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Abstract: Iron is an essential micronutrient for all eukaryotic organisms because it 

participates as a redox cofactor in a wide variety of biological processes. Recent studies in 

Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding 

protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize 

iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) 

that specifically bind to adenosine/uridine-rich elements within the 3' untranslated region 

of many mRNAs to promote their degradation. The Cth2 protein shuttles between the 

nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and 

stimulates alternative 3' end processing. A Cth2/mRNA-containing complex is required for 

export to the cytoplasm, where the mRNA is degraded by the 5' to 3' degradation pathway. 

This post-transcriptional regulatory mechanism limits iron utilization in nonessential 

pathways and activates essential iron-dependent enzymes such as ribonucleotide reductase, 

which is required for DNA synthesis and repair. Recent findings indicate that the  

TZF-containing tristetraprolin protein also functions in modulating human iron 

homeostasis. Elevated iron concentrations can also be detrimental for cells. The Rnt1 

RNase III exonuclease protects cells from excess iron by promoting the degradation of a 

subset of the Fe acquisition system when iron levels rise. 
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1. Introduction 

Iron (Fe) is an indispensable element for all eukaryotes and the vast majority of prokaryotes 

because it serves as a redox active cofactor in energy generation (mitochondrial respiration, 

photosynthesis) and in the biosynthesis of major cell components: proteins (ribosomes, several amino 

acids), nucleic acids (deoxyribonucleotides, DNA) and lipids (unsaturated fatty acids, sterol and 

sphingolipids). Despite Fe being abundant, its extremely low solubility at a physiological pH 

compromises its bioavailability. In fact, Fe deficiency anemia is the most extended and common 

nutritional disorder in the world [1,2]. The same redox properties that enable Fe to function as an 

essential cofactor in many metabolic pathways can also be detrimental for cells. When present at 

elevated concentrations, Fe can participate in Fenton-type reactions that promote the formation of 

powerful reactive oxygen species, including hydroxyl radicals that damage cells at the levels of lipid 

peroxidation, protein oxidation and carbonylation, and DNA mutagenesis and destabilization [3]. 

Recent studies have revealed that Fe excess can be toxic for yeast cells, even in the absence of oxygen, 

probably due to the activation of the sphingolipid signaling and synthesis pathway [4,5]. Consequently, 

alterations in Fe homeostasis bring about multiple human diseases, including hereditary 

hemochromatosis, Friedreich’s ataxia and aceruloplasminemia (reviewed in [6–9]). Hence, living 

organisms have developed sophisticated regulatory mechanisms that modulate the expression of the 

genes involved in Fe sensing, acquisition, distribution, storage, recycling and utilization to achieve an 

appropriate Fe balance. 

In mammals, cellular Fe homeostasis is mostly controlled through post-transcriptional mechanisms. 

Two Fe-regulatory proteins, IRP1 and IRP2, control the expression of the genes involved in cellular Fe 

homeostasis by specifically interacting with stem-loop mRNA structures, termed Fe-responsive 

elements or IREs (reviewed in [10,11]). The recognition and binding of IRPs to IREs depends on the 

cellular Fe status. When Fe levels are low, both IRPs bind to IREs, whereas no interaction is observed 

when Fe is in excess. The position of the IRE on the transcript is crucial to determine the fate of  

IRP-bound mRNA. The transcripts encoding the proteins required for Fe uptake, such as transferrin 

receptor TfR1 and Fe transporter DMT1, contain IREs at the 3' untranslated region (UTR). When Fe is 

scarce, the IRP/IRE complex assembled at the 3' UTR prevents mRNA degradation, leading to an 

increase in the TfR1 and DMT1 protein levels that stimulates cellular Fe acquisition. Furthermore, the 

mRNAs encoding proteins that participate in Fe storage (ferritin H and L), Fe export (ferroportin) or 

Fe utilization (erythroid aminolevulinate synthase, mitochondrial aconitase) display an IRE at the 5' 

UTR. In response to Fe deficiency, the IRP/IRE complexes assembled at the 5' UTR of these 

transcripts inhibit translation. When cellular Fe concentration increases, IRPs are released from the 5' 

IRE and protein synthesis proceeds, leading to the accumulation of ferritin and ferroportin, which 

protect cells from toxic Fe levels. Importantly, enterocytes accumulate ferroportin in response to Fe 

deficiency due to the expression of a ferroportin transcript that lacks the 5' IRE [12]. Recent global 
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studies have extended potential IRP-regulated genes even beyond Fe homeostasis [13]. The 

mechanisms modulating the activity of both IRPs in response to fluctuations in cellular Fe availability 

differ. Under Fe-sufficient conditions, IRP1 assembles an Fe-S cluster that confers IRP1 aconitase 

activity. Upon Fe scarcity, IRP1 loses its Fe center and its aconitase activity, but undergoes extensive 

conformational changes that enable apo-IRP1 to interact with IREs [14]. The IRP2 protein does not 

bind Fe, but its stability is regulated by Fe abundance. When cellular Fe levels rise, an E3 ubiquitin 

ligase complex containing the FBXL5 protein promotes IRP2 ubiquitination and proteasomal 

degradation. The FBXL5 protein contains a hemerythrin domain that stabilizes the protein upon  

Fe-binding. When intracellular Fe decreases, the FBXL5 protein is degraded, leading to IRP2 

accumulation [15,16]. 

The budding yeast Saccharomyces cerevisiae is an excellent model organism that has contributed 

tremendously to elucidate the molecular mechanisms that eukaryotic cells utilize to respond to 

fluctuations in Fe bioavailability. As shown for mammalian IRP1, yeast cells perceive Fe deficiency 

and Fe excess by alterations in the Fe-S cluster synthesis rate [17,18]. When Fe-S biosynthesis 

proceeds, the Fe-regulated Aft1 (and probably Aft2) transcription factor perceives a mitochondrial Fe 

signal through a Grx3/Grx4-dependent mechanism that diminishes the transcription of Fe starvation 

response genes [19–21]. In response to Fe scarcity, Fe-S synthesis decreases and Aft1 (and probably 

Aft2) accumulates in the nucleus, binds to specific Fe-response elements termed FeRE, and activates 

the transcription of around 25 genes that function in Fe homeostasis and are denoted the Fe regulon 

(reviewed in [22,23]). Among other processes, the coordinated action of Aft1 and Aft2 stimulates Fe 

uptake by: inducing the expression of a family of metalloreductases (FRE1-5), a high-affinity Fe 

uptake complex (FET3/FTR1), the cell wall mannoproteins involved in Fe acquisition (FIT1-3), and a 

family of Fe siderophore transporters (ARN1-4); activating Fe mobilization from vacuolar stores by 

promoting the transcription of a vacuolar metalloreductase (FRE6) and two Fe transport systems 

(FET5/FTH1; SMF3); initiating a profound metabolic remodeling of Fe-dependent processes by 

increasing the expression of two RNA-binding proteins denoted Cth1 and Cth2 (reviewed in [24–26]). 

Under Fe replete or high Fe conditions, yeast cells increase the rate of mitochondrial Fe-S cluster 

biosynthesis, which sends out an Fe signal that is perceived and activates the nuclear Yap5 

transcription factor [18]. Upon sensing the Fe signal, Yap5 activates, among other targets, the 

transcription of CCC1, a vacuolar Fe importer that protects cells from Fe toxicity by triggering Fe 

storage [27,28]. 

2. Post-Transcriptional Regulation of Gene Expression in Response to Iron Deficiency 

2.1. Cth1 and Cth2 RNA-Binding Proteins Post-Transcriptionally Regulate Iron-Dependent Processes 

Among the genes transcriptionally activated by Aft1 or Aft2 in response to Fe deficiency, CTH2 

(also known as TIS11) is one of the few members of the Fe regulon encoding a soluble, non 

membrane-associated protein [29–32]. The most remarkable feature of the Cth2 protein is the presence 

of two tandem zinc fingers (TZFs) of the Cx8Cx5Cx3H type (x being a variable amino acid) separated 

by 18 amino acids. Experiments using the yeast three-hybrid assay, a method that detects RNA-protein 

interactions in vivo [33], have demonstrated that Cth2 binds in a TZF-dependent manner to the 
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adenosine/uridine-rich elements (AU-rich elements or AREs) present in the 3' untranslated  

region (UTR) of multiple mRNAs, including SDH4 (a subunit of succinate dehydrogenase), ACO1 

(aconitase), and WTM1 (ribonucleotide reductase nuclear anchor) [31,34]. Transcription shut-off 

experiments have demonstrated that upon binding Cth2 promotes the destabilization of  

ARE-containing transcripts as the half-lives of ACO1 and SDH4 mRNAs decrease by around 50% 

under Fe-deficient conditions, but only when cells express a functional Cth2 protein [31]. Interestingly, 

the 3' UTR of SDH4 mRNA confers Cth2-mediated Fe regulation to an Fe-independent transcript [31]. 

The integrity of both the AREs at the transcript and the TZFs in Cth2 is indispensable for mRNA 

binding and turnover as the mutations in either the AREs or the TZFs diminish or totally abolish the 

RNA-protein interaction and transcript degradation [31,34]. All these data suggest that Cth2 is a  

post-transcriptional regulator of gene expression which promotes the ARE-mediated decay (AMD) of 

a subset of mRNAs in response to Fe deficiency.  

In addition to CTH2, the S. cerevisiae genome harbors a second gene, denoted CTH1, whose 

product shares an overall 46% identity and 59% similarity to Cth2, as well as 79% identity at the  

TZFs [31,35]. As shown for Cth2, Cth1 also stimulates the AMD of multiple Fe-related mRNAs [36]. 

One important difference between the CTH1 and CTH2 genes lies in their distinct expression pattern. 

CTH2 mRNA is not detected, or is extremely lowly expressed, under normal conditions (meaning the 

cells exponentially growing under 2% glucose and Fe-sufficient conditions), whereas in these 

circumstances, the CTH1 gene displays basal levels of expression [30,31,36,37]. Upon Fe limitation, 

transcription factors Aft1 and Aft2 cooperate to bind to FeREs within the promoter of both the CTH1 

and CTH2 genes and activate their transcription [31,34]. Despite this, the Cth2 mRNA and protein 

levels sharply rise during the progress of Fe deficiency, whereas Cth1 mRNA and protein abundance 

remain low [31,36]. The relative relevance of the CTH1 and CTH2 genes in the response of yeast cells 

to Fe deprivation is evidenced by the growth phenotypes observed for the corresponding deleted 

strains. Those cells lacking CTH2 display a major growth defect under Fe-deficient conditions, 

whereas the deletion of CTH1 by itself does not lead to any growth defect under low Fe conditions, but 

exacerbates the phenotype displayed by the cth2∆ mutant, strongly suggesting that both proteins 

contribute to the cellular adaptation to Fe limitation [31]. 

Genome-wide transcriptome experiments using DNA microarrays have shown that under  

Fe-deficient conditions, Cth2 is responsible for the down-regulation of more that 200 mRNAs, whereas 

Cth1 contributes to the decrease approximately 60 transcripts [31,36]. Around 40% of these  

down-regulated genes contain consensus AREs in their 3' UTRs and can be considered direct 

Cth1/Cth2 targets, whereas the remaining decreased transcripts may be due to indirect effects of the 

Cth1/Cth2 function or the Cth1/Cth2-binding to noncanonical AREs. Importantly, the majority of 

ARE-containing transcripts regulated by Cth1/Cth2 during Fe deficiency encode the proteins involved 

in metabolic pathways which directly or indirectly depend on Fe as a cofactor. Since mitochondrial 

respiration consumes large amounts of Fe, Cth1 and Cth2 primarily target the degradation of numerous 

transcripts whose products participate in the mitochondrial electron transport chain and the 

tricarboxilic acid cycle, such as SDH4 and ACO1. Thus, one of the most significant alterations that 

both Cth1 and Cth2 seem to perform upon Fe depletion is a shift to fermentative metabolism. In 

addition to respiration, Cth2 down-regulates the mRNAs encoding those proteins that participate in 

multiple Fe-requiring pathways, such as the biosynthesis of some amino acids (leucine, lysine, 
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methionine, glutamate), lipids (unsaturated fatty acids, ergosterol, sphingolipids), cofactors (lipoic 

acid), heme and some 4Fe-4S containing enzymes [31,36]. Under low Fe conditions, Cth2 also inhibits 

Fe storage by promoting the destabilization of CCC1 mRNA, whose product imports Fe into the 

vacuole [28,31]. Recent data have demonstrated that, in addition to down-regulating nonessential  

Fe-consuming pathways, under Fe scarcity, the Cth1 and Cth2 proteins stimulate the activity of 

essential Fe-dependent enzymes, such as ribonucleotide reductase (RNR) [34]. RNR is an essential 

enzyme required for DNA synthesis that catalyzes the conversion of ribonucleotides into the 

corresponding deoxy forms (reviewed in [38,39]). Upon Fe limitation, Cth1 and Cth2 promote the 

degradation of WTM1 mRNA, which encodes a nuclear anchor of the small RNR subunit. The drop in 

the Wtm1 protein levels mediated by Cth1 and Cth2 facilitates the assembly of an active RNR enzyme 

in the cytoplasm and promotes deoxyribonucleotide synthesis [34]. Thus, in response to Fe limitation, 

the Cth1 and Cth2 proteins optimize cellular Fe utilization by decreasing Fe storage and utilization in 

nonessential Fe-dependent metabolic pathways, and by prioritizing essential Fe-requiring processes, 

such as DNA synthesis. Besides Cth1/Cth2 post-transcriptional regulation, other transcriptional 

mechanisms contribute to the metabolic reprogramming that yeast cells undergo during the progress of 

Fe deficiency. A sharp drop in the metabolites whose synthesis requires Fe, such as α-isopropylmalate 

and heme, leads to a reduction in the transcription rate of the LEU1 (Fe-S-containing isopropylmalate 

isomerase in the branched-chain amino acid biosynthesis) and CYC1 (heme-containing cytochrome c) 

genes, respectively [40]. Interestingly, the control of the LEU1 and CYC1 mRNA levels is conferred 

by the combination of transcriptional regulation through Fe responsive metabolites and  

post-transcriptional stability by the Cth1 and Cth2 proteins [40]. 

2.2. Cth2 Is a Nucleocytoplasmic Shuttling Protein  

Localization and biochemical studies using a functional epitope-tagged Cth2 protein have shown 

that yeast Cth2 localizes to both the nucleus and the cytoplasm of Fe-deficient cells [41,42]. Analyses 

of truncated versions of the Cth2 fusion protein have failed to identify specific nuclear localization 

(NLS) and nuclear export signals (NES). Nonetheless, the nuclear import information seems to reside 

within the TZF domains, which are responsible for mRNA binding [42]. Interestingly, evidence is 

consistent with a model in which Cth2 can only leave the nucleus when bound to its target  

transcript [42]. First, Cth2 export to the cytoplasm is impaired in those mutants that are defective in 

nuclear mRNA export. For instance, the thermosensitive mutants in the essential general mRNA export 

factor Mex67 accumulate the Cth2 protein in the nucleus at a nonpermissive temperature. Furthermore, 

Cth2 properly leaves the nucleus in the alleles of the CRM1/XPO1 nuclear export factor, such as  

crm1-2 and crm1-3, which allow poly(A) RNA export, but do not function in NES-mediated transport. 

However, temperature-sensitive xpo1-1 mutants, which are defective in both poly(A) RNA and  

NES-mediated export, retain Cth2 in the nucleus at a restrictive temperature strongly suggesting that 

Cth2 translocation to the cytoplasm is solely dependent on RNA export pathways and is independent 

of NES-mediated transport. Second, the Cth2 proteins mutated in the key cysteine residues of the 

TZFs, which are unable to bind ARE-containing transcripts, are also retained in the cellular nuclei. 

Third, inhibition of the mRNA synthesis achieved by the addition of thiolutin also leads to the nuclear 

accumulation of Cth2. These observations indicate that Cth2 must bind to its target mRNA before 
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leaving the nucleus. Importantly, the addition of exogenous NLS or NES sequences to Cth2, which 

restrict its localization to either the nucleus or the cytoplasm, results in an impaired Cth2-mediated 

down-regulation of SDH4 mRNA and a growth defect under Fe-deficient conditions [42]. This is not 

due to the tag since inactivated NLS and NES fused to Cth2 properly function in AMD and grow in Fe 

limitation. Therefore, Cth2 nucleocytoplasmic shuttling is an essential part of the mechanism that the 

Cth2 (and probably Cth1) protein utilizes to promote AMD in response to Fe deficiency (Figure 1). 

Figure 1. Model for the post-transcriptional regulation of adenosine/uridine-rich element 

(ARE)-containing transcripts by Cth2 in response to Fe deficiency. This model proposes 

the following steps for the degradation of the SDH4 mRNA by Cth2 protein: (1) Docking 

and recognition: Cth2 co-transcriptionally binds to AREs in the nascent mRNA before 

polyadenylation occurs; (2) 3' end processing: Cth2-binding to the AREs partially 

interferes with normal polyadenylation, leading to the synthesis of extended transcripts, 

which are preferentially degraded in a Cth2-dependent manner by a 5' to 3' 

exoribonuclease, either Rat1 in the nucleus or Xrn1 after transport to the cytoplasm;  

(3) Export: Cth2 bound to the transcript is translocated to the cytoplasm via mRNA export 

pathways that require Mex67 and Xpo1/Crm1; (4) Cytoplasmic degradation: Cth2 interacts 

with the RNA helicase Dhh1, which recruits the decapping enzymes and Xrn1 to the target 

mRNA that is degraded from 5' to 3'; (5) Recycling and nuclear import: After mRNA 

degradation, Cth2 is released from the decay machinery and can potentially re-enter the 

nucleus to initiate a new cycle of ARE-mediated decay (AMD). 

 

2.3. Cth2 Promotes mRNA Decay by Alternative 3' End Processing 

Pre-mRNA processing is a universal gene expression step in eukaryotes. Following the transcription 

by RNA polymerase II in the nucleus, nascent mRNA transcripts undergo a series of co-transcriptional 

maturation steps before they can be exported to the cytoplasm for translation into proteins. The 
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processing events include the 5' end capping to add a 7-methylguanosine cap, splicing to remove 

introns and 3' end processing, which includes the endonucleolytic cleavage reaction downstream of the 

coding sequence at the polyadenylation (poly(A)) site, followed by the addition of a nontemplated 

poly(A) tail. The pre-mRNA 3' end processing reaction requires the assembly of a large number of 

protein factors onto specific signal sequences within the 3' region of the pre-mRNA (reviewed  

by [43–45]). In S. cerevisiae, the poly(A) site is defined by four sequence elements: the AU-rich 

efficiency element (EE), the A-rich positioning element (PE), the cleavage site, and the upstream 

(UUE) or downstream (UE) U-rich elements. The AU-rich EE element is located upstream of the 

cleavage site and it improves the cut. The A-rich PE element location, downstream of the EE and 

around 10–30 nucleotides upstream of the cleavage site, is critical for efficient 3' end processing. The 

cleavage site is generally defined by a pyrimidine followed by multiple adenosines. Finally, UUE and 

UE are conserved U-rich sequences located near the cleavage site that contribute to the cleavage event. 

The S. cerevisiae 3' end processing machinery comprises (1) cleavage factor IA (CFIA), a complex 

including the RNA-binding protein Rna15 and scaffold protein Rna14 that recognizes the A-rich PE to 

position CPF to cleave the poly(A) site; (2) cleavage factor IB (CFIB) which, in yeast, contains only 

the RNA-binding protein Nab4 (also known as Hrp1), which interacts with the AU-rich EE site and 

CFIA to influence the efficiency of the cleavage reaction; (3) the cleavage and poly(A) factor (CPF), 

including poly(A) polymerase Pap1 which finishes the process after the cleavage reaction. Yeast Pap1 

synthesizes a poly(A) tail of 60–80 adenosines in a template-independent manner. After 3' end 

processing, the mRNA transcript is targeted to the nuclear pore for mRNA export to the cytoplasm. If 

any errors in the mRNA transcripts are detected, they are retained in the nucleus and are quickly 

degraded by quality control mechanisms. The processing of 3' end pre-mRNA is coordinated with 5' 

end capping, transcription, and mRNA stability/translation or export.  

The regulatory RNA sequences included in the 3' UTR can severely influence gene expression by 

modulating transcript stability, localization, transport or translation efficiency. By using massive RNA 

sequencing approaches, multiple studies have shown that the majority of S. cerevisiae genes express an 

unprecedented diversity of transcript isoforms which differ in their regulatory elements at their  

UTRs [46–51]. Many eukaryotic transcripts contain more than one poly(A) signal [52]. Thus, selection 

of single or alternative poly(A) sites depending on the physiological conditions is emerging as an 

important mechanism to modulate gene expression [46,47,49,51]. A growing number of proteins have 

been identified as regulators of the 3' end transcript processing (reviewed in [43]). In yeast, the Nab4 

single component of CFIB modulates in vivo the alternative 3' pre-mRNA processing of multiple 

mRNAs by specifically binding to AU-rich EEs [53,54]. Both the inactivation and overexpression of 

Nab4 alter the cleavage site selection of various transcripts, such as those encoding the Ctr2 vacuolar 

copper transporter, the Sua7 transcription initiation factor TFIIB, Cyc1 or the Gal7 galactose-1-phosphate 

uridyl transferase [53,55]. Importantly, nab4 mutants exhibit increased tolerance to copper, which 

requires the CTR2 gene, suggesting that alternative Nab4 processing events contribute to yeast cell 

physiology [53]. Nab4 has also been implicated in mRNA export and nonsense-mediated decay [56,57]. 

A structure-function analysis of Cth2 has demonstrated that the conserved amino-terminal CR1 

region of Cth2, encompassing the first 86 amino acids, is essential for AMD [58]. In addition to 

normal SDH4 mRNA levels, the Fe-deficient cells expressing Cth2∆1-86 mutant protein accumulate 3' 

readthrough SDH4 transcripts [58]. The production of extended transcripts requires Cth2 binding to the 
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target mRNA since they are not present in either the cells expressing Cth2∆1-86 proteins  

without functional TZFs or cth2∆ mutants. In wild-type cells, the SDH4 poly(A) sites mostly map  

to 147–175 nucleotides downstream of the SDH4 stop codon, which represent normal  

polyadenylation [41,58]. In contrast, the yeast cells expressing the Cth2∆1-86 truncated protein display 

two major poly(A) regions: one similar to that described above and a novel poly(A) distal region 

located approximately 330 nucleotides downstream of the normal cleavage site [58]. These additional 

poly(A) sites are consistent with the size estimated for the extended SDH4 transcripts and they overlap 

the CSN9 gene encoding a subunit of the Cop9 signalosome in the antisense direction. It is currently 

unknown whether SDH4 transcription through the CSN9 coding sequence has any effect on the 

expression of either SDH4 or CSN9 genes. An analysis of some of the mutants involved in 3' end 

processing revealed that the inactivation of the Nab4 factor, which functions in poly(A) cleavage site 

selection, induces the formation of SDH4 extended transcripts, strongly suggesting that Cth2∆1-86 

binding to SDH4 mRNA in response to Fe deficiency promotes alternative 3' end processing [58]. It is 

interesting to note that, similarly to Cth2, Nab4 is a shuttling protein that is retained in the transcript 

after 3' end processing and export to the cytoplasm [56,59]. A more in-depth analysis by quantitative 

RT-PCR using primer pairs located up- and downstream of the normal poly(A) site showed that 3' 

readthrough SDH4 transcripts are also present in wild-type cells, be it less abundantly than in the 

Cth2∆1-86 and nab4 mutants [58]. By using yeast cells co-expressing wild-type Cth2 and truncated 

Cth2∆1-86 proteins, Prouteau and coworkers demonstrated that the low abundance of extended SDH4 

transcripts in wild-type cells is due to its rapid degradation by a 5' to 3' mRNA decay mechanism [58], 

although other surveillance mechanisms in the nucleus can also contribute to its instability [60]. Other 

ARE-containing mRNAs regulated by Cth2, such as ACO1 and mitochondrial cytochrome-c 

peroxidase CCP1, also exhibit 3' readthrough enhanced by the deletion of Cth2 CR1 domain, 

suggesting that this may be a general strategy to post-transcriptionally down-regulate the expression of 

ARE-containing mRNAs when Fe availability is scarce [58]. These observations are consistent with a 

model in which Cth2 binding to the AREs that overlap with normal poly(A) sites would competitively 

inhibit the access of the 3' end processing factors to the canonical sites for cleavage and 

polyadenylation, leading to the synthesis of alternative extended poly(A) transcripts (Figure 1). The 

Cth2 amino-terminal CR1 region can facilitate the recruitment of a 5' to 3' mRNA decay machinery (to 

be deciphered), which would trigger the rapid turnover of these extended transcripts. Interestingly, 

both the wild-type and Cth2∆1-86 mutant cells, but not those cells lacking CTH2, accumulate high 

levels of SDH2 extended transcripts, a Cth2-target encoding an Fe-S protein subunit of the succinate 

dehydrogenase [58]. These results suggest that Cth2 promotes the synthesis of SDH2 extended 

transcripts, but neither promotes its degradation nor is independent of the Cth2 CR1 domain. Further 

studies are necessary to elucidate at which stage of the gene expression process and how Cth2 

communicates with the 3' end processing and decay machinery. 

2.4. Cth2 Stimulates 5' to 3' Cytoplasmic Degradation of ARE-Containing mRNAs 

Cytoplasmic degradation of eukaryotic mRNAs occurs by two general pathways, both of which 

initiate with the shortening of the 3' poly(A) tail by the cytoplasmic Ccr4/Pop2/Not deadenylase 

complex. Following deadenylation, mRNAs can be subjected to 3' to 5' degradation by the cytoplasmic 
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exosome (a conserved protein complex that exhibits 3' to 5' exonuclease activity, see below) or, more 

commonly in yeast, the 5' cap can be removed by the Dcp1/Dcp2 decapping complex, followed by the 

5' to 3' degradation of the transcript by cytoplasmic exonuclease Xrn1 (reviewed in [61–63]). Several 

protein factors, including the conserved DEAD box RNA helicase Dhh1, Pat1, Edc1-3 and the Lsm1-7 

complex, stimulate the decapping rate in vivo. Some of these decapping factors, such as Dhh1 and 

Pat1, can act as inhibitors of translation at different steps and interact with the decapping and decay 

machinery by connecting mRNA translation and turnover. 

The overexpression of either CTH1 or CTH2 under Fe-sufficient conditions can lead to growth 

impairment, whereas the deletion or mutagenesis of the TZF motif rescues cell growth in the 

CTH1/CTH2-overerexpressing cells [35,41]. These results suggest that Cth1/Cth2-mediated toxicity 

may be the result of the excessive degradation of essential transcripts. If this were the case, deletion of 

the genes required for Cth2 AMD would also rescue the growth defect of the CTH2-overexpressing 

cells. By following this genetic approach, the Dhh1 RNA helicase has been identified as a strong 

candidate to cooperate with Cth2 in the AMD mechanism that triggers adaptation to Fe  

deficiency [41]. Two other results have confirmed the Dhh1 function in Cth2 AMD: first, yeast  

two-hybrid assays have revealed an in vivo interaction between the carboxy-terminal domain of Dhh1 

helicase and the Cth2 RNA-binding protein; second, mRNA half-life experiments have established that 

Dhh1 contributes to SDH4 mRNA destabilization under low Fe conditions [41]. Dhh1 is an RNA 

helicase that performs ATPase activity, which both represses translation initiation by competing with 

the initiation factors and activates decay by recruiting the decapping and 5'–3' decay machinery [64–66]. 

The Dhh1 requirement for Cth2 AMD suggests that mRNA turnover proceeds from 5' to 3'. To test this 

hypothesis, an oligo(G) track, which folds in a strong secondary structure that blocks the 

exonucleolytic digestion of mRNAs, was inserted into the 3' UTR of the SDH4 transcript. The 

intermediate mRNA degradation species trapped were consistent with a model in which Cth2  

recruits Dhh1 to ARE-containing transcripts to preferentially promote cytoplasmic 5' to 3' mRNA 

turnover [41,58] (Figure 1). 

Dhh1 interacts with the Dcp1/Dcp2 decapping complex and the scaffold protein Edc3, and assists 

the transition of mRNAs from the active translation pool to specific cytosolic mRNP foci, known as 

processing bodies (or P-bodies). The mRNAs in P-bodies are translationally repressed and can either 

be stored (and eventually return to the translating pool) or undergo decapping and 5' to 3' degradation 

by exonuclease Xrn1 (reviewed in [67,68]). The current model for P-body assembly in S. cerevisiae 

proposes that different preformed complexes are recruited to an mRNA. The Dcp1/Dcp2/Dhh1/Edc3 

complex binds to the 5' cap and the Pat1/Lsm1-7/Xrn1 complex binds to the 3' end. Interactions 

between members of these complexes lead to the formation of a closed-loop mRNP structure that 

assembles in larger aggregates to reach visible cytoplasmic granules. Thus, in response to certain 

stresses (glucose starvation, osmotic stress, stationary phase) or strains with defective mRNA decay 

machinery (dcp1∆, dcp2∆, xrn1∆, lsm1∆), the rate of transcripts being degraded or translationally 

inhibited increases up to a threshold that triggers the accumulation of P-bodies [64,69–71]. This is not 

the case of Fe deficiency in which P-bodies are not observed [41]. Nonetheless, it has been established 

that the aggregation of the mRNA decay components in P-bodies is not necessary for their function, 

but is rather a consequence [72]. However, it is important to highlight that the Cth2 protein is trapped 

in cytoplasmic P-bodies in the dcp1∆, dcp2∆ and xrn1∆ yeast mutants, but not in an lsm1∆ strain [41]. 
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These results corroborate the involvement of the Dcp1 and Dcp2 decapping enzymes and the Xrn1 

exonuclease in Cth2 AMD, and suggest that the Cth2 protein cannot be released from decay machinery 

(P-bodies in this case) until the target mRNA has been degraded (Figure 1). 

Cth2 TZFs alone are not sufficient to destabilize SDH4 mRNA in response to Fe limitation, 

indicating that at least another Cth2 region is required for AMD [58]. As detailed above, the deletion 

of the first 86 conserved amino acids of the Cth2 protein (CR1 domain) partially impairs SDH4 

degradation, which strongly suggests that this region is important for Cth2 AMD [58]. Subcellular 

localization experiments with the Cth2∆1-86 protein have shown that the truncation of Cth2 amino 

terminus does not affect protein shuttling [42]. Although further experiments are required, these results 

indicate that the Cth2∆1-86 protein may bind ARE-containing mRNAs, but can display defects in the 

recruitment of the mRNA decay machinery to the Cth2-targeted transcript, leading to the accumulation 

of normal and extended SDH4 transcripts. It would be interesting to ascertain whether the cells 

expressing the Cth2∆1-86 protein exhibit a growth defect under low Fe conditions, as observed for 

those cells lacking CTH2 or expressing a TZF-mutant allele. 

2.5. Post-Transcriptional Regulation of CTH2 mRNA 

As described above, the 3' ends of the vast majority of S. cerevisiae mRNAs are generated by  

co-transcriptional cleavage and polyadenylation by the pre-mRNA processing machinery. However, 

there are a few examples of mRNAs (for instance, NAB2 and CTH2) that escape this canonical 3' end 

processing pathway [73–76]. When the Rna14, Rna15 or Pap1 components of the canonical 3' 

maturation machinery are defective, most mRNAs are degraded by surveillance mechanisms. Yet in 

such circumstances, the synthesis of CTH2 mRNA, which encodes the post-transcriptional regulator of 

Fe homeostasis, is not abolished, which suggests that the CTH2 transcript is generated by a different 3' end 

processing pathway [73]. Consistently with this hypothesis, the poly(A) sites of a mature CTH2 mRNA 

locate to a noncanonical (GU3–5)5 repeat sequence at around 240 nucleotides downstream of the CTH2 

coding sequence in a region lacking the essential elements required at poly(A) sites such as the PE. It is 

important to mention that the (GU3–5)5 element does not function as a transcriptional terminator [73]. 

The exosome is an evolutionary conserved complex of exoribonucleases that is located in both the 

nucleus and the cytoplasm, and it participates in the 3' end maturation and/or quality control of almost 

every RNA molecule in the cell (reviewed in [77–79]). The exosome core contains nine essential, yet 

catalytically inactive subunits. 3' to 5' exonuclease activity depends on the nuclear and cytoplasmic 

Dis3/Rrp44 exonuclease and on the exclusively nuclear Rrp6 exonuclease. The Nrd1-Nab3-Sen1 and 

the Trf4/5-Air1/2-Mtr4 (TRAMP) polyadenylation complexes assist the nuclear exosome core to 

define the targets that are to be processed and/or degraded. The Nrd1-Nab3-Sen1 complex interacts 

with the exosome to promote a proper 3' end formation of several noncoding transcripts. Nrd1 and 

Nab3 act as RNA-binding sensors, which, together with Sen1 helicase, detect specific terminator 

sequences in the nascent transcripts that are targeted to the TRAMP complex. TRAMP is the major 

nuclear exosome cofactor. It can assemble into two distinct subcomplexes: TRAMP4, which includes 

the Trf4, Air1/2 and Mtr4 proteins, and TRAMP5 with Trf5, Air1/2, and Mtr4. Shortly after the Air1 

and Air2 RNA-binding proteins recognize the RNA substrates, the Mtr4 RNA-dependent adenosine 

triphosphatase recruits the nuclear exosome, then Trf4 and Trf5 poly(A) polymerases add a short 
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oligo(A) tail, which facilitates degradation by the exosome. Various RNA analyses have shown that 

the yeast cells defective in subunits of the core exosome or the nuclear exonuclease Rrp6 accumulate 

CTH2 mRNAs, which extend 1.85 Kb beyond the CTH2 translation termination codon, whereas this is 

not observed in those cells with a defective cytoplasmic exosome [73,80]. These results strongly 

suggest that the nuclear exosome participates in CTH2 pre-mRNA processing. Moreover, the 

air1∆air2∆ and trf4∆ mutant cells, but not trf5∆, accumulate extended CTH2 mRNAs, indicating that 

the TRAMP4 complex may assist the exosome in the 3' trimming of CTH2 pre-mRNA. Finally, the 

yeast cells defective in the components of the Nrd1-Nab3-Sen1 nuclear exosome cofactor also 

accumulate 3' extended CTH2 mRNAs [73]. In line with this, the CTH2 pre-mRNA sequence displays 

multiple consensus-binding sites for Nrd1 and Nab3 within its 3' UTR. Furthermore, recent studies 

using an in vivo cross-linking approach to map binding sites for the components of the yeast  

non-poly(A) termination pathway have demonstrated that both Nrd1 and Nab3 bind CTH2 extended 

pre-mRNAs [81,82]. All these data indicate that CTH2 mRNA maturation does not follow the normal 

cleavage and polyadenylation process. Instead, they suggest that a 3' extended CTH2 transcript is 

recognized by the Nrd1-Nab3-Sen1 complex and is subsequently processed by the recruited TRAMP4 

polyadenylation complex and the nuclear exosome (Figure 2). The mechanism that allows the exosome 

to pause at the (GU3–5)5 site is currently unknown. Analyses of CTH2 poly(A) species have shown that 

Rna14 and Pap1 are required for the polyadenylation of the trimmed transcript [73]. It would be 

interesting to ascertain whether this novel mechanism of CTH2 pre-mRNA processing also functions 

when CTH2 transcription is dramatically induced by Fe deficiency. 

In addition to the unusual 3' end processing, CTH2 mRNA contains a consensus ARE located  

46 nucleotides downstream of its translation termination codon, which tightly modulates its  

abundance [73,83]. RNA expression analyses have shown that the deletion or mutagenesis of this ARE 

increases the CTH2 transcript levels, especially under Fe-deficient conditions [73,83]. Yeast  

three-hybrid assays have demonstrated that both the Cth1 and Cth2 proteins specifically bind in vivo to 

CTH2 transcript ARE [83]. Furthermore, the wild-type, but not the ARE-mutated 3'-UTR of CTH2 

mRNA, confers Cth2-dependent Fe regulation to GCN4, an Fe-independent regulated transcript [83]. 

These and other results demonstrate that the Cth2 protein specifically binds in vivo to an ARE located 

at the 3' UTR of its own transcript in a negative-feedback auto-regulatory loop that limits its 

expression. Degradation of the CTH2 transcript may proceed by the same cytosolic mechanism as 

other ARE-containing mRNAs, although the nuclear Rat1 exonuclease has also been implicated in this 

process [73] (Figure 2). The yeast cells lacking a functional CTH2 ARE (CTH2-AREmt strain) display 

two phenotypes, which highlight the physiological relevance of this feedback regulatory mechanism. 

First under low Fe conditions, the Cth2-AREmt cells accumulate higher Cth2 mRNA and protein 

levels than the wild-type cells, which leads to a major growth defect [83]. As mentioned above, 

previous studies have already reported that the CTH2 overexpression is toxic for yeast cells, although 

the underlying molecular mechanism is still unknown [35,41]. Second, many studies have shown that 

the simultaneous activation of both transcription and degradation permits more rapid, sensitive changes 

in gene expression when cells are confronted to environmental stresses (reviewed in [84]). This seems 

to be the case of CTH2 since CTH2-AREmt cells display a considerable delay in resuming growth 

during the shift from Fe-deficient to Fe-sufficient conditions as compared to wild-type cells. Numerous 

data indicate that this delay is due to a defect in Cth2 mRNA and protein down-regulation in the early 
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stages of Fe sufficiency, which limits the expression of Fe-dependent processes, including respiration, 

which are crucial for growth recovery [83]. Finally, CTH1 mRNA also contains functional AREs 

within its 3' UTR that modulate its abundance. Yeast three-hybrid and RNA analyses have shown that 

both the Cth1 and Cth2 proteins specifically bind in vivo to CTH1 3' UTR to promote its transcript 

degradation [83]. This post-transcriptional regulation determines the expression pattern displayed by 

Cth1 during the progress of Fe deficiency. During the first hours of Fe deprivation, the CTH1 expression 

is activated by transcription factors Aft1 and Aft2 and is limited by its own auto-degradation. When Fe 

limitation progresses and the Cth2 protein levels dramatically increase, CTH1 mRNA abundance is 

reduced by Cth2 cross-regulation. Consequently, Cth1 expression is limited to the initial Fe deficiency 

stages when the transcripts involved in respiration and other mitochondrial processes are first targeted 

for degradation. If Fe limitation persists, Cth2 takes over by down-regulating the mRNAs implicated in 

other nonessential Fe-dependent processes and vacuolar Fe storage, while controlling its own 

expression at the same time. 

Figure 2. Model representing the post-transcriptional mechanisms regulating the CTH2 

mRNA expression. CTH2 mRNA maturation starts with a 3' extended transcript that is 

recognized by the Nrd1-Nab3 complex, and is subsequently processed by the nuclear 

exosome and the TRAMP4 polyadenylation complex. Eventually, the exosome pauses at a 

(GU3–5)5 site and Pap1 polyadenylates the trimmed CTH2 transcript. Moreover, CTH2 mRNA 

contains an ARE in its 3' UTR which allows the binding of the Cth2 protein and  

auto-degradation. The auto-destabilization mechanism can be similar to other ARE-containing 

mRNAs and depends on the cytoplasmic 5' to 3' mRNA degradation machinery. Although 

not represented, Rat1 has also been implicated in the CTH2 transcript turnover. 
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2.6. Multilayered Regulation of Gene Expression by Mammalian TZF-Containing Proteins: Their 

Contribution to Fe Homeostasis 

In addition to budding yeast, many eukaryotes ranging from invertebrates to plants and mammals 

possess similar TZF-containing proteins to Cth1 and Cth2. Mammals express at least three different 

TZF-family members, where tristetraprolin, also known as TTP, is the most extensively studied. The 

work done by many groups over the past two decades has established that TTP binds to the AREs 

present in the 3' UTR of multiple mRNAs, including pro-inflammatory cytokine tumor necrosis factor 

α (TNFα), granulocyte-macrophage colony-stimulating factor (GM-CSF), cyclooxygenase 2 (COX2), 

several interleukins (IL-2, IL-3, IL-6), and proto-oncogenes (c-Fos, c-Myc), and that it promotes their 

turnover (reviewed in [85–87]). The TTP-mediated AMD mechanism involves the tethering of several 

components of the cytosolic mRNA decay machinery, including deadenylases, the decapping enzyme 

and the cytoplasmic exosome complex, onto the target transcript. TTP interacts first in an  

RNA-independent manner with the poly(A) binding protein PABP, which is responsible for protecting 

the poly(A) tail from degradation. This probably induces the displacement of PABP from the poly(A) 

tail and initiates the recruitment of the cytoplasmic Ccr4/Pop2/Not deadenylase complex to the 

transcript. Although no data are currently available, it is likely that mRNA deadenylation is also 

required for the 5' to 3' degradation of the Cth2 mRNA targets in yeast. TTP-mediated decay can occur 

through both the 5' to 3' and the 3' to 5' degradation pathways. TTP interacts and recruits decapping 

enzymes Dcp1/Dcp2 and cytoplasmic 5' to 3' exoribonuclease Xrn1 to the target transcripts by 

promoting their decapping and 5' mRNA degradation. TTP can also interact with different components 

of the exosome by recruiting it to its target mRNAs to mediate the 3' to 5' turnover in the cytoplasm. 

The mechanism that uses TTP to target an mRNA toward one pathway or another is not known but, as 

with yeast Cth2, it seems that TTP predominantly uses the 5' to 3' decay pathway. Given its interaction 

with the 5' to 3' decay components (including Dcp1, Dcp2 and Xrn1), TTP can direct the localization 

of ARE-containing mRNA targets to P-bodies by acting as a nucleator of P-body formation by 

recruiting other RNPs. Additionally, TTP can localize to stress granules (SGs), which are cytoplasmic 

granules that form in response to different cellular stresses and which contain untranslated mRNAs 

stalled in the pre-initiation complex of ribosome assembly. TTP can shuttle between P-bodies and SGs, 

in accordance with its interaction with transportin, a member of the importin β-family, and 14-3-3 

proteins, which exclude the TTP from the SGs preventing AMD. Therefore, TTP would determine the 

fate of ARE transcripts by escorting them to P-bodies to undergo decay or to stress granules in order to 

arrest their translation. 

The implication of TTP in translational regulation is further supported by recent data [88–90]. 

Luciferase-based reporter and polyribosome fractionation experiments have shown that TTP 

specifically inhibits the translation of ARE-containing transcripts [90]. Moreover, TTP knockout and 

overexpression studies in macrophages have indicated that TTP functions as a repressor of TNFα 

mRNA translation [90]. RNA helicase RCK/p54/Dhh1, a general translational repressor (see above), 

directly interacts with TTP to regulate ARE-mRNA translation [90]. As described above, the yeast 

Dhh1 interaction with Cth2 is essential for Cth2-mediated AMD. However, a possible role for Cth2 in 

translational regulation remains to be addressed. The translational fate of TNFα mRNA depends on the 

presence of the RNA-binding protein HuR, which competes with TTP for binding to the ARE in a 
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process regulated by the p38 MAPK (mitogen-activated protein kinase) pathway [88]. Its downstream 

target, the MK2 kinase, phosphorylates both TTP and HuR by facilitating the replacement of TTP with 

HuR at the ARE. Whereas TTP phosphorylation diminishes its binding to the ARE, HuR 

phosphorylation facilitates its translocation to the cytoplasm, where it promotes the initiation of 

translation by enhancing the association of TNFα with the endoplasmic reticulum polysome pool [88]. 

Many aspects of the TTP translational regulation mechanism remain to be elucidated, such as when and 

how TTP interacts with the translation machinery. It has been speculated that the interaction between TTP 

and PABP might interfere with the PABP-eIF4G-eIF4E-mediated mRNA circularization, which is required 

for translation, whereas the phosphorylation of PABP, also an MK2 substrate, may weaken the PABP-TTP 

interaction and allow its replacement with HuR [88]. Recent results have shown that the recruitment of 

Cul4B, a scaffolding component of the Cullin ring finger ligase family of ubiquitin E3 ligases, to the  

TTP-containing mRNP promotes translation [89], indicating that the TTP function as a translational 

regulator is more complex than initially anticipated, and that further characterization is necessary. 

Similarly to yeast Cth2, mammalian TTP shuttles between the nucleus and the cytoplasm [91,92]. 

An NLS located between the two zinc fingers facilitates nuclear import, whereas amino-terminal NES 

triggers its Crm1-dependent export to the cytoplasm. The relative subcellular distribution of TTP 

differs according to cell type and extracellular signals. A recent study has revealed a novel nuclear 

function for mammalian Tis11b, a TZF-containing protein that mainly localizes to the nuclei of 

endothelial cells [93]. As previously shown for yeast Cth2, Tis11b regulates gene expression by 

interfering with normal 3' end processing. Tis11b preferentially binds to an ARE located at the poly(A) 

site of an angiogenic mRNA, called DII4, by interfering with normal mRNA cleavage and transcript 

efficiency, and by producing 3' readthrough transcripts [93]. Although the mechanism by which 

Tis11b down-regulates the DII4 expression has not yet been deciphered, the extended transcripts 

resulting from defective polyadenylation are probably degraded by the nuclear surveillance pathway 

through the 3' exonucleolytic activity of the nuclear exosome. 

Multiple signaling pathways and environmental cues regulate the TTP expression and function. As 

recently described for Cth2, mammalian TTP can also bind AREs within its own 3' UTR, thus adding 

an auto-regulatory negative feedback loop that could eventually regulate both its decay and its 

translation [88,94,95]. Interestingly, the mRNAs encoding the two other TZF-proteins expressed in 

humans also contain AREs, which hints at the possibility of a cross-regulation between different TZF 

members, as previously shown for yeast Cth1 and Cth2 [83]. Among several pathways, p38 MAPK is 

critical for TTP regulation. MK2 inhibits the TTP function in AMD by phosphorylating two specific 

serine residues, which serve as docking sites for multifunctional adaptor 14-3-3 proteins. Upon the  

14-3-3 binding to the phosphorylated serines, the stability and cytoplasmic localization of the TTP 

protein increases and blocks its dephosphorylation by the PP2A protein phosphatase (reviewed  

in [13]). More recent results have shown that TTP phosphorylation also prevents the recruitment of 

mRNA deadenylases to the target transcript in a 14-3-3-independent manner [96,97]. However, our 

current understanding of the role of TTP phosphorylation in this function is incomplete because 

phosphorylated TTP still functions in AMD in some physiological circumstances [98]. Interestingly, 

the yeast Cth2 protein exhibits doublet bands in Western blot analyses due to phosphorylation [42]. 

The specific Cth2 phosphorylation sites are probably located in the conserved CR1 region as the 

Cth2∆1-86 proteins have lost the shifted band. Furthermore, Cth2 phosphorylation seems sensitive to 
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Cth2 subcellular localization, and is hypophosphorylated when forced to enter the nucleus  

and hyperphosphorylated once inside the cytoplasm. Elucidating the role played by phosphorylation  

in Cth2 can contribute to our understanding of the post-translational mechanisms regulating  

TZF-containing proteins. 

Importantly, recent experiments in different mammalian cell lines and TTP knockout mice indicate 

that TTP plays an active role in the maintenance of mammalian cellular Fe homeostasis [99]. First, the 

expression of TTP and of other TZF-containing proteins in mouse embryonic fibroblasts (MEFs) is 

strongly induced by the addition of different Fe chelators. Second, TTP interacts in vivo with the 3' 

UTR of TfR1 mRNA by promoting its destabilization. Thus, the TfR1 protein levels in TTP knockout 

mice are higher than in wild-type animals, leading to Fe accumulation. Furthermore, TTP reduces the 

expression of other Fe proteins that contain AREs in their 3' UTR transcripts, such as ABCE1 (an Fe-S 

cluster protein involved in ribosome biogenesis) and Lias (lipoic acid synthase), whose budding yeast 

homologs are regulated by Cth2. Third, as compared to wild-type cells, TTP knockout MEF cells 

display severely reduced cell viability when Fe availability diminishes, which underlines the biological 

relevance of this regulation. Fourth and finally, the expression of a wild-type, but not a TZF-mutant 

TTP protein, in cth1∆cth2∆ yeast cells promotes the down-regulation of SDH4 and ACO1 mRNAs, 

suggesting a functional conservation between budding yeast and mammals. Taken together, these 

observations are consistent with a model in which TTP functions in optimizing cellular Fe utilization 

when its availability diminishes. Importantly, the cellular energy sensor mTOR, which is active under 

energetically favorable conditions and becomes inhibited under stressful conditions, including nutrient 

starvation and DNA damage, also modulates cellular Fe homeostasis by directly inhibiting the TTP 

function [99]. Interestingly, treatment of yeast cells with rapamycin, a specific TOR inhibitor, induces 

the expression of CTH1 and CTH2 mRNAs and opens up the possibility of the nutritional status of the 

cell also influencing Fe utilization in S. cerevisiae. 

3. Post-Transcriptional Regulation in Response to Iron Excess 

In addition to the activation of multiple antioxidant defense systems to combat oxidative stress, 

yeast cells have developed sophisticated strategies that detoxify cytosolic Fe and limit Fe acquisition 

when concentrations are too high. In response to Fe excess, transcription factors Aft1 and Aft2 are 

released from the FeREs and are translocated to the cytoplasm, thus being unable to activate the 

expression of the Fe acquisition and mobilization systems [19–21]. When the Fe concentration rises, 

Fe uptake is also inhibited by ubiquitination, endocytosis and degradation of Ftr1 protein, an essential 

component of the high affinity Fe uptake complex in the plasma membrane [100]. Moreover, the Yap5 

transcription factor activates the expression of the Ccc1 vacuolar importer to allow Fe storage [27,28]. 

A post-transcriptional regulatory mechanism mediated by the Rnt1 endoribonuclease also protects 

budding yeast cells from Fe toxicity by limiting the expression of a subset of genes from the Fe 

acquisition system [101]. 

Rnt1 is a class I RNase III nuclear endoribonuclease constituted by an RNase III catalytic domain 

and a double-stranded RNA-binding domain (dsRBD). The conformational flexibility of Rnt1 dsRBD 

allows the specific recognition of the double-stranded RNA hairpin tetraloop structures capped by a 

conserved (A/u)GNN motif, whereas its RNase III domain triggers mRNA cleavage to generate  
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5'-monophosphate and 3' hydroxyl termini with a two-base 3' overhang [102–107]. Rnt1 cleavage 

products are usually further processed in the nucleus by the Rat1 5' exonuclease and the 3' exosome. 

However, a recent study has indicated that nuclear degradation is not the default fate of Rnt1-cleaved 

RNAs [108]. By inserting an Rnt1 target site into a reporter transcript, these authors have observed that 

the cleavage products are exported and degraded in the cytoplasm by the Xrn1 5' exoribonuclease and 

the cytosolic exosome, suggesting that specific elements within the transcript contribute to determine 

the final destination of the cleavage products. Rnt1 functions in a large number of mRNA processing 

and degradation pathways, including maturation of rRNA and a variety of small RNAs, such as 

snRNAs and snoRNAs, and mRNA quality control through cleavage within introns of unspliced  

pre-mRNAs. Interestingly, recent reports have demonstrated that Rnt1 is also involved in 

polyadenylation-independent transcription termination by cleaving many transcripts downstream of the 

canonical poly(A) site, thus preventing the transcription read-through of inefficient 3' processing  

ends [109,110]. Rnt1 also post-transcriptionally regulates the expression of genes in various cellular 

pathways by directly cleaving the stem-loop structure sites located in the coding sequence of target 

mRNAs. For instance, Rnt1 binds and promotes the degradation of the mRNAs encoding the  

glucose-dependent repressor Mig2, aci-reductone dioxygenase Adi1, involved in the methionine 

salvage pathway, multiple subunits of telomerase, and proteins associated with the morphogenesis 

checkpoint and the cell wall integrity pathway [111–114]. Consistently with this negative regulation, 

rnt1∆ cells exhibit a delay in the G1 phase of the cell cycle, sensitivity to stresses related to the cell 

wall integrity pathway, and elongated telomeric repeat tracks [113–115]. 

Genome-wide expression analyses conducted under Fe-replete conditions have revealed that the 

expression of a subset of genes from the Fe regulon is up-regulated in budding cells lacking Rnt1 

endoribonuclease [101]. These mRNAs encode the proteins implicated in Fe siderophore uptake, such 

as cell wall mannoproteins Fit1-3 and siderophore transporters Arn1-4, the metalloreductases Fre2 and 

Fre3, the proteins that participate in the Fe-S cluster assembly pathway, such as Isu1 and Isu2, and the 

RNA-binding protein Cth2. The genes encoding the Fet3 and Ftr1 high-affinity reductive uptake 

system and the Fre1 metalloreductase are not up-regulated in the Fe-replete rnt1∆ cells. Bioinformatics 

analyses have predicted that stem-loop structures capped with (A/u)GNN-type tetraloops can 

potentially assemble within the coding sequence of various Fe uptake genes whose expression is 

altered in rnt1∆ cells. In line with this prediction, in vitro experiments done with purified recombinant 

Rnt1 protein have demonstrated that the stem-loop structures within the FIT2 and ARN2 genes are 

directly recognized and cleaved by wild-type Rnt1, but not by the catalytically inactive Rnt1-E320K 

mutant form [101]. Furthermore, deletion of the Rnt1 canonical recognition sequence in FIT1 mRNA 

slightly increases its abundance in Fe-sufficient cells [101]. Taken together, these results strongly 

suggest that the Rnt1 regulation of this subset of genes from the Fe starvation response is a direct 

effect rather than a secondary Fe-sensing effect. In the absence of Rnt1 endoribonuclease, multiple Fe 

uptake genes, such as FIT1, FIT2, ARN1, ARN2, FRE2 and FRE3, accumulate extended transcript 

species. Other studies with various mRNA degradation mutants have shown that the nuclear exosome, 

and nuclear Rat1 and cytosolic Xrn1 5' to 3' exoribonucleases, cooperate to rapidly degrade Rnt1 

cleavage products [101] (Figure 3). Importantly, the yeast cells lacking RNT1 are hypersensitive to Fe 

excess since they are unable to grow in media with high concentrations of this metal [101]. Therefore, 

Rnt1 endoribonuclease plays a protective role when extracellular Fe exceeds cellular needs by 
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promoting the degradation of members of the Fe acquisition machinery. Furthermore, accumulation of 

CTH2 mRNA in rnt1∆ cells under Fe-sufficient conditions can also be detrimental because it could 

inhibit the recovery of crucial Fe-dependent processes, including respiration. As detailed above, 

budding yeast cells possess auto-regulatory mechanisms to rapidly down-regulate the CTH2 mRNA 

levels when Fe availability increases in order to allow the Fe-requiring pathways to resume [83]. The 

Rnt1-mediated degradation of CTH2 mRNA under Fe-sufficient conditions can also contribute to the 

recovery of Fe-dependent metabolism. 

Figure 3. Upon Fe excess, S. cerevisiae RNase III endonuclease Rnt1 limits the expression 

of a subset of genes from the Fe uptake system to prevent Fe toxicity. Rnt1 specifically 

binds to the stem-loop structures present in some mRNAs from the Fe regulon. The nuclear 

exosome, and the Rat1 and Xrn1 5' to 3' exonucleases, rapidly degrade Rnt1 cleavage 

products. Despite not being demonstrated, the cytoplasmic exosome has also been included 

in this model. 

 

Interestingly, Rnt1 is also important for the activation of the Aft1/2-dependent Fe regulon that 

occurs when Fe availability decreases. The cells lacking RNT1 or expressing the catalytically inactive 

Rnt1-E320K mutant exhibit a considerable delay in the activation of many members of the Fe regulon, 

including FET3, FTR1, FRE1-3, FIT1-3 and ARN2-3 [101]. The nuclear localization of Rnt1 is 

required for this function since an Rnt1-truncated version lacking its NLS fails to activate the Fe 

starvation response [101]. Although the underlying mechanism is currently unknown, different 

hypotheses have been proposed to explain the defect that rnt1∆ cells display in activating the Fe 

regulon. One possible explanation is that the increase in the Fe uptake system observed in rnt1∆ cells 

leads to higher endogenous Fe levels. Thus, when Fe availability diminishes, rnt1∆ mutants could take 

longer than wild-type cells to deplete intracellular Fe stores and, therefore, the Fe starvation response 

would be delayed. Another explanation could be that the up-regulation of ISU1 and ISU2, which 

encode proteins involved in the Fe-S cluster synthesis pathway, observed in rnt1∆ mutants increases 

the Fe-S formation rate to then inhibit Aft1 translocation to the nucleus. The drop in FET3 
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transcription observed in the rnt1∆ cells expressing a FET3-LacZ construct is consistent with both 

hypotheses. However, the determination of the endogenous Fe levels could help distinguish them. It 

would be interesting to ascertain whether the defect in the Fe regulon activation observed in rnt1∆ 

cells leads to increased sensitivity to Fe deficiency. 

4. Conclusions  

Post-transcriptional regulation has emerged as an important mechanism for the rapid and flexible 

control of gene expression, especially in response to environmental stresses. The relevance of  

post-transcriptional mechanisms in Fe homeostasis control is evidenced by the large number of 

regulatory systems conserved in different organisms under both low and high Fe conditions. The Cth2 

protein performs an essential function in budding yeast metabolic adaptation to Fe deficiency by 

targeting many ARE-containing transcripts for degradation. The mechanisms that Cth2 uses to 

promote mRNA turnover are diverse and include alternative 3' end processing and cytoplasmic AMD. 

Most studies have focused on the degradation of a few Cth2 targets, mainly SDH4 mRNA. However, 

there is some evidence for other mechanisms of the Cth2-mediated mRNA regulation function in  

S. cerevisiae [41,58,73]. Another important feature of Cth2-mediated regulation is the tight control of 

its expression levels. Budding yeast cells simultaneously regulate both the transcription and 

degradation of the CTH2 transcript by modulating the function of the Aft1/Aft2 and Cth1/Cth2 

regulatory factors, respectively. The physiological significance of this fine-tuned regulation is 

highlighted by the growth defects displayed by the cells lacking either CTH2 transcription activation or 

mRNA degradation. As discussed in this review, many questions about the Cth2 mechanism of action 

still remain to be answered. The further characterization of the Cth2 function in budding yeast cells will 

contribute to our understanding of the mechanisms that eukaryotic TZF-containing proteins utilize to 

post-translationally regulate gene expression. 
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