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Abstract: We employ Monte Carlo simulations in a specialized isothermal-isobaric and
in the grand canonical ensemble to study structure formation in chiral liquid crystals as a
function of molecular chirality. Our model potential consists of a simple Lennard-Jones
potential, where the attractive contribution has been modified to represent the orientation
dependence of the interaction between a pair of chiral liquid-crystal molecules. The liquid
crystal is confined between a pair of planar and atomically smooth substrates onto which
molecules are anchored in a hybrid fashion. Hybrid anchoring allows for the formation
of helical structures in the direction perpendicular to the substrate plane without exposing
the helix to spurious strains. At low chirality, we observe a cholesteric phase, which is
transformed into a blue phase at higher chirality. More specifically, by studying the unit cell
and the spatial arrangement of disclination lines, this blue phase can be established as blue
phase II. If the distance between the confining substrates and molecular chirality are chosen
properly, we see a third structure, which may be thought of as a hybrid, exhibiting mixed
features of a cholesteric and a blue phase.
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1. Introduction

Chirality is a symmetry property that is omnipresent, not only in many fields of science [1], but also
in everyday life. A simple and intuitive example of a chiral object that everybody is familiar with is
the human hand. Here, chirality gives rise to the fact that it is impossible to put a right-handed glove
over the left hand and vice versa. The first more general definition of the term “chirality” was given by
Lord Kelvin [2] who stated: “I call any geometrical figure or group of points, chiral, and say that it has
chirality if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself.”

There is a vast number of examples from all scientific disciplines that comport with Lord Kelvin’s
definition of chirality. To name just a few, in mathematics, the well-known Möbius strip (see, for
example, Figure 5.6 in [3]) is an example of a two-dimensional chiral structure, because no combined
rotation and reflection operations exist that would transform one conformation of the Möbius strip
into its mirror image. In physics, one encounters chirality in the propagation of circularly polarized
light, where the temporal evolution and direction of the electric-field vector propagates along a helix
in space. In chemistry, many molecules exhibit chirality. Here, pairs of molecules with chemically
identical composition, but molecular structure of different handedness (i.e., enantiomers), often have
quite disparate physico-chemical properties, such as the direction into which they rotate polarized
light. However, regardless of the specific example and the scientific discipline from which it was
taken, chirality, in general, can be traced back to the lack of roto-inversion symmetry of the specific
phenomenon or object under consideration. In other words, for a molecule to be chiral, there must not
exist any plane that divides the molecule into a pair of mirror images.

A particularly interesting class of materials often exhibiting chirality are liquid crystals. Here, it is
the combined effect of molecular chirality and the formation of orientationally ordered, but positionally
disordered, nematic or smectic mesophases, which gives rise to new structures, such as cholesteric or
blue phases, to which the present article is devoted. Both cholesteric and blue phases are characterized
by molecular helices in one or more spatial directions. The pitch length characterizing these helical
structures ranges typically from a few hundred nanometers to a few microns in length, such that chiral
liquid crystals exhibit interesting optical properties over a wide range of wavelengths from the ultraviolet
all the way to the visible part of the electromagnetic spectrum [4,5]. Because of the structural complexity
of chiral liquid crystals [6], it is not surprising that these materials have already received quite a bit of
attention, both from the experimental and from the theoretical point of view for quite some time [7].

In particular, blue phases exhibit specular reflections of visible light that can be controlled by external
fields, such that these phases may be thought of as tunable photonic materials [8] with a wide range
of applications. However, their thermal stability is quite limited (usually restricted to a very narrow
temperature range of only a few K [5]), such that for applications of practical value, the broadening of
the regime of thermal stability of blue phases is an indispensable prerequisite [9]. Factors that enhance
the thermal stability of blue phases have been investigated by Zheng et al. [10], He et al. [11] and
Yoshizawa et al. [12].

In the context of novel nanomaterials, the fabrication of three-dimensional nanostructures has been
achieved recently by polymer templating blue phase I [13]. Hydrogen-bonded liquid crystals act as an
optical shutter if exposed to DC voltage and may, thus, be used to modulate light effectively [14,15].
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In nanostructured chiral liquid crystals, the Kerr effect (i.e., the variation of optical properties with an
applied external electric field) may be employed to fabricate materials with interesting electro-optical
properties [16]. The optical properties of cholesteric liquid crystals makes them attractive candidates
for optical switches. For instance, at zero field, two stable states exist, which are referred to as
“planar texture” and “focal conic structure” [17]. In the former state, these materials reflect circularly
polarized light, whereas in the latter state, they scatter light in the forward direction. This makes bi-stable
cholesteric phases also very interesting in display technology, because of their low power consumption
and low cost of operation [18].

On the theory side, quite a bit of work has been invested to understand defects in liquid crystals
and their topology [3]. The interest in defects is currently stimulated by the fact that they give rise
to long-range elastic forces in colloidal particle systems imposed by liquid-crystal phases [19]. These
forces may then be used to self-assemble colloids to form much larger supramolecular and highly ordered
structures [20]. In particular, in chiral liquid crystal phases, defects give rise to disclination lines of quite
a complex geometry [20].

The interaction potential of a nanocolloid with a −1
2

disclination line has been shown to provide
a generic trapping mechanism for particles immersed in a blue phase [21]. Here, the calculation of
disclination lines is based upon a minimization of a properly formulated variant of Landau-de Gennes’
theory. A very useful article reviewing the rich structural features of chiral liquid-crystalline phases
was published a while ago by Kamien and Selinger [22]. Orientational frustration and the presence of
disclination lines in chiral liquid crystals are intimately intertwined, as was noted quite some time ago
by Sethna [23].

Structural richness in ordered chiral liquid-crystalline phases is also highlighted by Fukuda
and Žumer, who observe that highly chiral nematic liquid crystal phases are capable of forming
two-dimensional, so-called Skyrmion lattices, as a thermodynamically stable morphology [24]. Here,
particle-like topological entities (i.e., Skyrmions) are forming in a continuous field that are also important
in understanding the quantum Hall effect in two-dimensional electron gases, chiral ferromagnets or
Bose-Einstein condensates. In an earlier study, the latter authors also observed novel disclination-line
topologies in blue phase I under severe confinement conditions [25].

Almost all these previous theoretical studies have been based upon mesoscopic approaches, such as
the Frank-Oseen elastic equations [26], whereas only a few studies to date employ molecular simulations,
such as molecular dynamics or Monte Carlo (MC). This is because the helical structures forming in
prototypical chiral liquid crystals are large on a molecular scale, meaning that very large systems have to
be used in these simulations. This was out of reach, until fairly recently, because of a lack of sufficient
computational power.

Quite a bit of simulation work had been carried out in the 1990s by Memmer and coworkers. They
studied the temperature dependence of the pitch that characterizes cholesteric phases [27,28] based
upon a Gay-Berne-type model fluid that they properly modified to account for the pairwise additive
interactions between chiral molecules [27]. However, because of the much reduced power of computers
at the time of writing those earlier papers, only very small systems were investigated, containing as few
as 256 molecules. Because of this smallness only very limited conclusions about the molecular nature
of helical structures could be drawn. In fact, Memmer reports a substantial system-size dependence
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in a later study [29]. As we will demonstrate below, much larger systems containing at least some
10, 000 particles are required if one wishes to gain deeper insight into the rich structural features of
chiral liquid crystals from a molecular perspective.

The remainder of our paper is organized as follows. In Section 2, we introduce our model system.
Section 3 is given as a summary of some key theoretical concepts. In Section 4, we present our results
which we summarize in concluding Section 5.

2. The Model

Our model consists of N liquid-crystal molecules (i.e., mesogens) under nanoconfinement
conditions, such that we may decompose the total configurational energy into a fluid-fluid (ff) and into a
fluid-substrate (fs) contribution, according to:

Φ(R, Û) = Φff(R, Û ) + Φfs(Z, Û) (1)

We introduce shorthand notation, Z ≡ {z1, z2, . . . , zN}, for the set of z-coordinates of the
center-of-mass positions, R ≡ {r1, r2, . . . , rN}, of the N mesogens and for their orientations
represented by the set of unit vectors, Û ≡ {û1, û2, . . . , ûN}, where the caret is used throughout this
paper to indicate a unit vector. More specifically:

Φff(R, Û ) =
1

2

N∑
i=1

N∑
j ̸=i

φff (rij, ûi, ûj) (2)

where rij ≡ ri−rj is the distance vector between the centers of particles i and j, assuming the pairwise
additivity of their interactions. In Equation (2):

φff(rij, ûi, ûj) = 4εff

[(
σ

rij

)12

−
(

σ

rij

)6

{1 + Ψ (r̂ij, ûi, ûj)}
]

(3)

where σ denotes the “diameter” of a spherical (Lennard-Jones) reference particle, εff is the potential well
depth, rij = |rij| and ûi and ûj are the orientations of the interacting molecules, i and j. The orientation
dependence of the intermolecular interactions is accounted for by the function:

Ψ = 5ε1P2(ûi · ûj) + 5ε2 [P2(r̂ij · ûi) + P2(r̂ij · ûj)] + ε3 [(ûi × ûj) · r̂ij] (ûi · ûj) (4)

where P2 (x) = 1
2
(3x2 − 1) = P2 (−x) is the second Legendre polynomial and ε1 = 0.04 = −ε2/2

are anisotropy parameters, which we fix to these values throughout this work. The pseudoscalar on
the far right side of Equation (4) introduces the chirality of the intermolecular interactions, where the
absolute value of the chirality parameter, ε3, determines the amount of chirality, while its sign defines
the handedness of the chiral molecules. The most preferred configuration for two achiral molecules
(i.e., ε3 = 0) is a side-side configuration (ûi · r̂ij = ûj · r̂ij = 0) where the orientations are parallel
or antiparallel to each other (|ûi · ûj| = 1). For nonvanishing values of ε3, the preferred conformation
of a pair of mesogens is still the side-by-side one, but now, with slightly tilted orientations, where the
preferred tilt angle depends on the magnitude of ε3. Clearly, Ψ remains unaltered if one changes the sign
of ûi and/or ûj , thus resembling the head-tail symmetry characteristic of many mesogens [30].
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The achiral version of the interaction potential was suggested originally by Hess and Su some
time ago [31]. The model has been demonstrated subsequently [19,32–38] to be capable of
reproducing properties of liquid crystals in a variety of contexts, ranging from the formation of nematic
phases [32–35] to the development of defect topologies arising near the surface of spherical colloidal
particles immersed in a nematic liquid-crystal host phase [19]. The introduction of chirality through the
pseudoscalar on the far right side of Equation (4) follows in spirit a suggestion by Memmer et al. [27]
for the classical Gay-Berne model [39].

Chiral, as well as achiral liquid crystals are experimentally usually investigated under confinement,
often between smooth parallel walls that may prefer a specific orientational alignment of the mesogens
with respect to the surface plane. They can serve to manipulate the preferred global orientation, due to
specific anchoring at the solid surfaces, which then allows one to fix the orientation of the global director
in the nematic phase. “Anchoring” refers to an energetic discrimination of preferred (or undesired)
molecular orientations, as we will explain in some more detail shortly. In the present study, we confine
the chiral liquid crystal to a nanoscopic slit-pore with atomically smooth substrate surfaces to make
contact with the geometry of a typical experimental setup. The fluid-substrate contribution to the total
configurational potential energy in Equation (1) may then be expressed as:

Φfs(Z, Û) =
2∑

k=1

N∑
i=1

φfs(zi, ûi) (5)

where the fluid-substrate interaction potential is given by the Yukawa-like expression:

φ
(k)
fs = εfs

[
a1

(
σ

∆zi

)10

− a2
exp (−η |∆zi|)

|∆zi|
g(k)(ûi)

]
(6)

Here, εfs determines the depth of the attractive well and ∆zi = zi ± sz/2, where the sign is chosen
depending on whether the mesogen interacts with the lower (k = 1) or upper (k = 2) substrate located
at −sz/2 and sz/2, respectively. The dimensionless parameters:

a1 =
1 + ησ

9− ησ
(7a)

a2 =
10 exp (ησ)

9− ησ
(7b)

are unique functions of the screening length, η−1. They are introduced to guarantee that the location of
the minimum of the fluid-substrate potential, zmin, defined by:

dφfs

dzi

∣∣∣∣
zmin

= 0 (8)

remains fixed and that the depth of the attractive well:

φfs (zmin) = −εfs (9)

is preserved as one varies the range of fluid-substrate attraction. However, in this work, we employ a fixed
short-range, but sufficiently strong fluid-substrate attraction characterized by ησ = 1.0 and εfs/εff = 3.0.
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Fluid-substrate attractions are “switched on/off” by the anchoring functions, 0 ≤ g(k)(ûi) ≤ 1,
depending on the orientation of a mesogen with respect to the substrate plane. Hence, the anchoring
functions are introduced to discriminate energetically between undesirable and desirable orientations.
In the present study, we employ:

g(1) = (ûi · êx)
2 (10a)

g(2) = (ûi · êx)
2 + (ûi · êy)

2 (10b)

where the unit vector, êα, is pointing along the x- or y-axis of the Cartesian coordinate system. Hence,
mesogens located in the immediate vicinity of the lower substrate will align preferentially with the
x-axis, whereas mesogens near the upper substrate will align their longer axes with the x–y plane
without preference for any orientation on the unit circle. We termed the former anchoring scenario
“directional” and refer to the latter as “planar” [35]. According to Jerôme, directional anchoring is
referred to as “monostable”, whereas planar anchoring constitutes a “degenerate” anchoring scenario,
because an infinite number of orientations exist on the unit circle that are energetically favorable and
equivalent [40]. Employing hybrid [g(1) ̸= g(2), see Equation (10)] rather than homogeneous anchoring
(i.e., g(1) = g(2)) is advantageous for reasons to be explained in Section 4.1.

3. Theoretical Background

In this work, we consider a liquid crystal composed of N mesogens confined to a nanoscopic slit-pore
of volume V = Asz , where sz is the distance between the pore walls located along the z-axis of a
space-fixed Cartesian coordinate system, A = sxsy is the wall area and sα (α = x, y) is the linear extent
of the pore wall in the α-direction. The liquid crystal is maintained at constant sz , temperature, T , and
fixed transverse pressure, P∥ ≡ 1

2
(Pxx + Pyy), where Pαα (α = x, y) is a diagonal component of the

pressure tensor, P. Under these conditions, thermodynamic equilibrium states correspond to minima of
a generalized Gibbs potential, G, whose exact differential is given by:

dG = −SdT + µdN + AszdP∥ − APzzdsz (11)

where S denotes entropy and µ chemical potential, such that
{
N, T, P∥, sz

}
is the set of natural variables

of G.
At the molecular level, G may be cast as [41]:

G = −kBT lnχ (12)

where χ = χ
(
N, T, P∥, sz

)
is the partition function and kB is Boltzmann’s constant. As discussed

elsewhere in detail (see pp. 33–70 in [42]):

χ =
∑
sx,sy

exp
(
−βP∥Asz

)
Q (13)

where β ≡ 1/kBT , and Q is the canonical-ensemble partition function in the classical limit. As discussed
in detail by Gruhn and Schoen [43] (see also [44]):

Q =

(
I

mΛ5

)N

Z (14)
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where I is the moment of inertia, m is the mass of a mesogen, Λ = (h2/2πmkBT )
1/2 is the thermal de

Broglie wavelength, h is Planck’s constant and the exponent, five, in the denominator of Equation (13)
reflects the fact that we consider slightly elongated particles with three translational and two rotational
degrees of freedom. In Equation (14):

Z =
1

2NN !

∫ ∫
dRdÛ exp[−βU(R, Û )] (15)

is the configuration integral and U(R, Û ) is the total configurational potential energy. The factor,
1/2N , in front of the integral on the right side takes notice of the head-tail symmetry of the mesogens,
that is, it corrects for double counting equivalent configurations characterized by ûi and −ûi. The
prefactor, 1/N !, arises on account of the indistinguishability of the mesogens in fluid phases. Combining
Equations (13) and (15), we finally obtain:

χ =
∑
sx,sy

exp
(
−βP∥Asz

)
Q (16)

Thus, from Equations (11), (12) and (16), properties, such as µ or Pzz , can, in principle, be
computed as ensemble averages in the generalized isothermal-isobaric ensemble defined through these
three equations.

In some cases, the simulations have not been carried out in the specialized isothermal-isobaric
ensemble introduced above, but in the grand canonical ensemble instead. In this case, the relevant
thermodynamic potential is the grand potential:

dΩ = −SdT −Ndµ+ P∥szdA− APzzdsz (17)

and Equation (12) is replaced by:
Ω = −kBT ln Ξ (18)

where the grand canonical partition function is given by:

Ξ =
∑
N

exp (Nβµ)Q (19)

Hence, in the grand canonical ensemble, a thermodynamic equilibrium state is characterized by the
set, {T, µ,A, sz}, of natural variables of Ω.

In this work, we wish to analyze the local orientational order forming in a confined chiral liquid
crystal for which we introduced the intermolecular interaction potentials already in Section 2. A suitable
quantitative measure of local orientational order is provided through the local alignment tensor, which
we define as:

Q (r) ≡ 1

2ρ (r)

N∑
i=1

⟨[3ûi (ri)⊗ ûi (ri)− 1] δ (r − ri)⟩ (20)

where ρ (r) is the local density, 1 is the unit tensor, δ (r − ri) is the Dirac δ-function and the operator,
“⊗”, denotes the tensor product. Angular brackets in Equation (20) indicate an ensemble average taken
either in the specialized isothermal-isobaric or in the grand canonical ensemble. The local alignment
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tensor can be represented by a real, symmetric, traceless, second-rank 3 × 3 matrix and satisfies the
(local) eigenvalue equation:

Q (r) n̂ (r) = λ (r) n̂ (r) (21)

Because Q (r) is a second-rank tensor, Equation (21) has as a solution three (local) eigenvalues,
λ− (r) < λ0 (r) < λ+ (r), and associated eigenvectors, n̂− (r), n̂0 (r) and n̂+ (r). We follow
standard practice for the non-local analog of Q (r), define, as a local nematic order parameter, the
largest eigenvalue and take the associated eigenvector as the local nematic director [45]. To ease the
notational burden, we shall henceforth drop the subscript on both λ+ (r) and n̂+ (r). To determine λ (r)
and n̂ (r) numerically, we employ the Jacobi transformation technique described in detail in the book by
Press et al. [46].

Another quantity of interest is the pressure tensor, P. As pointed out in the Appendix of [34], one
may employ the hypervirial theorem (see Appendix E.2 of [44]) and write:

P = ρkBT1+
1

sz

⟨
1

A

N∑
i=1

ri ⊗ Fi

⟩
(22)

where ρ is the number density and Fi is the total force exerted on mesogen i. Focusing only on the
diagonal components, Pxx and Pyy , one finds, after some straightforward algebra [34]:

Pαα = ρkBT − 24ε

sz

⟨
1

A

N∑
i=1

N∑
j ̸=i

[(
σ

rij

)12

− 1

2

(
σ

rij

)6

[1 + Ψ (r̂ij, ûi, ûj)]

]
r̂
(α)
ij r̂

(α)
ij

⟩

−30εε2
sz

⟨
1

A

N∑
i=1

N∑
j ̸=i

(
σ

rij

)6

{(ûi · r̂ij) û (α)
i r̂

(α)
ij + (ûj · r̂ij) û (α)

j r̂
(α)
ij

−
[
(ûi · r̂ij)2 − (ûj · r̂ij)2

]
r̂
(α)
ij r̂

(α)
ij }

⟩

−4εε3
sz

⟨
1

A

N∑
i=1

N∑
j ̸=i

(
σ

rij

)6

(ûi · ûj)
[
(ûi × ûj)

(α) r̂
(α)
ij − (ûi × ûj) · r̂ij r̂ (α)

ij r̂
(α)
ij

]⟩
(23)

where superscript (α) (α = x, y) refers to the α-component of the corresponding vector. Chirality
enters the expression through the function, Ψ, on the first line of Equation (23) and through the term
proportional to the chirality coupling constant, ε3, on the last line of that equation. Monitoring Pxx

and Pyy independently is useful to validate the simulations to be discussed below, because their values
should agree with the input value, P∥, in the isothermal-isobaric ensemble. However, in case the side
lengths, sx and sy , of the simulation box are coupled (i.e., within one MC cycle, there is an attempt
to change the area, A = sxsy , rather than sx and sy individually) their actual values may differ. The
origin of this difference is anisotropy induced by the directional anchoring at the walls. However, as
discussed elsewhere [19], it is sufficient if the arithmetic mean, P∥, coincides with the input value, a
condition satisfied in this work at all times. Moreover, the deviation between either Pxx or Pyy and P∥

rarely exceeds 0.01 in all cases. Therefore, the chosen value of P∥ = 1.80σ3/εff exceeds this deviation
by more than two orders of magnitude.
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4. Results and Discussion

4.1. Numerical Details

We employ Monte Carlo (MC) simulations in the specialized isothermal-isobaric and in the grand
canonical ensembles introduced briefly in Section 3. Because our intermolecular potentials are short
range [see Equations (2) and (6)] we employ periodic boundary conditions at the planes located at
x = ±sx/2 and y = ±sy/2 (assuming the origin of the Cartesian coordinate system to be located at
the center of the simulation box). In the z-direction, where the solid substrates are separated by a fixed
distance, sz, the implementation of hybrid anchoring [see Equation (10)] is advantageous in avoiding
spurious stresses if the ratio of 2sz/p is non-integer, where p denotes the pitch length characterizing
chiral structures forming in that direction. This is because the anchoring function in Equation (10a)
serves to align mesogens with the x-axis in the vicinity of the upper substrate. Because of the degenerate
nature of the anchoring scenario at the lower substrate, the planar alignment of the mesogens allows
a helix forming in the z-direction to relax, even if p/2sz assumes non-integer values. Moreover, we
create a static situation, where the helix’s orientation is fixed at one point along the z-axis, due to
directional alignment at one wall. In other words, the helix stays put along the z-axis, which allows
us to interchange summation and averaging in Equation (20) and, therefore, facilitates the analysis of
our system. In addition, the substrate causes the z-direction to be distinct from the other two and induces
a helical structure in that direction in all our simulations.

Because we are not interested in investigating any specific chiral liquid crystal, we express our
quantities of interest in terms of “reduced” (i.e., dimensionless) units. For example, length is given
in units of σ, energy in units of εff , temperature in units of εff/kB and pressure in units of εff/σ3.

For the anisotropy parameters chosen throughout this work [see Section 2, Equation (4)] the aspect
ratio of the mesogens was determined to be 1.26 [34], taking the ratios of zeros of φff(rij, ûi, ûj) for the
side-side (ûi · r̂ij = 0) and end-end configurations (|ûi · r̂ij| = 1) of a pair of parallel aligned mesogens
(|ûi · ûj| = 1) as a definition of their aspect ratio. This rather small value turns out to be advantageous,
as it supports fast equilibration of the simulation sample. In combination with the simplicity of the
model, it allows us to study fairly large systems containing several tens of thousands of molecules.

In the isothermal-isobaric ensemble MC simulations, we take P∥ and T to be constant at values of
1.80 and 0.95, respectively. Under these conditions, the achiral bulk version of our model liquid crystal
(ε3 = 0) is sufficiently deep in the nematic phase, as reflected by the relatively high value of the global
nematic order parameter, λ ≈ 0.7. In the grand canonical MC simulations, we chose µ = −9.588, which
corresponds to P∥ ≃ 1.77 [computed via Equation (23)], so that the thermodynamic equilibrium states
considered in both ensembles are comparable.

Our results are based upon systems comprising between 5, 000 and 40, 000 mesogens and runs
consisting of about 5 × 104 MC cycles that have been carefully equilibrated using a similar number
of cycles prior to sampling any data. In the specialized isothermal-isobaric ensemble, a MC cycle
consists of N random displacements or rotations followed by one attempt to change the size of the
computational cell in the x- and y-directions. Displacement or rotation of a mesogen are both attempted
with equal probability, where the size of the displacement cube centered on a mesogen’s center-of-mass



Int. J. Mol. Sci. 2013, 14 17593

position and the angle increment of rotation are adjusted during the simulation to guarantee an overall
acceptance of 40%–70% of both attempted moves. In the grand canonical simulations, an MC cycle
consists of N ′ random displacements or rotations, followed by N ′ attempts to either create a new
mesogen at a randomly chosen position in the system and with a randomly chosen orientation or
to destroy one of the already existing ones. Both creation and destruction are also attempted with
equal probability. Because the number of mesogens in the system will generally vary as a result of
creation and destruction attempts, N ′ is the number of mesogens present in the simulation cell at the
beginning of a new MC cycle. In our simulations, creation and destruction attempts are accepted, with
a ratio of 2.2 × 10−4. In both ensembles, we employ the standard generalized Metropolis algorithms
described in Chapter 5 of [42]. These algorithms allow one to realize numerically Markov processes that
generate distributions in configuration space proportional to exp{−β[U(R, Û ) + P∥A − Nβ−1 lnA]}
and exp{−β[U(R, Û) − µN ] − lnN ! − 5N ln(Λm/I)} in the specialized isothermal-isobaric and in
the grand canonical ensemble, respectively.

To save computer time and because our fluid-fluid interaction potential [see Equation (2)] is
short-range, we employ a potential cutoff of rc = 3.0. No corrections are applied for neglected
interactions beyond rc. Moreover, uff (rc) remains unshifted with respect to uff = 0. For the fluid-fluid
interactions, we utilize a combination of a link-cell and a conventional Verlet neighbor list, as described
in the book by Allen and Tildesley [47] to further speed up the simulations. This latter list includes as
neighbors all mesogens whose centers-of-mass are separated by a distance, rn = 3.8, from that of a
reference mesogen. By employing the two smooth walls, we make the z-direction distinct from the other
two. In order to investigate the local nematic order and the local director parallel to the wall, we divide
our system along the z-axis into 200 equally-sized slabs of volume sxsyδz, where δz is the thickness
of each slab. For mesogens located in these slabs, Equations (20) and (21) are then solved as described
above to obtain λ (r) and n̂ (r). During our investigations of complex chiral phases, it turned out to be
practical and suitable to apply the same procedure in the x and y direction.

4.2. Structure of Ordered Phases

We begin the structural analysis with a discussion of the local director for a system at relatively low
chirality, ε3 = 0.14. Unfortunately, in general, n̂ (r) is a three-dimensional vector field depending on
the three-dimensional vector, r, and is, therefore, impossible to display in full. However, utilizing the
fact that the z-direction is distinct in our system, we begin by analyzing n̂ (z) in Figure 1. Data plotted in
that figure illustrate the accuracy with which these curves can be obtained, provided λ (z) is sufficiently
large. From the plot of the local order parameter, λ (z), it is evident that the entire confined liquid
crystal exhibits a substantial nematic order in the present case. One also notices a slight asymmetry in
that λ (z) is slightly lower at the lower substrate compared with its value at the upper substrate. This is
because of the hybrid anchoring employed to generate these data [see Equations (10)]. The monostable
directional anchoring along the x-axis causes a somewhat higher nematic order parameter compared
with the degenerate planar one, because the latter is characterized by an infinite number of easy axes on
the unit circle, whereas a mesogen not aligning with the x-axis receives an energy penalty. The order
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parameter close to the planar-anchoring wall is even lower than in the bulk-like portion of the confined
liquid crystal centered on z = 0.

Figure 1. Plots of Cartesian components of the local director field, n̂ (z), as a function
of position along the z-axis perpendicular to the plane of the solid substrates separated
by sz = 35; ( ) nx (z ), ( ) ny (z ), ( ) nz (z ). Also shown is the local nematic order
parameter, λ (z ) ( ).
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A mesogen located in that bulk-like region is surrounded by nearest neighbors in all three spatial
directions. The orientation of these neighbors is tilted with respect to the reference mesogen, because
at ε3 ̸= 0, this configuration is energetically favorable. If, on account of thermal fluctuations, the tilt
angle deviates from its optimum value (at T = 0), the reference mesogen receives an energy penalty
from all its neighbors. Mesogens located in the contact layer (i.e., the molecular layer in the immediate
vicinity of a solid substrate) lack nearest neighbors in the direction towards the substrate. Thus, the
number of nearest neighbors is reduced for these mesogens compared with those near the center of the
simulation cell. As a result, the total energy penalty is smaller if the tilt angle between pairs of mesogens
near the solid substrates deviates from the optimum value, which offers a possibility for somewhat larger
orientational fluctuations.

Looking next at the associated local director, n̂ (z), we realize that it varies periodically with z.
Moreover, its spatial variation along the z-axis can be well described by the vector:

n̂ (z) =

 sin (2πz/p)

cos (2πz/p)

0

 (24)

where p is the pitch of the periodically varying structure. This also means that in accordance with
our data in Figure 1, the director, n̂ (z), rotates perpendicular to the z-axis (i.e., parallel to the walls),
such that its z-component vanishes. By fitting Equation (24) to the MC data, we obtain a pitch length,
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p ≃ 36.7, which exceeds the substrate separation of sz = 35 only marginally. Hence, the periodic
structure along the z-axis does not fit sz perfectly. Therefore, the plots of nx (z) and ny (z) in Figure 1
are indicative of a typical cholesteric phase characterized by a single helix rotating around the z-axis.
Another characteristic feature of the cholesteric phase is that components, such as nz (x) and nz (y), of
n̂ (r) vanish, that is, there is in-plane homogeneity of the director field along the z-axis. This in-plane
homogeneity is nicely illustrated by the plot in Figure 2.

Figure 2. Plot of the sum, nz (x) + nz (y), indicated by the attached color bar, as a function
of position in the x–y plane for a cholesteric phase forming at ε3 = 0.14 (see, also, Figure 1).
Data plotted have been averaged over z.
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These structural features are further corroborated by the plot of a typical “snapshot” of a configuration
in the cholesteric phase taken from our MC simulations (see Figure 3). As one can see, regions can be
identified that are more or less homogeneously colored. The color of these regions varies only as one
moves along the z-axis (that is, vertically), but remains nearly the same at fixed z in the x–y plane.
The alternating blue and red colored regions indicate that along the z-axis, confinement by the solid
substrates is such that nearly a full pitch of the helix is accommodated. That sz = 35 is slightly too small
to accommodate a full pitch can be seen from the extent of the blue colored regions at the bottom and top
of the plot, which is slightly thinner for the former compared with the latter. This visual observation is
fully in line with the value of p ≃ 36.7 extracted by fitting Equation (24) to the curves shown in Figure 1.

In fact, closer scrutiny reveals that the helical structures formed by the liquid crystal depend on
the chirality coupling parameter, ε3. Simulations in the specialized isothermal-isobaric ensemble were
performed with 15,000 mesogens and a substrate distance of sz = 26 between the hybrid aligning
substrates, so that the helix forming between them is not exposed to any spurious strain in the z-direction.
The number of mesogens and the substrate distance are chosen, such that the simulation box is roughly
cubic. Starting with a low value of ε3 = 0.08, several simulations are performed, where the chirality
is slightly increased by ∆ε3 = 0.02 between subsequent simulations; in each of these simulations,
the nematic director is computed as a function of z. Employing Equation (24), the pitch length can
be determined over a wide chirality range, as demonstrated in Figure 4. The monotonic decay of p

with increasing ε3 can be attributed to the stronger twist between neighboring mesogens. For very high
chiralities, we observe the pitch length to reach a plateau. For increasingly larger values of ε3, highly
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twisted structures are energetically favored. However, the formation of these structures eventually causes
even nearest neighbor molecules to deviate strongly from a side-side conformation favored energetically
by the terms proportional to ε1 and ε2 in Equation (4). Thus, the energetic gain in forming tilted
conformations of pairs of molecules is counterbalanced by the energy penalty, due to increasingly larger
deviations from these side-side arrangements.

Figure 3. Side view of a “snapshot” of a typical configuration in the cholesteric phase, where
the z-axis is vertical. The elongation of the mesogens is exaggerated to enhance the visibility
of specific orientations. The color code is used to distinguish between molecules pointing in
the x-direction (blue, out of the paper plane) and those whose orientation deviates maximally,
i.e., by 90 ◦ (red). Other colors indicate that the particular mesogen is pointing in other
directions, such that 0 < |ûi · êx| < 1. The confining substrates at the top and bottom of the
plots are not shown. The plot has been generated for ε3 = 0.14 with N = 40, 000 mesogens.
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Figure 4. Pitch length as a function of the chiral coupling constant, ε3. The red line is
intended to guide the eye. The transition from the cholesteric to the blue phase occurs at
ε3 = 0.2.
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Moreover, one notices that the local nematic order decreases with enhanced chirality. This can be
seen from plots in Figure 5, where λ (z) around z = 0 and for ε3 = 0.90 decays to a value characteristic
of an isotropic phase. However, the liquid crystal is not isotropic locally, but does indeed form a highly
structured, morphologically distinct phase under these conditions, as we shall demonstrate shortly.

Figure 5. Components nx (z) as a function of position along the z-axis for ( ) ε3 = 0.14

(cf., Figure 3) and ( ) ε3 = 0.90. In addition, the local nematic order parameter, λ (z), is
shown for ε3 = 0.14 ( ) and ε3 = 0.90 ( ). For ε3 = 0.90, mesogens are directionally
anchored at both substrate surfaces [see Equation (10a)], because the planar alignment leads
to a decrease of the order, as explained in the text and, therefore, destabilizes the structure.
Here, sz is chosen to coincide roughly with 3p. For ε3 = 0.14, hybrid anchoring is employed
[see Equations (10)], as already explained.
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As we showed above in the cholesteric phase, mesogens are aligning with a local nematic director
pointing in a direction somewhere in the x–y plane. The orientation of the director varies only as a
function of z. This gives rise to the typical helical structure illustrated by the plots in Figures 1–3.
However, in each of the x–y planes along the z-axis, mesogens can preserve their parallel alignment,
which is favored by the first two terms on the right side of Equation (4). In other words, provided ε3 is
sufficiently small, nematic order can be preserved locally.

Now, with increasing ε3, in-plane, twisted conformations of mesogens become energetically more
favorable, which, in turn, destroys the local, in-plane nematic order of the cholesteric phase described
before. In fact, under the present conditions, the liquid crystal exhibits the complex structure reminiscent
of a blue phase. This can be seen from the snapshots presented in Figure 6, which illustrate the complex
structures forming at sufficiently high values of the chirality coupling parameter, ε3.

In particular, one notices that in each of the three plots, regions of blue colored mesogens at the center
exist. As one moves out of these regions from the center in any radial direction, the color of the mesogens
changes from blue to green and, eventually, to red, as one reaches the circumference of a region in which
the mesogens are aligned with the respective line of vision. This change in color reflects a change in
orientation, where mesogens at the center of each region are aligned with the line of vision, whereas
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along the circumference, they are oriented in an orthogonal fashion with that respective line. Hence, this
orientational change is characteristic of a double-twist alignment of the mesogens. Because the global
topology of the three structures depicted in Figure 6 looks the same irrespective of the specific line of
vision, we are dealing with a three-dimensional double-twist helical structure, which is characteristic of
blue phases [48].

Figure 6. “Snapshot” of a typical configuration characteristic of a blue phase. Plots in
(a)–(c) are side views, where the line of vision is along the x-, y- and z-axis, respectively,
which are orthogonal to the paper plane in all three cases. Hence, mesogens colored in blue
are aligned with the respective line of vision, whereas the orientation of mesogens colored
in red is orthogonal to the line of vision. Plots have been generated for ε3 = 0.90.
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It seems somewhat surprising that the blue phase, which is isotropic globally, is still characterized by
a small residual value of λ (z), as one can see from the plots in Figure 5. However, these small values
of λ (z) should be perceived as a consequence of the finiteness of our system, an effect which is well
understood and has been analyzed quantitatively for the achiral version of our model [37]. As before,
in the cholesteric phase, nx (z) and ny (z) can be described by sine or cosine functions, indicating that
there is a remaining director rotating in the x–y plane, but, now, with an almost vanishingly small order
parameter, which also explains the relative noisiness of nx (z) in Figure 5. One can also see that as
one approaches the walls of the slit-pore, the plot of nx (z) becomes much smoother. Nevertheless,
the clearly visible periodicity of nx (z) allows us to determine the pitch length, p, reliably, even though
the system at ε3 = 0.90 is optically isotropic in a global sense, as is expected for the blue phase [48].
Towards the substrates, nematic order increases, because of the directional anchoring that we apply at
both substrate surfaces. Therefore, the present simulation of a blue phase was performed with directional
anchoring at both walls, and the wall distance was estimated to give space for 3p.

The statistical accuracy of our data can be rationalized as follows. Taking û (r) as the local orientation
of a single mesogen, we can express the local nematic order parameter alternatively as:

λ (r) =
1

2

∫ [
3 cos2 ϑ (r)− 1

]
P [ϑ (r)] dΩ (25)

where cosϑ (r) = û (r) · n̂ (r) is the cosine of the angle between û (r) and the local nematic director,
n̂ (r), P [ϑ (r)] is the distribution of orientations of a mesogen with respect to n̂ (r), because of the
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uniaxial symmetry of the mesogen, and dΩ is the solid angle. Clearly, λ (r) = 0 if P [ϑ (r)] is uniform.
If, on the other hand, P [ϑ (r)] is strongly peaked, such that, for example, P [ϑ (r)] = δ [ϑ (r)− π],
λ (r) = 1, where δ denotes the Dirac δ-function, in other words, if the variance of the distribution,
P [ϑ (r)], about its mean is large, the associated local nematic order parameter, λ (r), will be small
and vice versa. However, a large variance in P [ϑ (r)] implies a large variance of the local alignment
tensor about its mean value and, therefore, a low statistical accuracy of n̂ (r) obtained as a solution of
Equations (20) and (21). Plots in Figure 5 support this line of argument.

As indicated by snapshots in Figure 6, blue phases show isotropic behavior in all three spatial
directions. Based upon our results for the (components of) the director field in the z-direction, one
anticipates rotating components of the director field in the x- and y-directions, as well. It is particularly
noteworthy that in our simulations, the helical structures forming along all three directions (x, y and z)
are always perpendicular to these axes. This is indeed a valid conclusion and can nicely be illustrated
by plots of nz (x) + nz (y) in Figure 7. Consider that any arbitrary point on the given surface of the
plot in that figure will follow sine curves as one moves along the x- or y-directions, reflecting the
helical structure in those directions. Together with the plot of nx (z) in Figure 5, this indicates a
regular double-twist helical structure in all three spatial dimensions characterized by a pitch of about
ten molecular diameters. The regularity of the structure of the blue phase is consistent with the visual
inspection of individual snapshots of configurations displayed in Figure 6. Nevertheless, the particle
number needs to be chosen in such a way that an integer number of half-pitches can be formed,
thereby avoiding the exposition of the entire helix to spurious strains otherwise caused by applying
periodic boundary conditions at the ends of the simulation cell. The optimum system size has then been
determined based upon the plot presented in Figure 4 and the ratio of 2sz/p that we decided to employ
in the simulations.

Figure 7. As Figure 2, but for ε3 = 0.90 in the blue phase.
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We note in passing that observing the complex three-dimensional double-twist structure of a blue
phase is not only a theoretical challenge, but also an experimental one. Indeed, the typical platelet
structure of the blue phases seen experimentally is a result of a non-homogeneous crystallization [9],
which is difficult to control.
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Nevertheless, we stress that the results obtained in this study clearly show that MC simulations of
fairly large systems—if carried out with care—are capable of reproducing three-dimensional blue-phase
structures comprising a number of pitches in each direction. However, up to this point, our results
do not permit us to identify the specific blue phase (I, II or III) forming in our simulations. While
blue phase I and II are characterized by a regular lattice of double-twist helices, blue phase III exhibits
an amorphous structure. We, therefore, speculate that the presented structure might represent a blue
phase III, which also is seen experimentally for systems with higher chirality [17]. However, the strong
chirality and, therefore, the strong twist of the mesogens causes a more detailed analysis to be rather
exhausting. To address this point, we amended our study by considering a system with smaller chirality,
ε3 = 0.30, causing a larger pitch length and containing only N = 8, 550 molecules. This causes a
larger pitch of p ≃ 21, such that the system can accommodate a single pitch in each spatial direction.
The blue phase forming under these conditions is then identified through plots of n̂(x ), n̂(y) and n̂(z ).
Accompanying snapshots of individual configurations exhibit double-twist helices forming in parallel
with the x-, y- and z-axes indicating that the blue phase is not exposed to spurious strains (see Figure 8a).
In each spatial direction, the double-twist helices are arranged corresponding to a simple-cubic unit cell,
which is indicative of the structure anticipated for blue phase II.

Figure 8. (a) “Snapshot” of blue phase II in which the double-twist helices (blue-green
domains) exhibit a simple-cubic unit cell. To enhance the visibility, the widths of the
mesogens have been arbitrarily reduced to zero in the plot. The line of vision is along the
y-axis; (b) Disclination lines in three-dimensional space forming a network of tetrahedral
geometry to be expected for blue phase II. Note that for an improved visualization of the
complex geometrical arrangement of the disclination lines, the z-axis has been compressed
relative to the x- and y-axes.
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This interpretation is further corroborated by an inspection of the associated disclination lines, which
we define as regions in space with a nematic order parameter, λ (r) ≤ 0.30. Whereas this choice of
λ (r) is admittedly somewhat arbitrary, it can be justified by the observation that λ ≈ 0.30 turns out to
be the inflection point in plots of λ versus the thermodynamic field driving the isotropic-nematic phase
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transition in the achiral analogue of our model system [34]. As one can then see from Figure 8b, the
disclination lines form a tetrahedral structure, as expected for blue phase II [20].

Up to this point we introduced the confining substrate merely as a technical means that allows us
to determine the pitch length reliably and without interference from periodic boundary conditions.
However, in parallel experiments, confining solid substrates are part of the standard setup. This prompted
us to investigate the impact of the presence of these substrates on structural properties of the liquid
crystal by varying sz in small steps of magnitude ∆sz = 0.1 between subsequent runs. In this part
of our study, we employ a coupling parameter, ε3 = 0.24, which is slightly bigger than the one for
which the system undergoes a transformation from a cholesteric to a blue phase, according to Figure 4.
Whereas picking a certain chirality is obviously easy in our model system, one cannot easily do the
same experimentally. The obvious reason is that in experimental systems, chirality is associated with a
particular chemical structure and cannot be varied easily. However, the chirality of experimental systems
can be altered by considering binary mixtures in which one component consists of chiral, the other one
of achiral mesogens [10].

According to the plot in Figure 4, the pitch length is unambiguously determined by the chirality, ε3.
Thus, fixing the latter causes helices to form that are characterized by a fixed pitch length regardless
of whether these helices are part of a cholesteric or a blue-phase structure. From the plot in Figure 4,
it is easy to determine the optimum substrate separation, such that a helix of an integer half-pitch can
be accommodated, which is not strained by the mismatching substrate separation. If one now moves
away from this optimum substrate separation by making sz larger or smaller, the helix is exposed
to a compressional/dilatational strain, even though the original half-integer pitch is not immediately
disrupted. If the compressional/dilatational strain exceeds a certain threshold, the helix can no longer
withstand the strain, and a transition to an ordinary nematic phase is observed. This is illustrated by
the snapshots in Figure 9a,b, where, starting from sz = 12.5 (see Figure 9a), an originally cholesteric
phase is disrupted by the compressional stress associated with a reduction of the substrate separation to
sz = 8.2 (see Figure 9b), where a conventional nematic phase is observed.

A more interesting case is observed at a substrate separation, sz = 21.3, which is large enough, such
that a double-twist helix of one full pitch can be accommodated between the confining surfaces and our
choice of ε3 = 0.24. At both substrates, molecules are anchored directionally [see Equation (10a)] such
that their longer axes are preferentially aligned with the x-axis. Employing grand-canonical simulations,
we are able to screen different x–y side lengths around one pitch length and observe, consistently, the
same structure, which will be described in the following. Because our present choice of ε3 = 0.24

slightly favors the formation of a blue phase and the directional anchoring would favor formation of a
cholesteric phase in which the director rotates around the z-axis, one anticipates a competition between
the double-twist helix characteristic of a blue phase and a homogeneous director field in the x–y plane,
indicative of a cholesteric phase. Indeed, an inspection of the snapshot presented in Figure 9c illustrates
the formation of both structures side by side in the same simulation.
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Figure 9. “Snapshots” of configurations of confined systems where both substrates cause
directional alignment. The phase determining parameter is the substrate-substrate distance,
which is 8.2 for the nematic phase in (b), 12.5 for the cholesteric phase in (a) and 21.3 for the
confined phase in (c) and (d). (c) and (d) show the same system, but different cross sections,
where the nematic director is pointing in the y- (part c) or z-direction (part d), respectively.
All systems have been generated for ε3 = 0.24.
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A more quantitative analysis of this peculiar new structure is presented in Figure 10, which shows that
there is a substantial decrease of the local nematic order parameter, λ (z), as one approaches the center of
the simulation cell at z = 0. This is a result of the compressional/dilatational strain mentioned before. At
the same time, one notices that nx (z) varies periodically, corresponding to a full-pitch helical structure.
However, a comparison with the plots in Figure 1 shows that for the present case, the variation of nx (z)

cannot be described by a sine function, but exhibits a peculiar triangular shape. An even more detailed
picture emerges from the plot of nz (x) + nz (y) presented in Figure 11. Here, one notices the periodic
variation of nz (x) + nz (y) along the x-axis, reminiscent of the double-twist helix forming along that
axis (see also Figure 7) and that nz (x) + nz (y) = const along the lines of x = const, which was a
feature of cholesteric-like structures (see Figure 2).

Figure 10. As Figure 1, but for nx (z) ( ) and λ (z) ( ) and ε3 = 0.24.
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Figure 11. As Figure 2, but for ε3 = 0.24. One can see the periodic structure in the
x direction and the constant behavior in the y direction.
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The mixed new structure illustrated by plots in Figures 9–11 is a result of a rather complex interplay
between confinement, chirality and anchoring at the substrates. First, chirality slightly favors the
formation of double-twist helices, according to the plot in Figure 4. However, this requires mesogens
to point towards the substrates as one moves out of the center of the double-twist helix in any radial
direction. This orientation is energetically unfavorable with respect to those portions of the liquid
crystal anchored at the substrates along the x-axis. In fact, these mesogens would like to align their
neighbors in a twisted, but otherwise in-plane arrangement, such that a cholesteric phase would result
with a helix forming around the z-axis. We believe that on account of thermal fluctuations, sometimes
the cholesteric-like structure wins in a certain part of the system, whereas in another region and at a
different stage of the evolution of our system, the double-twist helical structure may be favored.

The uniqueness of the new structure observed under special confinement, chirality and anchoring
conditions is also illustrated by the spatial variation of disclination lines, which we define according to
the same criterion already introduced above with respect to our analysis of blue phase II. The plot of
disclination lines in Figure 12 exhibits two independent such lines that cross one another, but never join.
Starting at point “a” in Figure 12, the marked disclination line first varies along the x-axis and, thereby,
approaches the upper substrate at point “b”. It then turns rather abruptly and runs along the y-axis in the
negative direction. At point “c”, the disclination line exhibits another sharp turn into the x-direction and
descends to the plane of the lower substrate. Once that approach of the lower substrate commences at
point “d” the disclination line turns again into the y-direction and remains at constant z, ending at point
“e”, which is is equivalent to point “a”, due to periodic boundary conditions. The other disclination line
plotted in Figure 12 shows the corresponding spatial variation, as we have verified by visual inspection
of the curves under different angles. This structure is distinctly different from the plot in Figure 8b for
blue phase II and, also, from the spatial variation one would expect for blue phase I [20].
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Figure 12. As Figure 8, but for the confined phase. Black/grey lines are employed to guide
the eye. Characteristic points along one disclination line are marked by letters a–e (see text).
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5. Conclusions

We investigated the formation of cholesteric and blue phase II in a new model for chiral liquid crystals
by means of MC simulations in a specialized isothermal-isobaric and a grand canonical ensemble.
Through specific anchoring conditions at the planar substrates of a slit-pore, we are able to determine the
pitch length as a function of the chirality parameter, ε3, via the nematic director. The latter rotates along
one or several axes of the Cartesian coordinate system in the cholesteric and blue phase, respectively. We
determine the pitch length over a wide range of chiralities ranging from ε3 = 0.08 to ε3 = 0.9. Knowing
the pitch length, we can set up systems that are not exposed to spurious strains, due to periodic boundary
conditions, because the side lengths of our simulation cell can be taken as half-integer multiples of the
pitch length. Because of this setup, we are able to observe the undisturbed helical structure of blue
phases in all three spatial dimensions and observe the same pitch length for each as one would expect.
If the pitch length is large enough, we can also visualize the disclination lines characteristic of blue
phase II. We emphasize that in our model, chirality has to be sufficiently large to obtain a well-defined
blue phase. According to typical snapshots presented in Figure 6, the size of double-twist helices
forming under conditions of our simulations may seem somewhat small compared with experimental
observations. This model intrinsic property turned out to be useful, because it permits us to investigate
systems accommodating several pitches with a reasonable number of particles that is not too large.
Nevertheless, it should be realized that these conditions are somewhat unrealistic with regard to typical
experimental pitch lengths. However, we stress that despite this mismatch, all structural features, such
as the simple-cubic unit cell and the geometry of disclination lines, fully comport with those known for
a blue phase II, so that we believe our model system to be sufficiently realistic.

By choosing a certain chirality parameter, ε3 = 0.24, we also investigated the interplay between
confinement, chirality and anchoring conditions at the solid substrates. We could show that even for
just a single chirality value, three different phases are possible, the nematic, the cholesteric and a novel
confined phase, which may be perceived as a result of a competition between ordinary cholesteric and
blue phases. Unlike the latter two, the new phase is characterized by the formation of a helical structure
in two dimensions rather than one (cholesteric phase) or three spatial directions (blue phase). Moreover,
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the new phase in confinement is characterized by a spatial variation of disclination lines that have not
been observed before.

Acknowledgments

We are grateful to the International Graduate Research Training Group “Self-assembled soft matter
nanostructures at interfaces” for financial support. This work was also supported in part by NSF’s
Research Triangle MRSEC (DMR–1121107).

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Flack, H.D. Chiral and achiral crystal structures. Helv. Chim. Acta 2003, 86, 905–920.
2. Kelvin, L. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light; Cambridge

University Press Warehouse: London, UK, 1904; Chapter 22, p. 619.
3. Lavrentovich, O.D.; Kleman, M. Cholesteric Liquid Crystals: Defects and Topology. In Chirality

in Liquid Crystals; Springer: New York, NY, USA, 2001; Chapter 5.
4. Taushanoff, S.; Le, K.V.; Williams, J.; Twieg, R.J.; Sadashiva, B.K.; Takezoe, H.; Jákli, A.

Stable amorphous blue phase of bent-core nematic liquid crystals doped with a chiral material.
J. Mater. Chem. 2010, 20, 5893–5898.

5. Kikuchi, H.; Yokota, M.; Hisakado, Y.; Yang, H.; Kajiyama, T. Polymer-stabilized liquid crystal
blue phases. Nat. Mater. 2002, 1, 64–67.
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