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Abstract: Some antioxidants have been shown to possess additional pro-oxidant effects. 

Diverse methodologies exist for studying redox properties of synthetic and natural 

chemicals. The latter are substantial components of our diet. Exploration of their 

contribution to life-extending or -compromising effects is mandatory. Among reactive 

oxygen species (ROS), hydroxyl radical (•OH) is the most damaging species. Due to its 

short half-life, the assay has to contain a specific generation system. Plants synthesize 

flavonoids, phenolic compounds recognized as counter-agents to coronary heart disease. 

Their antioxidant activities are affected by their hydroxylation patterns. Moreover, in the 

plant, they mainly occur as glycosides. We chose three derivatives, quercetin, luteolin, and 

rutin, in attempts to explore their redox chemistry in contrasting hydrogen peroxide 

environments. Initial addition of hydrogen peroxide in high concentration or gradual 

development constituted a main factor affecting their redox chemical properties, especially 

in case of quercetin. Our study exemplifies that a combination of a chemical assay 

(deoxyribose degradation) with an electrochemical method (square-wave voltammetry) 

provides insightful data. The ambiguity of the tested flavonoids to act either as anti- or  

pro-oxidant may complicate categorization, but probably contributed to their evolution as 

components of a successful metabolic system that benefits both producer and consumer. 
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1. Introduction 

Reactive oxygen species (ROS) and antioxidants are involved in all aspects of aerobic life. All 

modern organisms depend on their presence as key components of physiological signaling, although, 

conversely, ROS can contribute to their mortality too [1,2]. In terms of ROS and other reactive species, 

B. Halliwell outlines the big scientific challenge for the 21st century: to understand how to stop 

destructive effects while preserving useful functions [3]. 

Numerous assays exist for characterizing the antioxidant properties of single compounds or 

mixtures [4–7]. Hydrogen atom transfer assays (HAT) measure the capacity of an antioxidant to 

scavenge free radicals by forming stable compounds (1) and consist of a synthetic free radical 

generator and an oxidizable molecular probe; total radical trapping antioxidant parameter (TRAP) and 

oxygen radical absorbance capacity (ORAC), the β-carotene or crocin bleaching assay, inhibited 

oxygen uptake method (IOU) and inhibition of linoleic acid or lipid autoxidation are among them. 

X• + AH → XH + A• (1)

Electron transfer reaction-based assays (ET) monitor the kinetics of the reduction of an oxidant 

(probe) by the antioxidant in comparison to a standard, for example Trolox or gallic acid.  

The antioxidant can reduce a radical, a metal (2), or a carbonyl; total phenol assay using the  

Folin–Ciocalteau reagent, Trolox equivalent antioxidant capacity assay (TEAC), DPPH  

(2,2-diphenyl-1-picrylhydrazyl) radical scavenging capacity assay, ferric reducing/antioxidant power 

assay (FRAP) and Cu(II) reducing antioxidant capacity assay (CUPRAC) are classified more or less to 

the latter group. 

Mn+1 + AH → Mn + AH• (2)

Classification to hydrogen atom transfer and electron transfer assays, however, is not always 

exclusive. Furthermore, assays have been introduced that measure the interference with lipid 

autoxidation, which is caused by free radical attack, by luminescence or electroluminescence and the 

formation of ethylene from α-keto-γ-methiolbutyric acid (total oxidant scavenging capacity, TOSC). 

The deoxyribose degradation assay was developed specifically to explore test compound or mixture 

capabilities to specifically scavenge hydroxyl radical (•OH), which is generated by reaction of an  

iron–ethylenediaminetetraacetic acid (EDTA) complex with hydrogen peroxide (H2O2) in presence of 

ascorbic acid [8,9]. Several reviewers of antioxidant capacity assays criticize in vitro testing for •OH 

scavenging abilities as irrelevant arguing that the extraordinary high reactivity of •OH requires the 

antioxidant to be present in high concentrations or that the test compound concomitantly acts by 

forming a complex with transition metals (iron, copper, manganese, nickel, cobalt), in which the metal 

(M) is a less efficient catalyst of the •OH generating Fenton reaction (3) and thus is hindered to form a 

complex with the detection molecule 2-D-deoxyribose that causes its site-specific degradation [4–7]. 

H2O2 + Mn → •OH + OH− + Mn+1 (3)
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As alternative to deoxyribose, fluorescein was proposed serving as detection molecule in the 

hydroxyl radical scavenging capacity assay (HOSC), which advertises the possibility to perform the 

assay in microtitre plates in a reaction solution volume of 300 µL [10]. Other researchers proposed 

inhibition of fluorescing hydroxylated terephthalate formation as alternative detection molecule of •OH 

scavenging [11,12]. The deoxyribose degradation assay usually is performed in glass vessels. 

Moreover, 2-deoxyribose has less redox cycling properties than aromatic compounds which can affect 

ROS formation in the reaction solution [13–15]. 

Scavenging ROS requires a one- or two-electron transfer from the antioxidant. A recent study 

points to the capability of renowned antioxidants, such as cysteine, epigallocatechin gallate and 

glutathione, to replace ascorbic acid in a Fenton-like reaction system with albumin-sequestered copper 

in a wide range of pH as a pro-oxidant [16]. In the deoxyribose degradation assay, the reducing 

capability of ascorbic acid is used to change ferric into ferrous iron, the latter of which reduces H2O2 to 
•OH and OH–. In attempts to specifically address this issue, one of us (V.C.) developed variants of the 

deoxyribose degradation assay that allow exploring the interactions of the test compound with the 

different components of the reaction mixture [17]. The exclusion of H2O2 modifies the •OH-generation 

system in terms of speed. If, in this case, the duration of the assay is extended from 1 to 16 h, similar 

levels of deoxyribose degradation are detectable as with the initially highly concentrated H2O2  
•OH-generation system (4–8). This extends the detection specificity of the deoxyribose degradation 

assay to the development and interactions of various ROS (O2
•−, H2O2, and •OH), which may arise in a 

cascade of redox reactions (5–8) and are initiated by the reduction of molecular oxygen; in nearly all of 

them, iron or a comparable transition metal acts as catalyst. Exclusion of ascorbic acid then creates a 

reaction environment that specifically allows exploring the capability of the test compound to cause a 

similar pro-oxidant effect as ascorbic acid in the designated •OH-generation system (4–8). Iron was 

added as Fe(III)−EDTA complex that was prepared separately. In the EDTA complex iron can catalyze 

electron transfers, but coordination with other reactants is hindered. We considered this as  

important for a structure–activity comparison; iron–flavonoid coordination compounds have different  

chemical properties. 

Test compound + Fe3+→ Test compound• + Fe2+ (4)

O2 + Fe2+→O2
•− + Fe3+ (5)

O2
•– + Fe3+→O2 + Fe2+ (6)

O2
•– + O2

•− + 2H+→O2 + H2O2 (7)

H2O2 + Fe2+→•OH + OH− + Fe3+ (8)

To demonstrate the additional insights that can be obtained from applying the deoxyribose 

degradation assay variants, we selected three flavonoids, luteolin, quercetin, and rutin (Figure 1). 

Flavonoids are ubiquitously occurring phenolic compounds in the plant kingdom and well-renowned 

for their ability to scavenge a wide range of ROS [18]. They may be beneficial for plants that produce 

them by conferring to protection of the photosynthetic apparatus against oxidative stress [19,20]. Their 

wide-spread occurrence also causes them to be a part of our diet and an inverse correlation between 

phenol intake and coronary heart disease has been noted [21]. Structure–antioxidant activity 
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relationships of flavonoids largely depend on the number of hydroxyl groups, especially on the ring B, 

with the highest effects correlating with catechol or pyrogallol moieties [18]. If, however, these 

structural characteristics are absent, the enolic 3-hydroxyl group on ring C was shown to gain 

importance [22,23]. The radical that arises after oxidation is stabilized by its resonance [18]. 

Conversely, the same flavonoids structures also are known to be pro-oxidant under certain conditions, 

e.g., when the availability of transition metals such as iron or copper is increased [24,25]. Not 

surprisingly, the in vivo protective efficacy of flavonoids as well as that of many other natural and 

synthetic antioxidants was put under question. Instead the notion arose that mild pro-oxidant effects, 

which stimulate antioxidant defenses, contribute more to their beneficial effects than direct ROS 

scavenging [3,26]. The flavonoid derivatives that were selected for this study represent variants of the 

previously outlined structural characteristics contributing to antioxidant activity. Luteolin lacks the 

enolic hydroxyl group at carbon 3 of ring C that quercetin shows and rutin is a rutinoside of quercetin 

(quercetin 3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside) with the enolic 3-hydroxyl group 

masked by a disaccharide (Figure 1).  

Traditionally, voltammetric methods have been used widely to study the thermodynamic aspect of 

redox properties [27,28]. We compare the antioxidant capacity results from the deoxyribose 

degradation assay variants to square-wave voltammetry (SWV), which provides peak potentials of 

electro-oxidation and/or -reduction as further characteristics of the test compounds in a similar 

chemical milieu. Square-wave voltammetry is faster, more sensitive, and requires lower amounts of 

electro-active species than cyclic voltammetry; both represent electrochemical methods that have been 

employed to study the redox properties of flavonoids in particular [29]. 

Here we want to show that the deoxyribose degradation assay 16 h variant without initial addition 

of hydrogen peroxide provides more extensive information on the potential redox chemistry of test 

compounds in biological systems. It fundamentally complements that of the classical deoxyribose 

degradation assay with initial addition of hydrogen peroxide in high concentration. Furthermore, 

combining both assay variants proves also highly useful for a co-interpretation with voltammetric data. 

2. Results and Discussion 

Square-wave voltammograms (SWV) of quercetin, rutin, and luteolin were measured at pH = 7.4 

(Figure 1) to reflect the cytosolic pH. Quercetin (Figure 1a) showed four peaks at the potentials  

0.098 V (1), 0.233 V (2), 0.388 V (3) and 0.871 V (4), respectively, in congruence with reported data; 

peak 1 corresponds to the oxidation of o-dihydroxyl groups of ring B and peak 2 to the oxidation of the 

hydroxyl group at position 3 of ring C [30]. The backward component of the response indicates that 

the products of the first and second electro-oxidation can be reduced back to quercetin. Peaks 3 and 4 

are thought to be caused by the oxidation of the resorcinol moiety (m-dihydroxyl groups) of ring  

A [30]. In their case, no corresponding reversible peaks were detected in the backward response. The 

oxidation of the resorcinol moiety requires higher electrochemical redox potentials because its 

arrangement for oxidation seems to be less favorable compared to the catechol moiety. Luteolin lacks 

the hydroxyl group at position 3 of ring C and in rutin it is masked by disaccharide rutinose. Despite of 

the structural differences, the SWVs of both flavonoids are strikingly similar showing a notable peak 1 

at 0.243 V and 0.233 V respectively (Figures 1b,c) [31,32]. A second but less prominent peak 2 
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appears at 0.834 V (luteolin) and 0.845 V (rutin). Peak 1 corresponds to the oxidation of the catechol 

moiety (ring B) and peak 2 to the resorcinol moiety (ring A) [31,32]. Again, only peak 1 indicated 

some back electro-reduction after the oxidation; however, the ratios of forward and backward current 

suggest the electro-reactions to be complex too. A peak that would correspond to a hydroxyl group at 

C ring C3 is missing accordingly. 

Figure 1. Structures and square-wave voltammograms (∆i = if − ib, if, forward current, ib, 

backward current), pH = 7.4, for details see Experimental section; (a) quercetin, (b) rutin, 

(c) luteolin.  

 

The voltammograms suggested that complex reactions occur after analyte oxidation at the cytosolic 

pH. Others studies focusing on pH dependence of flavonoid electrochemistry in more detail arrived at 

similar conclusions [30–32]. Basically, both the elimination and masking of the C ring C3 hydroxyl 

group resulted in an anodic shift of the redox potential of the first maximum corroborating that rutin 

and luteolin possess less reductive power than quercetin.  
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In efforts to explore the redox chemical reactions specifically with •OH, the three flavonoids were 

subjected to various variants of the deoxyribose degradation assay [8,9,17] (Figure 2). In the standard 

variant, the H2O2/Fe(III)EDTA/ascorbic acid reaction mixture, quercetin proved as the most efficient 

scavenger of the generated •OH whereas luteolin and rutin were less efficient and more similar to each 

other in accordance with square-wave voltammetry carried out at the same pH (Figure 2a). Correlation 

of redox potentials and antioxidant capacity has been pointed out by previous studies, e.g., for cyclic 

voltammetry and FRAP [33] and cyclic voltammetry and TEAC [34]. In terms of an activity ranking of 

quercetin, luteolin, and rutin, other studies, such as protection against single-strand DNA breaks [35], 

lipid peroxidation [36], and scavenging of the DPPH free radical [37] draw a similar picture. Quercetin 

has a more negative peak potential than ascorbic acid—its first peak potential against the Ag/AgCl 

electrode is 0.212 V—it failed, however, to substitute ascorbic acid in the reaction mixture  

(Figure 2b). This might have a kinetic reason. 

Figure 2. Thiobarbituric acid reactive species (TBARS) formation in  

(a) H2O2/Fe(III)EDTA/ascorbic acid (1 h incubation), (b) H2O2/Fe(III)EDTA (1 h incubation), 

(c) Fe(III)EDTA/ascorbic acid (16 h incubation), and (d) Fe(III)EDTA (16 h incubation) 

variants of the deoxyribose degradation assay (100% = TBARS of the control reaction 

mixture of the classical variant; H2O2/Fe(III)EDTA/ascorbic acid). Error bars indicate 

standard deviation of three replicates; letters indicate different levels of significance  

(95% Duncan); EDTA, ethylenediaminetetraacetic acid. 
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The elimination of H2O2 from the reaction mixture has dramatic consequences on ROS availability 

because any H2O2 that would be available for the •OH generating Fenton reaction depends on diffusion 

of molecular oxygen into the reaction solution and its consequent reduction [17]. As a consequence, 

the scoring interval was extended to 16 h. At this time point, the formation of •OH from H2O2 

progressed to more than 80% of the standard reaction mixture to which aqueous H2O2 was added in the 

beginning (1 mM H2O2 final concentration). In presence of ascorbic acid (Figure 2c), the antioxidant 

capacity of the flavonoids changes. Quercetin was pro-oxidant in most of the tested concentrations. 

Only the highest concentration, 500 µM, reduced the TBARS level to that of the control. Luteolin 

showed no effect, but rutin a notable antioxidant one in higher concentrations. The higher pro-oxidant 

capacity of quercetin was confirmed in the variant without addition of ascorbic acid (Figure 2d), in 

which both luteolin and rutin were inactive. 

Compared to the 1 h classical variant, the 16 h variant deoxyribose degradation assay variant 

provides more detailed but also contrasting results on the antioxidant capacity of the three tested 

flavonoids. Most striking are the higher efficacy of rutin and the inefficiency of luteolin and  

near-to-inefficiency of quercetin to act as antioxidants in the H2O2 exclusion variant. The simultaneous 

assaying of a test compound in variants of the deoxyribose degradation assay, when H2O2 is either 

added or not added to the reaction mixture at the beginning of the assay, allows—despite being still 

affected by the shortcomings of an in vitro assay—to obtain a glimpse into the versatile and complex 

chemistry which flavonoids may enter in vivo. In plants, flavonoids usually occur as glycosides in the 

vacuole; the general idea is that glycosylation confers to their stability and also better solubility in 

aqueous solutions [38]. Interestingly, sugars, especially disaccharides have been pointed out to be able 

to act as antioxidants similarly as phenols, such as flavonoids [39]; similar reports also exist for sugar 

alcohols [40]. In the vacuole, •OH may arise from H2O2 that is either formed from tonoplast-resident 

NADPH oxidases or diffuses through the tonoplast with or without the help of aquaporins. Attack on 

oligosaccharides, such as fructans, and phenols may lead to the formation of phenol and sugar radicals 

that either form sugar–phenol compounds, repolymerized oligosaccharides or polymerized phenols [41]. 

Rutin might also arise in such a scenario—rutinose is not known to occur as free sugar in nature [42] 

and fungal enzymes have been suggested to be involved in its biosynthesis [43]. Only the 16 h variant 

of the deoxyribose degradations assay reveals that rutin, in comparison to quercetin, might be a more 

efficient antioxidant when it is present during the entire Haber–Weiss reaction. The interaction 

complexity of hydroxyl radicals with low molecular weight metabolites in vivo represents a challenge 

for developing in vitro assays. So far, only modifications of the detection molecule in a deoxyribose 

degradation assay-like reaction mixture have been suggested, for example fluorescein in the HOSC 

estimation [10] or hydroxylated terephthalate [11], but H2O2 was added directly always into the 

reaction mixture at the beginning in comparatively high concentration that was required to provide 

quick •OH formation. The herein presented results point out (1) that the speed of H2O2 generation has a 

substantial effect on the antioxidant capacity; and (2) a more complex •OH generation system reveals a 

more complex and versatile redox chemistry. At the first glance, the results prove as less helpful for 

antioxidant capacity categorization. A careful examination, however, points out that the 16 h variant 

provides results that facilitate more detailed insights into the complex redox chemistry of the tested 

compounds, which is exemplified here by the antioxidant flavonoids. Electrochemical experiments at 

the same pH are highly useful to confirm redox cycling properties of certain function groups, which is 
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required for pro-oxidant activity. They provide useful additional information but, if applied singly, fail 

to reflect the complex redox chemistry of the compound to a lesser extent than if used in combination 

with an antioxidant capacity assay. For the latter, our study points to the fact that attempts to simplify 

and optimize assays in terms of high throughput may affect result quality negatively. 

3. Experimental Section  

3.1. Chemicals 

Hydrogen peroxide and 2-deoxy-D-ribose were obtained from Fluka (Buchs, Switzerland). All other 

chemicals used were purchased from Sigma-Aldrich (Schnelldorf, Germany). Water had Milli-Q quality. 

3.2. Square-Wave Voltammetry 

Voltammetric curves were recorded in a three-electrode system, µAutolab PGSTAT type III 

(EcoChemie Inc., Utrecht, The Netherlands). The working electrode was a glassy carbon electrode of  

3 mm diameter, an Ag/AgCl (saturated KCl) electrode was used as reference, and platinum wire as a 

counter electrode. The glassy carbon electrode was washed first with methanol, then with water, and 

polished by aluminum oxide powder (0.3 µm of grain size) before every measurement. The effective 

scan rate of the voltammetry was 105 mV s−1, step potential was 5 mV, modulation amplitude was  

25 mV, and frequency 20 Hz. The scan potential was from −0.250 to +1.200 V. The flavonoids were 

dissolved in degassed methanol at a concentration of 1 mM. The sample for the analysis was prepared 

by mixing 1 mL of this methanol solution with 9 mL of the degassed buffer (0.1 M phosphate buffer 

pH 7.4). The low flavonoid concentrations and presence of small amount of the organic solvent 

decreased the adsorption of the tested substances on the electrode surface. The electrolytes were 

degassed by argon for 10 min and measurements were carried out under argon atmosphere at a room 

temperature. Ascorbic acid was measured in a comparative fashion. 

3.3. Deoxyribose Degradation Assay Variants 

The deoxyribose degradation assay and the various variants follow published procedures [8,9,17]. 

Flavonoids were dissolved in aqueous KH2PO4/KOH buffer solution (30 mM, pH 7.4) and diluted 

serially (4–500 μM); to 125 μL of this solution, 25 μL of a 10.4 mM 2-deoxy-D-ribose solution in the 

same buffer system and 50 μL of Fe(III)EDTA solution (50 μM) were added. The complex of Fe(III) 

with EDTA was prepared separately; the 104 µM EDTA solution in the buffer was premixed with the 

aqueous 100 µM FeCl3 solution (1:1 v/v). Further, 25 μL 10.0 mM aqueous solution of H2O2 and  

25 μL of 1.0 mM ascorbic acid in the buffer were added to start the Fenton reaction in the 

H2O2/Fe(III)EDTA/ascorbic acid reaction mixture. In the other deoxyribose degradation assays 

systems, H2O2 or ascorbic acid was replaced by the same volume of water or buffer, respectively. 

Thiobarbituric acid reactive species (TBARS) were determined photometrically at 532 nm after 

reaction with thiobarbituric acid and subsequent extraction of the pink pigment with 1-butanol. The 

H2O2/Fe(III)EDTA/ascorbic acid reaction mixture served as positive control and represented 100% 

TBARS detection in all variants and also served as comparative standard for each experiment. Blanks 

contained the full reaction mixtures except for 2-deoxy-D-ribose and were determined in each 
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experiment. Experiments were performed in triplicates. The temperature during incubation was 27 °C. 

Variants containing H2O2 were evaluated after 1 hour; variants without H2O2 were evaluated after  

16 h incubation. All tested compounds were explored for possible interactions with the TBARS 

detection procedure [44,45]. 

3.4. Statistical Analysis 

Statgraphics Centurion XVI (Statistical Graphics Corp., Rockville, MD, USA) was used to perform 

analyses of variance (ANOVA) employing 95% Duncan’s multiple range post hoc test. 

4. Conclusions  

The herein presented results demonstrate that electrochemical studies of peak potentials at a 

physiological pH together with a variant of the deoxyribose degradation assay that monitors the whole 

Haber–Weiss than only the Fenton reaction alone draw a complex and probably much more realistic 

picture of •OH interaction dynamics with low molecular weight metabolites. The unpredictability that 

is caused by this versatile redox chemistry may render categorizing efforts for antioxidant capacity 

more difficult. Conversely, this characteristic may contribute fundamentally to the success of the 

system as a whole, of which plant flavonoids are only a part. Low molecular weight metabolites 

present attractive targets to study the complex chemistry of life; large biomolecules such as proteins 

contain similar functional groups but in higher numbers, which substantially complicates interpretation. 
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