent/scaffold thrombosis. The absence of foreign material may also reduce the requirement for long-term dual antiplatelet therapy and associated bleeding complications. In the long term, BRS should not hamper future treatment options such as PCI, coronary artery bypass graft, or pharmacological plaque regression [
13].
3. Magnesium as a Component for BRS
Magnesium is an essential mineral needed for a variety of physiological functions in the human body. The usual daily magnesium intake with a western diet is sufficient to avoid deficiency but seems not to be high enough to establish high normal serum magnesium concentrations that are protective against various diseases. The extracellular magnesium concentration is primarily regulated by the kidney and redundant magnesium cations can be harmlessly and efficiently excreted in the urine [
14]. Combining its rapid corrosion with a controlled degradation process through Zinc and Manganese alloying, purification and anodization, magnesium has been developed into a bioresorbable and biocompatible implant material [
15].
Although magnesium is available commercially with high degree of purity (exceeding 99.8%), it has low strength and rapid corrosion in unalloyed form. Therefore, it is commonly used in its alloy form, which is possible with a wide variety of elements [
15,
16].
Although Magnesium is the lightest structural metal, the strength-to-weight ratio of precipitation-hardened magnesium alloys is comparable with that of strong aluminum alloys and alloy steels [
16]. Consequently, a magnesium BRS has potential to provide a high radial strength for dilating atherosclerotic narrowing and, hence, higher acute gain of coronary lumen. Another virtue of magnesium as an endoprosthesis is its electrochemical properties. Devices with negatively charged surfaces are less thrombogenic than those with positive surfaces. Magnesium is more electronegative than other metals used for implants and has shown anti-thrombogenic properties
in vivo [
17–
21].
4. The First Generation Magnesium BRS
The first generation of bioabsorbable metal scaffolds (AMS-1; Biotronik AG, Bülach, Switzerland) was made from a WE43 alloy, composed of 93% Mg and 7% rare earth elements (
Figure 1). The AMS-1 was a tubular, slotted, balloon-expandable scaffold sculpted by laser from a tube of a bioabsorbable magnesium alloy without drug-elution. The mechanical characteristics of the magnesium scaffolds were similar to stainless steel stents, including low elastic recoil (less than 8%), high collapse pressure (0.8 bar), and minimum amount of shortening after inflation (less than 5%) [
22].
In porcine coronary arteries, the histologic evaluation of AMS-1 showed that none of the arteries analyzed had incomplete stent apposition, excess of intimal thickening at the stent edges or intraluminal thrombus. The neointimal tissue proliferation was significantly less in the stented segments of the magnesium alloy scaffold as compared to a control group of stainless steel stents. The reduction of neointima formation was not translated to larger vessel lumen and the overall stented segment was significantly smaller when compared to the stainless steel stent. This can result from underexpansion of the stent at deployment, early or late recoil, or all of the above. Although statistically not significant, the extent of fibrin deposition and inflammation for stented segments of stainless steel stents were slightly higher in the group treated with stainless steel stents than those treated with magnesium BRS. The AMS-1 was largely bioabsorbed into inorganic ions within 60 days of implantation [
23].
The AMS-1 was evaluated in a prospective, non-randomized, multicenter, clinical trial (
n = 63). There were no safety concerns regarding deaths, myocardial infarction, or scaffold thrombosis. However, the long-term patency rates were lower than expected. The in-scaffold late lumen loss (LLL) was 1.08 ± 0.49 mm. The LLL was a combined effect of a decrease in external elastic membrane area (representing 42% of LLL), decrease in scaffold area (18% of LLL) and neointima formation (40% of LLL). Thus, the main mechanism of restenosis (60% of LLL) was a faster than expected scaffold degradation with an early loss of radial force and consequent vessel recoil. The ischemia-driven target lesion revascularization rate was 23.8% after 4 months, and the overall target lesion revascularization rate was 45% at 1 year [
22,
24–
26].
7. Conclusions
BRS is a relatively new technology introduced to address the limitations of the traditional metallic stents. BRS will usher the practitioner in a new era of treatment of coronary lesions, as they provide temporary vessel scaffolding and then disappear, thereby allowing for the restoration of the vessel wall physiology and vasomotion. Magnesium alloy has a great potential since it is a metal with high radial strength and less thrombogenic electrochemical properties than most metals used for implants. Evidence from studies of the DREAMS 1st generation indicates that it has improved the drawbacks of the first generation bare AMS-1 (e.g., rapid bioresorption and device shrinkage). The DREAMS 2nd generation has completed its preclinical assessment and the experimental data suggest that it may be able to compete with the drug-eluting metallic stents in terms of safety and efficacy. BIOSOLVE-II trial will test the real potential of this technology.
Conflicts of Interest
B Warnack is a full-time employee of BIOTRONIK AG., M Haude received grants from BIOTRONIK AG and serves as an advisor for BIOTRONIK AG. All other authors have no conflict of interest and did not receive grants or financial support from industry or from any other source to prepare this manuscript.
References
- Gruntzig, A. Transluminal dilatation of coronary-artery stenosis. Lancet 1978, 1, 263. [Google Scholar]
- Ormiston, J.A.; Stewart, F.M.; Roche, A.H.; Webber, B.J.; Whitlock, R.M.; Webster, M.W. Late regression of the dilated site after coronary angioplasty: A 5-year quantitative angiographic study. Circulation 1997, 96, 468–474. [Google Scholar]
- Sigwart, U.; Puel, J.; Mirkovitch, V.; Joffre, F.; Kappenberger, L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med 1987, 316, 701–706. [Google Scholar]
- Roubin, G.S.; Cannon, A.D.; Agrawal, S.K.; Macander, P.J.; Dean, L.S.; Baxley, W.A.; Breland, J. Intracoronary stenting for acute and threatened closure complicating percutaneous transluminal coronary angioplasty. Circulation 1992, 85, 916–927. [Google Scholar]
- Schatz, R.A.; Baim, D.S.; Leon, M.; Ellis, S.G.; Goldberg, S.; Hirshfeld, J.W.; Cleman, M.W.; Cabin, H.S.; Walker, C.; Stagg, J.; et al. Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation 1991, 83, 148–161. [Google Scholar]
- Serruys, P.W.; Keane, D. The bailout stent. Is a friend in need always a friend indeed? Circulation 1993, 88, 2455–2457. [Google Scholar]
- Sousa, J.E.; Costa, M.A.; Abizaid, A.; Abizaid, A.S.; Feres, F.; Pinto, I.M.; Seixas, A.C.; Staico, R.; Mattos, L.A.; Sousa, A.G.; et al. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: A quantitative coronary angiography and three-dimensional intravascular ultrasound study. Circulation 2001, 103, 192–195. [Google Scholar]
- Rensing, B.J.; Vos, J.; Smits, P.C.; Foley, D.P.; van den Brand, M.J.; van der Giessen, W.J.; de Feijter, P.J.; Serruys, P.W. Coronary restenosis elimination with a sirolimus eluting stent: First European human experience with 6-month angiographic and intravascular ultrasonic follow-up. Eur. Heart J 2001, 22, 2125–2130. [Google Scholar]
- Morice, M.C.; Serruys, P.W.; Sousa, J.E.; Fajadet, J.; Ban Hayashi, E.; Perin, M.; Colombo, A.; Schuler, G.; Barragan, P.; Guagliumi, G.; et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med 2002, 346, 1773–1780. [Google Scholar]
- Finn, A.V.; Joner, M.; Nakazawa, G.; Kolodgie, F.; Newell, J.; John, M.C.; Gold, H.K.; Virmani, R. Pathological correlates of late drug-eluting stent thrombosis: Strut coverage as a marker of endothelialization. Circulation 2007, 115, 2435–2441. [Google Scholar]
- Joner, M.; Finn, A.V.; Farb, A.; Mont, E.K.; Kolodgie, F.D.; Ladich, E.; Kutys, R.; Skorija, K.; Gold, H.K.; Virmani, R. Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk. J. Am. Coll. Cardiol 2006, 48, 193–202. [Google Scholar]
- Cook, S.; Ladich, E.; Nakazawa, G.; Eshtehardi, P.; Neidhart, M.; Vogel, R.; Togni, M.; Wenaweser, P.; Billinger, M.; Seiler, C.; et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 2009, 120, 391–399. [Google Scholar]
- Serruys, P.W.; Garcia-Garcia, H.M.; Onuma, Y. From metallic cages to transient bioresorbable scaffolds: Change in paradigm of coronary revascularization in the upcoming decade? Eur. Heart J 2012, 33, 16b–25b. [Google Scholar]
- Vormann, J. Magnesium: Nutrition and metabolism. Mol. Aspects Med 2003, 24, 27–37. [Google Scholar]
- Song, G. Control of biodegradation of biocompatible magnesium alloy. Corros. Sci 2007, 49, 1696–1701. [Google Scholar]
- Chawla, S.L.; Gupta, R.K. Materials Selection for Corrosion Control; ASM International: Materials Park, OH, USA, 1993. [Google Scholar]
- Sawyer, P.N.; Srinivasan, S. The role of electrochemical surface properties in thrombosis at vascular interfaces: Cumulative experience of studies in animals and man. Bull. N. Y. Acad. Med 1972, 48, 235–256. [Google Scholar]
- Anstall, H.B.; Hayward, G.H.; Huntsman, R.G.; Weitzman, D.; Lehmann, H. The effect of magnesium on blood coagulation in human subjects. Lancet 1959, 1, 814–815. [Google Scholar]
- Rukshin, V.; Shah, P.K.; Cercek, B.; Finkelstein, A.; Tsang, V.; Kaul, S. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and eptifibatide in a canine model of stent thrombosis. Circulation 2002, 105, 1970–1975. [Google Scholar]
- Rukshin, V.; Azarbal, B.; Shah, P.K.; Tsang, V.T.; Shechter, M.; Finkelstein, A.; Cercek, B.; Kaul, S. Intravenous magnesium in experimental stent thrombosis in swine. Arterioscler. Thromb. Vasc. Biol 2001, 21, 1544–1549. [Google Scholar]
- Moravej, M.; Mantovani, D. Biodegradable metals for cardiovascular stent application: Interests and new opportunities. Int. J. Mol. Sci 2011, 12, 4250–4270. [Google Scholar]
- Erbel, R.; di Mario, C.; Bartunek, J.; Bonnier, J.; de Bruyne, B.; Eberli, F.R.; Erne, P.; Haude, M.; Heublein, B.; Horrigan, M.; et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial. Lancet 2007, 369, 1869–1875. [Google Scholar]
- Waksman, R.; Pakala, R.; Kuchulakanti, P.K.; Baffour, R.; Hellinga, D.; Seabron, R.; Tio, F.O.; Wittchow, E.; Hartwig, S.; Harder, C.; et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter. Cardiovasc. Interv 2006, 68, 607–617, discussion 618–609. [Google Scholar]
- Bose, D.; Eggebrecht, H.; Haude, M.; Schmermund, A.; Erbel, R. First absorbable metal stent implantation in human coronary arteries. Am. Heart Hosp. J 2006, 4, 128–130. [Google Scholar]
- Bose, D.; Eggebrecht, H.; Erbel, R. Absorbable metal stent in human coronary arteries: Imaging with intravascular ultrasound. Heart 2006, 92, 892. [Google Scholar]
- Waksman, R.; Erbel, R.; di Mario, C.; Bartunek, J.; de Bruyne, B.; Eberli, F.R.; Erne, P.; Haude, M.; Horrigan, M.; Ilsley, C.; et al. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc. Interv 2009, 2, 312–320. [Google Scholar]
- Wittchow, E.; Adden, N.; Riedmuller, J.; Savard, C.; Waksman, R.; Braune, M. Bioresorbable drug-eluting magnesium-alloy scaffold: Design and feasibility in a porcine coronary model. EuroIntervention 2013, 8, 1441–1450. [Google Scholar]
- Haude, M.; Erbel, R.; Erne, P.; Verheye, S.; Degen, H.; Böse, D.; Vermeersch, P.; Wijnbergen, I.; Weissman, N.; Prati, F.; et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet 2013, 381, 836–844. [Google Scholar]
- Colmenarez, H.; Fernandez, C.; Escaned, J. Impact of technological developments in drug-eluting stents on patient-focused outcomes: A pooled direct and indirect comparison of randomised trials comparing first- and second-generation drug-eluting stents. EuroIntervention 2013, in press. [Google Scholar]
- Abizaid, A.; Ormiston, J.A.; Fajadet, J.; Mauri, L.; Schofer, J.; Verheye, S.; Dens, J.; Thuesen, L.; Macours, N.; Qureshi, A.C.; et al. Two-year follow-up of the NEVO RES-ELUTION I (NEVO RES-I) trial: A randomised, multicentre comparison of the NEVO sirolimus-eluting coronary stent with the TAXUS Liberte paclitaxel-eluting stent in de novo native coronary artery lesions. EuroIntervention 2013, 9, 721. [Google Scholar]
- Kollum, M.; Heitzer, T.; Schmoor, C.; Brunner, M.; Witzenbichler, B.; Wiemer, M.; Hoffmann, R.; Gutleben, K.J.; Schultheiss, H.P.; Horstkotte, D.; et al. Intra-individual head-to-head comparison of Sirolimus(R)- and Paclitaxel(R)-eluting stents for coronary revascularization. A randomized, multi-center trial. Int. J. Cardiol 2013, 167, 1552–1559. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).