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Abstract: Chronic hepatitis B virus (HBV) infection, affecting approximately 240 million 

people worldwide, is a major public health problem that elevates the risk of developing 

liver cirrhosis and hepatocellular carcinoma. Given that current anti-HBV drugs are limited 

to interferon-based regimens and nucleos(t)ide analogs, the development of new anti-HBV 

agents is urgently needed. The viral entry process is generally an attractive target 

implicated in antiviral strategies. Using primary cells from humans and Tupaia belangeri, 

as well as HepaRG cells, important determinants of viral entry have been achieved. 

Recently, sodium taurocholate cotransporting polypeptide (NTCP) was identified as an 

HBV entry receptor and enabled the establishment of a susceptible cell line that can 

efficiently support HBV infection. This finding will allow a deeper understanding of the 

requirements for efficient HBV infection, including the elucidation of the molecular entry 

mechanism. In addition, pharmacological studies suggest that NTCP is able to serve as a 

therapeutic target. This article summarizes our current knowledge on the mechanisms of 

HBV entry and the role of NTCP in this process. 
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1. Introduction 

Hepatitis B virus (HBV) infection constitutes a serious public health problem, affecting 

approximately 240 million carriers worldwide [1]. Chronic HBV infection significantly elevates the 

risk for developing liver cirrhosis and hepatocellular carcinoma. Currently, conventional interferon-α 

(IFNα) or PEGylated-IFNα and nucleos(t)ide analogs are available as anti-HBV agents [2,3]. 

However, IFN-based therapies, which cause significant side effects, yields long-term clinical benefits 

in less than 40% of treated patients [4]. Nucleos(t)ide analogs suppress an essential step in virus 

replication and thereby provide biochemical and histological improvement, but some of the early drugs 

give rise to drug-resistant viruses, which adversely affect long-term clinical outcome. Thus, in order to 

approach curative treatments, new anti-HBV agents targeting different molecules involved in HBV 

infection and propagation are needed. Nucleos(t)ide analogs suppress HBV replication mainly by 

inhibiting the reverse transcription process in the viral lifecycle (Figure 1) [3]. IFN functions as an 

immunomodulator and is also reported to directly interfere with HBV replication at multiple steps of 

the lifecycle [5]. Given that HBV encodes only one viral protein carrying enzymatic activity, 

polymerase, in its genome, strategies for inhibiting viral enzyme are limited. Although capsid or 

envelope protein assembly and the regulatory X-protein are possible future targets, it is critical for 

developing new classes of anti-HBV agents to identify cellular factors serving as possible drug targets. 

Figure 1. Schematic representation of the hepatitis B virus (HBV) lifecycle. Nucleos(t)ide 

analogs inhibit reverse transcription. Myrcludex-B, cyclosporin A and some NTCP 

inhibitors can inhibit the viral entry process by targeting NTCP.  
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In general, the viral entry step is an attractive target for the development of antiviral agents [6–8]. 

The early HBV lifecycle, including the entry step, has gained significant attention very recently with 

regard to molecular mechanisms, triggered by the identification of sodium taurocholate cotransporting 

polypeptide (NTCP) as a cellular entry receptor [9]. This article summarizes the molecular evidence 

related to HBV entry, mainly focusing on recent findings, and its implications. 

2. PreS1 Region of HBV Surface Protein Is Essential for Viral Entry  

HBV infection into host hepatocytes follows a multiple step process: (1) initially, HBV reversibly 

attaches to host cell surface proteoglycans with a low affinity; (2) this is followed by the process 

involving more specific receptor(s) with high affinity to mediate the early entry step; and (3) after 

endocytosis-mediated internalization, the virus fuses with the cellular membrane compartment, 

probably in an endosomal compartment, although the mechanisms are not fully understood. Both 

initial attachment and, probably more importantly, specific receptor recognition contribute to host 

specificity and tissue tropism [10]. The initial attachment step is at least partly mediated by heparan 

sulfate proteoglycans [11–14]. The third internalization step is reported to involve caveolae-,  

clathrin- or macropinocytosis-dependent endocytosis, depending on the cell types and experimental 

systems [15–18]. However, cellular factors involved in the high-affinity binding and the early entry 

process remained to be elucidated until recently. 

The HBV surface proteins are composed of three proteins, termed the large (LHBs), middle 

(MHBs) and small (SHBs) surface proteins, and include the preS1, preS2 and S regions: LHBs 

encompasses the preS1, preS2 and S regions; MHBs encompasses the preS2 and S; and SHBs 

comprise the S region [19,20]. The molecular requirement of HBV envelope proteins for HBV 

infection has been studied for more than a decade using primary hepatocytes from humans and  

Tupaia belangeri, as well as HepaRG cells [21]. A series of analyses using neutralizing antibodies and 

introduced point mutations suggested that the S and preS1, but not the preS2, regions play a significant 

role in HBV infection [22–27]. In a direct approach, the preS1 region in the LHBs has been shown to 

be essentially involved in the HBV infection process. This was demonstrated by the introduction of 

mutations in the viral context, infection competition with anti-preS1 antibodies and with peptides 

mimicking this region [28–34]. A myristoylated peptide encompassing amino acids 2–48 of the preS1 

region turned out to be the most efficient in infection inhibition of HBV and also the envelope  

protein-related hepatitis D virus (HDV) [30,31]. Such a peptide has been used as a tool for 

characterizing the early infection step, including the identification of NTCP as an entry receptor [9] 

and as a lead substance (Myrcludex-B) presently in the clinical development (see below) [10,35,36]. 

3. Sodium Taurocholate Co-Transporting Polypeptide (NTCP) as a Bona Fide HBV Receptor  

One of the recent milestones in the field in HBV molecular biology is the identification of NTCP as 

a host entry receptor, as reported by Yan and Zhong et al. in late 2012 [9]. By affinity purification and 

mass spectrometry analysis using an HBV preS1-derived lipopeptide as bait, they identified  

Tupaia belangeri NTCP (tsNTCP) as a cellular factor interacting with this lipopeptide. NTCP is a 

transporter residing in the basolateral membrane of hepatocytes and is involved in the hepatic uptake 

of mostly conjugated bile salts (see below). The lipopeptide was confirmed to specifically bind human 
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NTCP (hNTCP), as well as tsNTCP, but surprisingly not crab-eating monkey NTCP (mkNTCP), 

which correlated with the species specificity of HBV infection: HBV is able to efficiently infect 

humans and Tupaia, but not crab-eating monkey [9]. Interestingly, this result also correlated with the 

in vitro binding activity of the peptide to the respective primary hepatocytes [10] and their in vivo 

hepatotropism [37]. The role of NTCP in the viral infection of HBV, its satellite virus, HDV, and a 

closely related primate hepadnavirus wooly monkey HBV was further examined by knockdown and 

overexpression analyses [9,38,39]. siRNA-mediated knockdown of NTCP in primary human 

hepatocytes (PHH), primary Tupaia hepatocytes and differentiated HepaRG cells reduced HBV and 

HDV infection, while ectopic expression of NTCP conferred HBV susceptibility in HepG2 cells, 

which originally did not support efficient infection [9]. This strongly argues that NTCP is an essential 

factor for HBV infection. The expression of NTCP in different cells was consistent with the HBV 

susceptibility, as it was significantly expressed in HBV-susceptible cells, PHH and differentiated 

HepaRG cells, but was weakly expressed or absent in HepG2, Huh-7, FLC4 and HeLa cells, which 

show little to no infection [40–42]. The introduction of NTCP into Huh-7 and undifferentiated 

HepaRG cells conferred HBV infection to these cells to some extent [38]. Although the total 

expressions in these transduced cells were comparable, hNTCP-expressing HepG2 cells showed much 

higher infection efficiency when compared with other human hepatocyte cell lines [38,43,44]. In the 

initial study, infection efficiency was ~10% in NTCP-overexpressing HepG2 cells cultured with 

medium containing 2% dimethyl sulfoxide (DMSO) [9]. Subsequent analysis showed that increasing 

the DMSO concentration to more than 2.5%~3% augmented infection efficiency to 50%~70%, as 

evaluated by immunofluorescence of HBV proteins, although the virus inoculum was different in these 

studies [38,43]. The speculations include that DMSO augmented the gene expression of NTCP, 

promoted the membrane localization of NTCP and changed the post-translational modification of 

NTCP, but the detailed molecular mechanisms for DMSO-mediated promotion of HBV infection is 

open for further studies. It remains unknown why not all of the cells were infected with HBV in these 

reports, but it is possible that the NTCP function for supporting HBV entry is reflected by  

post-translational modification, subcellular localization or other factors that are governed by cell 

conditions or by more general conditions, such as the cell cycle, cellular microenvironment or 

architecture. Another open question is on the high susceptibility for HDV, but not HBV, in Huh-7 cells 

overexpressing hNTCP [9,38]. Future analysis of this issue is necessary in order to establish a cell 

culture model that is 100% susceptible to HBV infection. 

Crucial amino acid sequences in NTCP involved in HBV infection have been analyzed. By 

sequence comparison between hNTCP and mkNTCP, replacement of amino acids 157–165 of hNTCP 

with the respective sequence from mkNTCP abrogated the ability to support HBV preS1-binding and, 

subsequently, infection, while mkNTCP carrying a conversion to this region from hNTCP conferred 

HBV susceptibility. Thus, amino acids 157–165 of NTCP are crucial for NTCP-mediated HBV 

binding and infection [9,45]. It has also been shown that hNTCP bearing a substitution of the 84–87 aa 

from the mouse counterpart was able to bind preS1, but was not functional for HBV infection, while 

replacing these residues in mouse NTCP (mNTCP) with the human counterparts supported the 

infection [38,44]. These data indicate that the 84–87 aa residues are a determinant for NTCP function 

as an HBV entry receptor. It remains to be elucidated why mNTCP does not support HBV infection, 

but mNTCP was shown to support specific binding of the preS1-lipopeptide on the cell surface, 
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although the binding capacity of mNTCP to the preS1 region appears to be weaker than that of  

hNTCP [44]. It is possible that the binding of HBV to NTCP is not sufficient and requires an 

additional molecule or mechanism to trigger the following early infection process. 

HDV is a virusoid-like particle, which depends on HBV for assembly and propagation [46]. HDV 

shares the HBV envelope proteins, LHBs, MHBs and SHBs, and its attachment/early entry mechanism 

seems to be very similar to that for HBV. Due to its completely different replication strategy, it is very 

likely that it depends on different cellular factors and follows different pathways after membrane 

fusion. Intriguingly, HDV infection can be observed by complementing hNTCP in either  

mouse-derived Hepa1-6, MMHD3 and Hep56.1D cells, rat hepatocyte TC5123 cells or non-hepatocyte 

HeLa, CHO and Vero cells. This is in stark contrast to HBV, which cannot infect these cells [38,44]. 

This suggests that HBV requires additional host factors for infection or is restricted at a post-entry step 

prior to covalently closed circular DNA (cccDNA) formation. It is of particular interest to clarify the 

molecular mechanisms underlying the different cellular requirements between infection by HBV and 

HDV, especially when trying to establish a susceptible mouse model in the future. 

4. Other Factors Essential for HBV Infection?  

It is presently unclear whether there are additional cellular factors besides NTCP required for viral 

infection and determining the tissue and species tropism of HBV. These include factors essentially 

involved in the viral lifecycle during attachment, internalization, endocytosis, membrane fusion, 

uncoating, nuclear translocation and cccDNA formation and those affecting post-entry restriction. 

Overexpression of hNTCP in mouse hepatocyte cell lines, such as Hepa1-6 and MMHD3 cells, did not 

confer susceptibility to HBV infection, in contrast to the HBV infection observed after NTCP 

introduction into HepG2 cells [44]. hNTCP conferred efficient HBV infection in HepG2 cells, but only 

a low efficiency of infection was observed in Huh-7 and undifferentiated HepaRG cells and no 

detectable infection to mouse and rat hepatoma cells, including Hep56.1D, Hepa1-6 and TC5123  

cells [38]. We also showed that different HepG2 clone isolates that similarly expressed high levels of 

ectopic NTCP, but were likely to have different cellular genetic backgrounds, had diverse efficiencies 

of HBV infection [43]. These observations favor the existence of additional host factors determining 

susceptibility to HBV infection. For hepatitis C virus (HCV) infection, multiple cellular factors are 

required for efficient viral entry, including low density lipoprotein receptor (LDLR), scavenger 

receptor class B type I (SR-BI), CD81, occludin (OCLN) and claudin-1 (CLDN-1) as viral entry 

receptors and Niemann-Pick C1-like 1 (NPC1L1), epidermal growth factor receptor (EGFR) and 

ephrin A2 (EphA2) as other factors involved in entry [21,47,48]. It has been reported that the 

complementation of both hCD81 and hOCLN are required for rendering high HCV susceptibility in 

mice [49]. Furthermore, in the case of duck hepatitis B virus (DHBV), multiple factors are suggested 

to be essential for efficient viral infection. Carboxypeptidase D was confirmed to bind the DHBV 

envelope and function in viral attachment and entry [50]. However, overexpression of this protein 

alone in Huh-7 cells did not support DHBV infection [51]. Carboxypeptidase D was able to bind to 

DHBV and heron HBV, which did not infect primary duck hepatocytes, and this protein is also 

expressed in non-liver tissues [52]. Thus, additional factors are likely to be required to explain DHBV 

susceptibility, one candidate of which can include duck NTCP [53]. These examples in viruses that 
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utilize multiple receptors favor pursuing the identification of additional cellular factors crucial for 

HBV entry. 

5. General Characteristic Features of NTCP  

NTCP, also designated as solute carrier family 10A1 (SLC10A1), is a member of the SLC10 

transporter gene family. The SLC10 family consists of seven members (SLC10A1–7). Among these, 

NTCP and apical sodium-dependent bile salt transporter (ASBT), also known as SLC10A2, are 

sodium-dependent transporters for bile acids [54]. NTCP is mainly distributed at the basolateral 

membrane of hepatocytes and plays a major role in the hepatic influx of conjugated bile salts from 

portal circulation [55,56]. NTCP on the plasma membranes in hepatocytes binds two sodium ions 

together with one molecule of preferentially conjugated bile salt for uptake. In addition to bile salts, 

NTCP, like other transporters, binds and/or transports other molecules, including steroid hormones, 

thyroid hormones, drug-conjugated bile salt and a variety of xenobiotics [57,58]. hNTCP is a 349 aa 

protein with an apparent mass of 56 kDa and includes a putative seven or nine transmembrane domains 

with a predicted topology of N-terminal extracellular and C-terminal intracellular ends [59–61]. While 

the structure of NTCP has not been resolved, the crystal structures of the ASBTs from Neisseria 

meningitis (ASBTNM) and Yersinia frederiksenii (ASBTYf) were recently reported [62,63]. ASBTNM 

shows a ten transmembrane domain and a hydrophobic inward-facing binding cavity. This structure is 

different from the model for hASBT currently favored based on bioinformatic prediction and 

experimental data, which carry seven to nine transmembrane helices with N-terminal extracellular  

and the C-terminal cytoplasmic domain [60,64,65]. A structural analysis of ASBTYf proposed  

two conformations, inward- and outward-open structures of bile salt transporters by rotating two core 

helices transmembrane (TM)-4 and TM9 [63]. Because ASBTNM and ASBTYf has only 26% and 22% 

homology, respectively, with hASBT and even lower homology with hNTCP [62,63], it is uncertain 

whether the structural features of ASBTNM or ASBTYf are useful for designing drugs targeting hASBT 

and hNTCP. 

Several single nucleotide polymorphisms (SNPs) that alter the transporter activity of NTCP have 

been reported [66,67]. As non-synonymous SNPs, I223T, a variant seen in 5.5% of allele frequencies 

in African Americans, decreased plasma membrane-localized NTCP and reduced its transporter 

activity. The S267F variant, seen in 7.5% of allele frequencies in Chinese Americans, exhibited almost 

complete loss of function for bile acid uptake, but possessed normal transport activity for the non-bile 

acid substrate, estrone sulfate. Another report showed that the A64T and S267F variants, carried by 

1.0% and 3.1% of allele frequencies in Koreans, respectively, decreased the uptake of taurocholic acid. 

These polymorphisms are dependent on ethnicity. However, there have been no reports of serious 

diseases associated with defects in the NTCP gene. No reports describing NTCP knockout mice have 

been published to date. Thus, it is difficult to draw conclusions on whether the physiological roles of 

NTCP are complemented by other factors that share the redundant physiological function and whether 

NTCP inhibition is able to safely serve as an anti-HBV drug target. 

Importantly, it was very recently reported that molecular determinants for the transporter function 

of NTCP overlapped with those for the ability to support HBV entry [68]. NTCP mutations in amino 

acids that were critical for bile salt binding (N262A, Q293A/L294A) abrogated both the binding to 
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preS1 peptide and the infection of HBV. The S267F variant of NTCP could neither bind to the preS1 

region nor support HBV infection in cell culture. 

6. NTCP as a Target for Anti-HBV Agents  

In general, the viral entry process is an attractive target for the development of antiviral agents.  

As noted above, the 2–48 aa region of preS1 in the LHBs protein is important for HBV infection [31]. 

Myrcludex-B, which is an optimized synthetic lipopeptide consisting of the myristoylated 2–48 aa 

region of preS1, is able to strongly inhibit HBV infection in both cell culture and an in vivo mouse 

model [36]. The IC50 in a cell culture model was reported to be approximately 100 pM [35]. Following 

the successful clinical development of enfuvirtide as the first peptidic HIV entry inhibitor mimicking 

the region derived from the viral gp41 envelope glycoprotein [69], Myrcludex-B is now under clinical 

development in phase Ib/IIa [70]. Mechanistically, Myrcludex-B binds hNTCP and inactivates its 

receptor function for HBV and HDV (Figure 1). Remarkably, IC50 to the transporter activity of NTCP 

was approximately 4 nM [38], showing that binding saturation is not required for receptor inactivation, 

thus allowing a therapeutic window for infection inhibition without a complete abrogation of bile salt 

transportation [38]. Thus, agents targeting NTCP are expected to be potent candidates that act as  

anti-HBV drugs. 

Cyclosporin A (CsA) is the first line of such compounds revealed to inhibit HBV infection by 

targeting NTCP [42,45]. CsA is known to be an immunosuppressant classified as a calcineurin 

inhibitor and is clinically used for the suppression of the immunological failure of xenografts after 

tissue transplantation [71]. In cell culture analyses, CsA was also reported to suppress the replication 

of numerous viruses, including HIV, HCV, influenza virus, severe acute respiratory syndrome 

coronavirus, human papillomavirus, flaviviruses and HBV [72–79]. In most of these cases, 

cyclophilins (CyPs), cellular peptidyl prolyl cis-trans isomerases that catalyze conformational changes 

in proteins and are the primary cellular target for CsA, were critical for efficient viral replication, and 

CyP inhibition by CsA was responsible for antiviral activity. However, the anti-HBV entry activity of 

CsA was not mediated by the inhibition of CyP, but rather, via direct targeting of NTCP. CsA bound to 

NTCP on the plasma membrane and inhibited transporter activity (Figure 1) [42,45]. It also inhibited 

binding between LHBs and NTCP in vitro (Figure 1) [42]. This suggests that CsA interacted with 

NTCP, thus inhibiting the recruitment of LHBs of incoming HBV to NTCP on the plasma membrane 

and blocking HBV entry. The anti-HBV activity of CsA was pan-genotypic [42]. Moreover, our 

derivative analysis identified a series of CsA analogs having a stronger anti-HBV entry activity with a 

submicromolar IC50 [42]. Notably, non-immunosuppressive CsA analogs may be potent anti-HBV 

agents. Given that non-immunosuppressive CsA analogs, including alisporivir (Debio 025) and  

SCY-635, have significant activity in decreasing HCV viral load in clinical trials and are regarded as 

promising anti-HCV drug candidates [80,81], further derivative analysis of CsA may be a reasonable 

approach for drug development. 

As other examples, compounds known to be NTCP inhibitors, including progesterone, propranolol 

and bosentan, have been shown to block HBV infection (Figure 1) [42]. NTCP substrates, such as 

taurocholate, tauroursodeoxycholate and bromosulfophthalein, also inhibited HBV infection [38,42,68]. 

An anticholesteremic drug, ezetimibe, has been shown to block HBV entry [82], and this drug was 
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reported to inhibit the NTCP transporter [83]. These results indicate that compounds modulating 

NTCP function could substantially inhibit HBV infection. HepG2 cells engineered to overexpress 

NTCP are also useful for high-throughput screening to identify compounds targeting NTCP and 

inhibiting HBV infection. One example identified in such chemical screening is the oxysterols, which are 

oxidized derivatives of cholesterol or by-products of cholesterol biosynthesis [43]. 

Host-targeting antivirals are generally expected to have significant advantages, including a much 

lower frequency drug resistance, universal antiviral effects beyond viral genotypes and complementary 

mechanisms of action that might act in a synergistic manner with currently available antiviral  

agents [48]. More importantly, they offer an additional therapeutic choice, given that only IFNs and 

nucleoside analogs are currently available as anti-HBV agents. 

7. Conclusions  

Identification of NTCP as an HBV entry receptor has accelerated the understanding of HBV 

molecular biology and offered useful experimental systems to analyze the HBV and HDV lifecycle, 

including the identification of host restriction and dependency factors. NTCP also represents a new 

therapeutic target in the development of new anti-HBV agents. Further analyses using a new cell 

culture system are necessary in order to clarify the molecular mechanisms underlying NTCP-mediated 

HBV infection and to establish an in vivo small animal model that fully supports HBV infection. 
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