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Abstract: In this work, we investigated the potential role of the small G protein RhoA in 

ethanol-induced tight junction (TJ) protein disassembly and increased intestinal epithelial 

barrier (IEB) permeability. Our study used Caco-2 cells as an in vitro IEB model and RhoA 

short hairpin RNA (shRNA) interference to establish whether RhoA plays a role in 

ethanol-induced TJ opening. RhoA shRNA interference partially inhibited epithelial 

leakage and restored normal transepithelial electrical resistance (TEER) values in the IEB. 

Moreover, RhoA shRNA interference prevented a shift in occludin distribution from 

insoluble to soluble fractions. Additionally, RhoA shRNA interference inhibited the 

ethanol-induced expression of zonula occludens-1 (ZO-1). Finally, RhoA shRNA interference 

inhibited an ethanol-induced increase in RhoA activity. The contributions of RhoA to an 

ethanol-induced increase in IEB permeability are associated with TJ disassembly. 
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1. Introduction 

The barrier function of intestinal epithelium is provided by tight junctions (TJ), the highly 

specialized junctional complexes located at the apical end of epithelial cells. TJ form a barrier to the 

diffusion of allergens, toxins and pathogens from the intestinal lumen into the interstitial tissue. The 
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disruption of tight junctions increases intestinal permeability to injurious factors, resulting in mucosal 

inflammation. Tight junctions are organized by interactions between a wide variety of proteins 

localized specifically at the tight junctions [1]. Occludin, claudins and junction adhesion molecules are 

the major transmembrane proteins that interact with intracellular plaque proteins, such as zonula 

occludens (ZOs), including ZO-1, ZO-2 and ZO-3, which in turn interact with the actin cytoskeleton to 

anchor occludin and other transmembrane proteins at the apical end of the lateral membrane. In the 

intestine, a disruption of tight junctions may lead to increased permeability to allergens, toxins and 

pathogens, which appears to be a common mechanism involved in the pathogenesis of a number of 

gastrointestinal diseases, such as inflammatory bowel disease, celiac disease and alcoholic liver 

disease (ALD). Most recent studies have addressed the possible effect of ethanol on paracellular 

permeability and the disruption of epithelial tight junctions using a cell culture model of intestinal 

epithelium, the Caco-2 cell monolayer [2–5]. 

Several researchers have investigated the effect of alcohol on intestinal barrier function. Ethanol 

increases oxidative stress and that increased oxidative stress leads to oxidative damage to the intestinal 

epithelium and to hyperpermeability of the intestinal barrier [6–8]. Ethanol activates myosin light 

chain kinase3 and induces nitric oxide generation [9–11], altering the actin and microtubule cytoskeletal 

structures. Therefore, more than one mechanism may synergistically attenuate barrier function. 

RhoA signaling is a crucial regulator of junction assembly and function [12]. Rao [13] reported that 

botulinum C3 toxin, which inactivates Rho, has been shown to disrupt perijunctional actin, resulting in 

TJ dysfunction in epithelial cells. In addition, mutant RhoA disrupts TJ function [14]. Thus, signaling 

pathways transduced by the Ras-related small GTPase Rho family members, such as Rho and Rac1, 

have been implicated in the regulation of the TJ [15,16]. Consistent with these data, a recently 

discovered natural RhoA antagonist controls TJ sealing [17]. 

The aforementioned study suggests that a possible mechanism exists that drives the ethanol-induced 

opening of the intestinal epithelial barrier (IEB). We propose that RhoA plays a key role in the 

ethanol-induced opening of the IEB. To test this hypothesis, an IEB model system was used to 

evaluate the relationship among TJ protein, IEB permeability and RhoA activation. 

2. Results and Discussion 

2.1. Cell Viability  

The Caco-2 cells were initially treated for 4 h with different concentrations (1%, 2.5%, 5%, 7.5% 

and 10%) of ethanol, and cell viability was evaluated by the MTT and LDH assays. The results showed 

that cell viability, evaluated by the MTT assay, was not altered at ethanol concentrations of less than 

5% (Figure 1A). Moreover, at concentrations of up to 10%, ethanol did not increase the release of the 

cytosolic enzyme lactate dehydrogenase into the medium (Figure 1B). Ethanol concentrations greater 

than 5% caused cell shedding, but not cell fragmentation. At an ethanol concentration of 10%, the ratio 

of shedding cells was up to 51.67% ± 3.36%. Therefore, subsequent experiments were carried out 

using ethanol concentrations ranging from 1% to 5%. 
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Figure 1. Effect of ethanol on Caco-2 cell viability. Cells were treated with ethanol at 

different concentrations (0.5%–10%) for 4 h. (A) Viability assay performed by the 

colorimetric MTT method. The formazan product generated was measured at 490 nm and 

570 nm. (B) The viability was assessed by measuring the released cytosolic enzyme lactate 

dehydrogenase (LDH) into the medium. Caco-2 cells were incubated in the presence or 

absence of different concentrations of ethanol for 4 h. Statistically significant differences 

from the controls are indicated by the colorimetric MTT method: # p < 0.01, * p  0.01. In 

the LDH assay, no statistically significant difference from the controls was indicated by 

measuring LDH: p > 0.05. 

 

2.2. Effect of RhoA on Ethanol-Induced IEB Permeability 

As shown in Figure 2A, ethanol induced a significant time-dependent decrease in TEER, with the 

lowest value obtained after 60 min of ethanol treatment. A time-dependent increase in fluorescent 

yellow flux resulting from the ethanol treatment was observed, with maximum flux occurring at  

60 min (Figure 2C). The decreased TEER value was associated with an increase in the fluorescent 

yellow flux rate. RhoA shRNA partially inhibited ethanol-induced epithelial leakage and restored the 

normal TEER values and fluorescent yellow flux rate of the IEB (Figure 2B,D). We achieved 

significant reductions of RhoA protein upon shRNA transfection (Figure 3), and the result showed the 

RhoA-381 group had higher transfection efficiency. The most effective shRNA was selected for the 

subsequent experiments. The experiments using luminal yellow (LY) flux and TEER assays were 

performed mainly to evaluate IEB permeability [18,19]. Our current results indicate that the  

ethanol-induced increase in IEB permeability is associated with RhoA. Ma et al. [3] showed that  

in vitro, ethanol decreased the TEER value in epithelial cells and opened TJ, which is consistent with 
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our findings. Further studies to detect paracellular permeability using the LY flux rate, which is 

specifically transported through the paracellular space [20], yielded similar TEER results. 

Figure 2. Effect of ethanol and RhoA short hairpin RNA (shRNA) interference on changes 

in intestinal epithelial barrier (IEB) permeability. (A) Effect of ethanol on changes in 

transepithelial electrical resistance (TEER) of IEB. Caco-2 cells of ethanol groups were 

treated with 5% ethanol for 0 min, 15 min, 30 min, 60 min, 120 min, 180 min or 240 min. 

Values are the mean ± SD (n = 4 each). One percent # p <0.01 vs. 0 min group; 2.5%  

* p < 0.01 vs. 0 min group; 5% & p < 0.01 vs. 0 min group. (B) Effect of ethanol on 

changes in LY flux of the IEB. Caco-2 cells of ethanol groups were treated with 5% 

ethanol for 0 min, 15 min, 30 min, 60 min, 120 min, 180 min or 240 min. Values are the 

mean ± SD (n = 4 each). One percent # p < 0.01 vs. 0 min group; 2.5% * p < 0.01 vs. 0 min 

group; 5% & p < 0.01 vs. 0 min group. 

 
(A) 

 
(B) 
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Figure 3. (A,B) RhoA protein levels measured by Western blot analysis after shRNAs 

transfection. The blots shown are representative of three independent experiments. The 

results showed a significantly downregulated protein level of RhoA by two shRNA 

compared to the control group. Negative control (NC) shRNA group showed no 

statistically significant decrease expression of RhoA compared to the control group. Values 

are means ± SD (n = 4 each). # p < 0.01 vs. control group; * p > 0.05 vs. control group.  

(C) Effect of RhoA shRNA interference on changes in the TEER of IEB. Caco-2 cells were 

pretreated with RhoA shRNA interference and then treated with 5% ethanol for 60 min. 

Values are the mean ± SD (n = 4 each). # p < 0.01 vs. 0 min group. * p < 0.01 vs. 60 min 

group. (D) Effect of RhoA shRNA interference on changes in luminal yellow (LY) flux of 

the IEB. Caco-2 cells were pretreated with RhoA shRNA interference and then treated with 

5% ethanol for 60 min. Values are the mean ± SD (n = 4 each). # p < 0.01 vs. 0 min group.  

* p < 0.01 vs. 60 min group.  
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2.3. RhoA Signal Transduction Activation 

As shown in Figure 4, a time-dependent increase in RhoA activity following ethanol administration 

was observed. The increasing trend was consistent with the ethanol-induced increase in IEB 

permeability. RhoA shRNA interference inhibited the activation of RhoA at 60 min of treatment. 

These results suggest that the RhoA pathway may be involved in the ethanol-induced increase in IEB 

permeability. Rho, a member of a subfamily of small GTPases, is thought to be involved in many 

cellular functions, including the regulation of actin filament reorganization, cell-shape change and 

gene expression [21,22]. Extracellular stimuli convert inactive GDP-bound Rho into active GTP-bound 

Rho. Once activated, Rho interacts with its specific effectors, eliciting a variety of biological  

functions [23]. Recently, research has demonstrated the important roles of RhoA activation in 

modulating epithelial permeability [24]. Our studies show that RhoA is required for ethanol-induced 

changes in IEB permeability. 

Figure 4. Western blot analysis of the activation of RhoA (RhoA-GTP). Caco-2 cells were 

treated with 5% ethanol for 0 min, 15 min, 30 min, 60 min, and the ethanol (5%)  

60 min + RhoA-381 group was transfected with U6/GFP/Neo-RHOA-homo-381 to block 

the activity of RhoA and then treated with 5% ethanol for 60 min. (A,B) The IDV ratio of 

RhoA-GTP to total RhoA was detected by Western blot analysis. Values are the  

mean ± SD (n = 4 each). # p < 0.01 vs. 0 min group. (A,C) The IDV of RhoA-GTP was 

detected by Western blot analysis. Values are the mean ± SD (n = 4 each).  
# p < 0.01 vs. 0 min group. * p < 0.01 vs. ethanol 60 min group.  
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2.4. Inhibition of RhoA Prevented Ethanol-Induced MLC Phosphorylation 

As shown in Figure 5, a time-dependent increase in myosin phosphorylation by ethanol 

administration was observed. RhoA shRNA interference decreased myosin phosphorylation after  

60 min. Myosin phosphorylation is a downstream effect of Rho [25–27]. Rho may increase the 

phosphorylation of myosin light chains (MLC) by decreasing MLC phosphatase activity or by directly 

phosphorylating MLC at serine 19, its primary phosphorylation site [28–30]. It has also been 

demonstrated that myosin phosphorylation contributes to TJ disassembly [31–33]. Some investigators 

have also demonstrated that myosin phosphorylation can disrupt TJ and result in TJ opening [34,35]. 

Figure 5. Western blot analysis of myosin phosphorylation and myosin light chains 

(MLC). Effect of shRNA targeting RhoA on changes in the myosin phosphorylation and 

MLC expression of Caco-2 cells. Caco-2 cells were pretreated with shRNA targeting RhoA 

and then treated with 5% ethanol for 60 min. (A,B) The IDV ratio of myosin 

phosphorylation and MLC was detected by Western blot analysis.Values are the mean ± SD 

(n = 4 each). # p < 0.01 vs. 0 min group. * p < 0.01 vs. ethanol 60 min group.  

 

2.5. RhoA Activity Is Required for Ethanol-Induced Expression and Relocation of Occludin and ZO-1 

The integrity of TJ is primarily responsible for epithelial barrier function [36,37]. The strands of TJ 

are composed of the transmembrane proteins occludin and claudin, polymerizing to form TJs [31]. 

Occludin is thought to be not only a structural, but also a functional, component of TJs [38]. Occludin, 

the first identified transmembrane protein of the TJ, is the major regulatory protein of TJs [39–41]. 

Post-translational modifications of the occludin protein involve phosphorylation events, and multiple 

phosphorylation sites have been identified on occludin serine and threonine residues [42]. Several 

proteins, such as Rho kinase, protein kinase C, protein phosphatase 2A and casein kinase 2, may 

regulate occludin phosphorylation [43,44]. The phosphorylation state of occludin mediates its 
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association with the cell membrane and barrier permeability. Sakakibara et al. [45], using 

phosphoamino acid analyses, showed that phosphorylated occludin protein was selectively recovered 

in the NP-40-insoluble fraction and appeared in the higher Mr bands, whereas non-phosphorylated 

occludin protein was predominantly in the NP-40-soluble fraction and appeared in the lower Mr bands. 

Soluble fragments of occludin are the low molecular weight fragments that are susceptible to non-ionic 

detergent extraction. Insoluble fragments of occludin represent phosphorylated forms of high 

molecular weight fragments that combine with actin microfilaments through zonula occludens (ZOs) 

and that are resistant to non-ionic detergent extraction. As previously reported, a shift in the occludin 

distribution from insoluble to soluble fractions suggests that the TJs were destroyed [46,47]. Therefore, 

we prepared the NP-40-soluble and NP-40-insoluble protein fractions for hybridization with an 

occludin antibody. Our results demonstrated that ethanol induced a shift in the occludin distribution 

from insoluble to soluble fractions (Figure 6). At the same time, we found that ethanol induced 

decreased expression of ZO-1 (Figure 6). In our study, ethanol changed the ratio of occludin (S/IS) and 

expression of ZO-1 in Caco-2 cells, supporting the conclusion that ethanol can affect the expression of 

TJ proteins, disrupt the TJs and increase the permeability of the intestinal barrier. Moreover, our 

current data suggest that RhoA shRNA interference prevents the disruption of TJs induced by ethanol 

treatment (Figure 6). In order to clarify further the mechanism of TJ opening, the distribution of 

occludin and ZO-1 were assessed by immunofluorescence microscopy (Figure 7). Ethanol induced a  

re-distribution of occludin from plasmalemma to cytoplasm and induced distribution of ZO-1 

discontinuously at the cellular membrane. Our findings reveal that RhoA shRNA interference 

prevented the ethanol-induced relocation of occludin and ZO-1. Accordingly, it seems possible for a 

signal transduction pathway to proceed from RhoA to occludin and ZO-1 disassembly, thereby 

resulting in IEB opening in our presented paper. 

RhoA shRNA interference showed only partial reversal of the aforementioned data by ethanol 

treatment in our study. This result suggests that other signal molecule mechanisms may be involved in 

ethanol-induced IEB opening.  

Figure 6. Integrated density value (IDV) ratio of soluble fraction (S) and insoluble fraction 

(IS) of occludin and IDV of ZO-1 were detected by Western blot analysis. Caco-2 cells 

were pretreated by shRNA targeting RhoA and then treated with 5% ethanol for 60 min. 

(A,B) The IDV ratio of soluble fraction (S) to insoluble fraction (IS) of occludin was 

detected by Western blot analysis. Values are the mean ± SD (n = 4 each). # p < 0.01 vs.  

0 min group; * p < 0.01 vs. ethanol 60 min group. (C,D) Effect of shRNA targeting RhoA 

on changes in ZO-1 expression of Caco-2 cells. Values are the mean ± SD (n = 4 each).  
# p <0.01 vs. 0 min group; * p < 0.01 vs. ethanol 60 min group.  
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Figure 6. Cont. 

 

Figure 7. Immunofluorescence localization of occludin and ZO-1 in Caco-2 cells of IEB 

after ethanol infusion. Caco-2 cells of control, ethanol groups were treated with ethanol 

(5%) for 0 and 60 min, ethanol (5%) 60 min + RhoA-381 group, ethanol (5%)  

60 min + NC group (Caco-2 cells were transfected with U6/GFP/Neo-RHOA-homo-381, 

pGPU6/GFP/Neo-shNC in the upper chamber of the Transwell and stimulated with ethanol 

(5%) for 60 min). Occludin and ZO-1 were distributed discontinuously in the boundaries of 

Caco-2 cells. Scale bars =10 μm. 

 

3. Experimental Section  

3.1. Culture of Caco-2 Cells and Establishment of an In Vitro IEB Model 

Caco-2 cells were acquired from American Type Culture Collection (ATCC) and cultured in 

Dulbecco’s Modified Eagles Medium (DMEM, Hyclone, Logan, UT, USA) supplemented with  

4.5 mg/mL glucose, 50 U/mL penicillin, 50 U/mL streptomycin, 4 mM glutamine and 10% fetal calf 

serum (FCS, Hyclone, Logan, UT, USA) in a humidified atmosphere (95% air, 5% CO2) at 37 °C. To 

establish an in vitro intestinal epithelial barrier model, Caco-2 cells were plated on Transwell filters 

(Corning, New York, NY, USA) and monitored regularly by visualization with an inverted microscope 

and by epithelial resistance measurements. 

3.2. Viability Assay 

The viability assay was performed as described previously [48]. Briefly, Caco-2 cells were grown 

in 96-well plates, as described above. After incubation with ethanol (1%, 2.5%, 5%, 7.5%, 10%) for  

4 h, the cells were incubated with 100 mL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 
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bromide (MTT, Sigma-Aldrich, Taufkirchen, Germany) at a concentration of 5 mg/mL MTT diluted in 

PBS for 1 h at 37 °C. The culture media was removed, and 150 μL of DMSO was added to 96-well 

plates. The absorbance of the resulting colored solution was measured at 570 nm with a microplate 

reader (Wallac Victor 2, Perkin-Elmer, Life Sciences, Boston, MA, USA). In this assay, yellow MTT 

solution is converted into a blue formazan dye within mitochondria and deposited intracellularly. The 

amount of blue staining is quantitatively detectable by spectrometry and is a measure of cell viability. 

At the same time, cell viability was assessed by measuring the release of the cytosolic enzyme. The 

electrical resistance of Caco-2 cell monolayers cultured on Transwell filters was measured using a 

Millicell-ERS instrument (Millipore, Bedford, MA, USA). Electrical resistance was expressed in units 

of Ω cm2 using the surface area of the Transwell insert. 

Fluorescent yellow (Sigma-Aldrich) at 40 µg/mL in serum-free Dulbecco’s modified Eagle’s 

medium (DMEM) was added to the upper chamber of the Transwell system. After ethanol was 

administered for the times indicated, the media from the lower chamber was collected. Absorbance 

was detected by fluorescence spectrophotometer (excitation wavelength 427 nm, emission wavelength 

536 nm), and the fluorescent yellow concentration was calculated according to the standard curve. The 

fluorescent yellow flux rate (%) = the fluorescent yellow concentration in the lower chamber/the 

fluorescent yellow concentration in the upper chamber. Caco-2 cells were incubated in different 

concentrations of ethanol for 4 h. LDH measurement was carried out in 250 μL aliquots using the LDH 

kit from Doles reagents. 

3.3. Measurement of Transepithelial Electrical Resistance (TEER) and Fluorescent Yellow Flux  

Rate Measurement  

The electrical resistance of Caco-2 cell monolayers cultured on Transwell filters was measured 

using a Millicell-ERS instrument (Millipore, Bedford, MA, USA). Electrical resistance was expressed 

in units of Ω cm2 using the surface area of the Transwell insert. 

Fluorescent yellow (Sigma-Aldrich, Milwaukee, WI, USA) at 40 µg/mL in serum-free Dulbecco’s 

modified Eagle’s medium (DMEM) was added to the upper chamber of the Transwell system. After 

ethanol was administered for the times indicated, the media from the lower chamber was collected. 

Absorbance was detected by fluorescence spectrophotometer (excitation wavelength 427 nm, emission 

wavelength 536 nm) and the fluorescent yellow concentration was calculated according to the standard 

curve. The fluorescent yellow flux rate (%) = the fluorescent yellow concentration in the lower 

chamber/the fluorescent yellow concentration in the upper chamber. 

3.4. RNA Interference 

To block the activity of RhoA, Caco-2 cells were transfected with U6/GFP/Neo- RHOA-homo-326 

and U6/GFP/Neo-RHOA-homo-381 (U6/GFP/Neo-RHOA shRNA expression plasmid, GenePharma, 

Shanghai, China) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA), according to the 

manufacturer’s protocol. Negative control sequence (pGPU6/GFP/Neo-shNC) was purchased from 

GenePharma and used as a control. ShRNA interference efficiency was evaluated by Western blot 

analysis of the target protein (RhoA) expression. The shRNA sequences were shown in Table 1. 
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Table 1. shRNA sequences. 

Group shRNA sequences 

U6/GFP/Neo-RHOA-homo-326 

S5'-CACCGAAAGACATGCTTGCTCATAGTTCAAGAGACTATG 

AGCAAGCATGTCTTTCTTTTTTG-3' 
A5'-GATCCAAAAAAGAAAGACATGCTTGCTCATAGTCTCTTGA 

ACTATGAGCAAGCATGTCTTTC-3' 

U6/GFP/Neo-RHOA-homo-381 

S5'-CACCGCCCACAGTGTTTGAGAACTATTCAAGAGATAGTTC 

TCAAACACTGTGGGCTTTTTTG-3' 
A5'-GATCCAAAAAAGCCCACAGTGTTTGAGAACTATCTCTTGA 

ATAGTTCTCAAACACTGTGGGC-3' 

pGPU6/GFP/Neo-shNC 

S5'-CACCGTTCTCCGAACGTGTCACGTCAAGAGATTACGTGAC 

ACGTTCGGAGAATTTTTTG-3' 
A5'-GATCCAAAAAATTCTCCGAACGTGTCACGTAATCTCTTGA 

CGTGACACGTTCGGAGAAC-3' 

3.5. Treatment and Experimental Groups 

Caco-2 cells were plated onto the underside of the Transwell insert with suitable culture medium. 

When the Caco-2 cells were 80% confluent, they were seeded in the upper chamber of the Transwell 

insert. The cells became confluent after 21–23 days of culture. Ethanol (5%) was added to the upper 

chamber. The cultured cells were then rinsed with cold phosphate buffered saline (PBS). Subsequently, 

the Caco-2 cells in the upper chamber were collected by gently scraping with a cell scraper, and the 

cells were then stored at −80 °C. There were eight groups in our study, with n = 4 per group: control 

group (Caco-2 cells monolayer), ethanol (5%) 0 min group, ethanol (5%) 15 min group,  

ethanol (5%) 30 min group, ethanol (5%) 60 min group, ethanol (5%) 60 min +RhoA-326 group, 

ethanol (5%) 60 min + RhoA-381 group, ethanol (5%) 60 min + NC group (respectively, Caco-2 cells were 

transfected with U6/GFP/Neo-RHOA-homo-326, U6/GFP/Neo-RHOA-homo-381, pGPU6/GFP/Neo-shNC 

in the upper chamber of the Transwell and stimulated with ethanol (5%) for 60 min). 

3.6. Cell Fractionation and Western Blot Analysis 

The Caco-2 cells were washed three times with Dulbecco’s phosphate-buffered saline (D-PBS) 

containing 0.1 mM ethylenediamine tetraacetic acid (EDTA) without calcium and magnesium, and the 

Caco-2 cells were then homogenized in 1 mL of lysis buffer A (2 mM EDTA, 10 mM ethylene glycol 

tetraacetic acid (EGTA), 0.4% NaF, 20 mM Tris-HCL, protease inhibitor cocktail, phosphatase 

inhibitor 1% Triton X-100, pH 7.5) at 4 °C. Samples were centrifuged at 14,000× g for 30 min, and the 

supernatant was transferred to a separate tube and collected as the soluble fraction (S). Buffer A  

(150 µL) with 1% sodium dodecyl sulfate (SDS) at 4 °C was then added to the pellet. The pellet was 

disrupted with an ultrasonic crusher. The samples were then centrifuged at 14,000× g for 30 min at  

4 °C, as described above. The supernatant was collected as the insoluble fraction (IS). Equal amounts 

of proteins (40–50 µg) were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 

processed for immunoblotting with antibodies for MLC, myosin phosphorylation, occludin and ZO-1 

(diluted 1:1,000, Santa Cruz Biotechnology, San Francisco, CA, USA). All the protein bands were 

scanned using ChemiImager 5500 V2.03 software (AlPha InnCh, San Leandro, CA, USA, 2002), and 
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the integrated density values (IDV) were calculated by a computerized image analysis system  

(Fluor Chen 2.0, Bio-Rad, Hercules, CA, USA) and normalized to that of β-actin. 

3.7. RhoA Activation Assay 

Briefly, the cells were lysed as described above, and the supernatants were collected for protein 

quantification. Equal amounts of protein were incubated with GST-Rhotekin (Milipore, Billerica, MA, 

USA) at 4 °C for 1 h with gentle agitation. Affinity-precipitated RhoA proteins were resolved by  

SDS-PAGE and detected by Western blot analysis. Aliquots of lysates were electrophoresed and 

blotted in parallel with anti-RhoA (diluted 1:500; Santa Cruz Biotechnology) to determine total RhoA 

levels (“total RhoA”). 

3.8. Immunofluorescence 

The Caco-2 cell monolayers grown on glass coverslips were fixed with 4% paraformaldehyde and 

permeabilized with 0.5% Triton X-100. After blocking with 2% BSA in PBS, the cells were incubated 

with rabbit anti-occludin (diluted 1:50; Santa Cruz Biotechnology) and rabbit anti-ZO-1 (diluted 1:50; 

Santa Cruz Biotechnology) to visualize the distribution of occludin and ZO-1. The glass slides were 

analyzed using immunofluorescence microscopy (Olympus, Tokyo, Japan). 

3.9. Statistical Analysis 

Experiments were performed at least three times. Data are presented as the mean ± standard 

deviation (SD). Comparisons between more than two groups were performed using a one-way analysis 

of variance (ANOVA), followed by Dunnett’s post-test.  

4. Conclusions  

In summary, our results suggest that RhoA signaling in Caco-2 cells of the IEB is required for the 

ethanol-induced increase in IEB permeability and that these effects are related to both the  

RhoA-mediated phosphorylation of MLC and TJ protein disruption. 
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