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Abstract: The aim of the study was to investigate the effect of a sustained release of bone 

morphogenetic protein2 (BMP-2) incorporated in a polymeric implant coating on bone 

healing. In vitro analysis revealed a sustained, but incomplete BMP-2 release until Day 42. 

For the in vivo study, the rat tibia osteotomy was stabilized either with control or BMP-2 

coated wires, and the healing progress was followed by micro computed tomography 

(µCT), biomechanical testing and histology at Days 10, 28, 42 and 84. MicroCT showed an 

accelerated formation of mineralized callus, as well as remodeling and an increase of 

mineralized/total callus volume (p = 0.021) at Day 42 in the BMP-2 group compared to  

the control. Histology revealed an increased callus mineralization at Days 42 and 84  

(p = 0.006) with reduced cartilage at Day 84 (p = 0.004) in the BMP-2 group. 

Biomechanical stiffness was significantly higher in the BMP-2 group (p = 0.045) at Day 42. In 

summary, bone healing was enhanced after sustained BMP-2 application compared to the 

control. Using the same drug delivery system, but a burst release of BMP-2, a previous 
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published study showed a similar positive effect on bone healing. Distinct differences in 

the healing outcome might be explained due to the different BMP release kinetics and 

dosages. However, further studies are necessary to adapt the optimal release profiles to 

physiological mechanisms. 

Keywords: sustained bone morphogenetic protein-2 (BMP-2) release; implant coating; 

impaired bone healing; micro-computed tomography (µCT); histology; biomechanical testing 

 

1. Introduction 

Fracture healing is a complex physiological and a temporally coordinated process of cells, growth 

and differentiation factors, hormones, cytokines and extracellular matrix interactions. The healing 

process can be divided into three phases: inflammation, repair and remodeling [1]. The initial 

inflammatory phase is mainly characterized by non-specific wound healing pathways combating 

infection, removing cell debris and organizing the fracture hematoma. Subsequently, signaling 

pathways controlling tissue regeneration and remodeling are activated. Fibrous tissue and cartilage 

formation followed by primary bone formation and cartilage resorption are mainly guided by the 

expression of members of the transforming growth factor TGF-β superfamily, like bone 

morphogenetic proteins (BMPs) [2]. Although different BMPs are closely related in structure and 

function, they exhibit different temporal patterns of expression at different stages of fracture healing. 

In particular, BMP-2 plays a key role influencing chondrogenesis and osteogenesis [3,4], as well as  

re-vascularization [5]. BMP-2 is considered essential in fracture healing, since Tsuji et al. 

demonstrated that mice with impaired BMP-2 expression showed normal skeletal development, but 

impaired fracture healing, and although other BMPs could compensate for the lack of BMP-2 during 

bone development, none are able to substitute for the function of BMP-2 during bone healing [6]. 

Therapies for bone regeneration using cytokines with bone-inducing activities, such as BMPs, basic 

fibroblast growth factor, vascular endothelial growth factor, platelet-derived growth factor or insulin-like 

growth factor have recently attracted attention [7]. BMP-2 and BMP-7 have been approved for clinical 

use [8,9]. However, early diffusion, absorption of single dosages or a temporally inappropriate 

application may limit the bone inductive effects or may even demand higher dosages. A prolonged  

and controlled delivery of growth factors would offer the chance to adapt treatment strategies to 

physiological expression patterns of the specific factors and, therefore, BMP-2 treatment could be 

more efficient for the stimulation of healing. It has been proven in various animal models that the 

BMP-2 signaling cascade starts the early moments of the initial phase of bone healing, triggering the 

inflammatory response and periosteal activation. However, BMP-2 is also important during later 

phases of chondro- and osteogenesis [10–13]. Experimental models testing the effect of a time-delayed 

BMP-2 application either by using void filling materials [14,15] or adenoviral vector [16] showed 

promising results. In a previous study, Strobel et al. [17] demonstrated the possibility to achieve a 

sequential and delayed release of growth factors from a one-component polymeric implant coating.  

As a follow-up the present study investigated the effect of a sustained BMP-2 release from a  
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poly(D,L-lactide) (PDLLA) implant coating on bone healing in an animal model showing impaired 

bone healing. The impaired healing model was established and described in a previous study [18]. 

2. Results and Discussion 

2.1. Results 

2.1.1. In Vitro Release Kinetics 

In vitro elution studies showed a sustained release of the incorporated BMP-2. The weak burst 

release within the first day was followed by a sustained release of approximately 1 µg BMP-2 in total 

until Day 42 (Figure 1). 

Figure 1. Cumulative bone morphogenetic protein 2 (BMP-2) release from the  

poly(D,L-lactide) (PDLLA) implant coating (n = 3). Mean values with standard deviation  

are depicted. 

 

2.1.2. Micro-Computed Tomography Evaluation 

The 3D reconstruction of specimens exemplary chosen showed an increasing callus mineralization 

over time in both control and BMP-2 treated groups (Figure 2a). At Day 84 the callus volume 

decreased in both groups, but slightly more in the BMP-2 treated animals. 

The µCT data revealed an increase in callus size from Day 10 to 28 and a decrease from Day 28 to 84 

in both groups (Figure 2b). Between Days 28 and 84, the total callus volume tended towards a 

reduction in the BMP-2 group, but not to a significant extent. At Day 10, approximately a fifth of the 

total tissue was mineralized in both groups without a significant difference. Over time, the amount of 

mineralized tissue increased, resulting in nearly 90% mineralized tissue in the total callus (Figure 2b). 

The mineralization of the callus was significantly higher in the BMP-2 group compared to the control 

at Day 42 (p = 0.021). 
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Figure 2. (a) µCT 3D reconstructions of selected tibiae of the control and the BMP-2 

group over the healing time points. The scans were performed with the Viva40 µCT 

(Scanco) with a voxel size of 25 µm. The cortical bone has been removed. Scale bar: 1 mm; 

(b) Results of the µCT analysis of the control (ctrl) and the BMP-2 treated groups. The first 

graph shows the bone volume and total volume (total callus volume, including bone 

volume), and the percentage amount of mineralized bone in the total callus region is 

depicted in the second graph. The bone volume/total volume (in %) was significantly 

increased at Day 42 in the BMP-2 group compared to the control group. 

 

2.1.3. Histology and Histomorphometry of the Healing 

At Day 10, the periosteal callus tissue of both groups consisted of inflammatory cells, reparative 

granular cells (fibroblasts), chondrocytes and early woven bone. The callus area and amount of 

cartilage was comparable between both groups. 

Histological analysis (Movat pentachrome staining) revealed accelerated callus maturation in the 

BMP-2 group (Figure 3), which supported previous µCT data. At Day 28 in both groups, a prominent 

callus was visible consisting of mineralized woven bone adjacent to the cortex and cartilage and 

connective tissue within the osteotomy gap. At Day 42, the osteotomy gap was still filled with 

connective tissue in the control group, whereas in the BMP-2 group, the defect was bridged by 

mineralized woven bone. The amount of fibrous tissue in the gap was reduced at Day 84 in the  

control group, with an increase in mineralized tissue, but mineralized bridging was not completed. In  

the BMP-2 group, less fibrous tissue was visible, and the remodeling of the woven bone was  

already initiated. 
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Figure 3. Histological staining of the calluses of the control and the BMP-2 group at  

Days 28 and 84. Movat pentachrome stainings of the two groups (control group: a,b; and 

BMP-2 group: c,d) at Days 28 (a,c) and 84 (b,d). The arrows point to the osteotomy gap. 

At Day 28, the calluses of both groups showed no fully mineralized bridging, as fibrous 

tissue was still filling the gap above the osteotomy. After 84 days, the healing progressed 

with fully mineralized callus in the BMP-2 group. Scale bar: 500 µm. 

 

The histomorphometrical analysis revealed a slight decrease in the total callus area from Day 28 to 

84 in both groups. The amount of mineralized tissue in the callus decreased in the control group from 

48.4% at Day 28 to 40.5% at Day 42, but then increased to 59.0% at Day 84. In the BMP-2 group, the 

amount of mineralized callus tissue increased constantly from 55.6% up to 90.8% at Day 84. A 

significant difference between the groups was found at Days 42 and 84. The cartilage proportion of the 

callus slightly decreased from Day 28 to 42 (6.2% to 4.6%) and afterwards slightly increased up to 

6.9% in the control. In the BMP-2 treated animals, there was a constant decrease, and at Day 84, only 

one animal still had a small island of cartilage; in all other animals, cartilage was replaced by 

mineralized tissue (Figure 4). 

2.1.4. Biomechanical Testing 

The osteotomized tibiae reached at no time point the mechanical properties of the intact 

contralateral tibiae. 

The stiffness of the tibiae from the control group increased only slightly from Day 28 to 84 after 

osteotomy, not reaching more than 45% of stiffness of the intact contra-lateral tibiae. 
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In the BMP-2 group, values steadily rose and biomechanical strength reached 79% compared to the 

intact bone at Day 84, however, with a high variation. Values between both groups were significantly 

different at Day 42 (p = 0.045) (Figure 5). 

Figure 4. Histomorphometry-based data of the callus composition (mineralized tissue area 

and cartilage tissue area relative to the total callus area) over time. The mineralization of 

the callus was significantly enhanced in the BMP-2 group at Days 42 and 84 (p = 0.006), 

whereas the cartilage area was significantly reduced after BMP-2 treatment at Day 84  

(p = 0.004). 

 

Figure 5. Results of the biomechanical testing of osteotomized tibiae expressed as 

normalized stiffness to the respective intact tibia. 
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2.2. Discussion 

The present study investigated the effect of local and sustained release of BMP-2 on impaired 

osteotomy healing in a rat model. For drug delivery, a well-established polymeric implant coating was 

used and modified by varying the ratio of polymer/solvent/drug to realize a sustained drug release over 

at least 42 days. Healing was followed over a period of 84 days, and a significant improvement was 

seen, as shown by µCT, histomorphometry and mechanical testing. 

A previous study used the same animal model and drug delivery system, but releasing the BMP-2 

with an initial burst of approximately 50% within the first two days [19]. The evaluation of the healing 

showed a stimulation of the healing process, as seen by a significant higher stiffness and load after 

Days 28 and 42 accompanied by a higher mineralization at Day 42. 

Comparing the sustained release of BMP-2 described in our study, with this previous study, the 

sustained release resulted in a slightly later improvement of the healing with a significant increase in 

the ratio of bone volume/total volume and the stiffness at Day 42 and a higher mineralization at Days 

42 and 84. This slightly delayed stimulation of healing might be explained by the different release 

kinetic profiles. The initial burst release resulted in an early stimulation of the healing, whereas with 

the sustained release, a healing stimulation was more profound at the later time points. The different 

release kinetics were obtained by modifying the coating. The coating showing the burst release was 

made of 100 mg of PDLLA in 1.5 mL ethyl acetate and 5% of BMP-2 (w/w in poly(D,L-lactide)) 

resulting in 50 µg of BMP-2 per implant), whereas in the presented study, the amount of PDLLA was 

doubled and only half of the BMP-2 concentration was used (2.5% w/w in PDLLA, resulting in 40 µg 

of BMP-2 per implant). As shown in a previous study, the increase of total PDLLA leads to a 

thickening of the coating layer and, therefore, to a prolonged release, whereas the unreleased BMP-2 is 

still incorporated in the coating, as detected by the enzyme linked immunosorbent assay method [17]. 

This coating modification ensured different release kinetics with a similar drug load. However, the 

released dosage has to be considered. Using the burst release approach an approximate release of 80% 

BMP-2 is expected after 42 days [20], resulting in approximately 40 µg in that study. The sustained 

release, however, was not completed after 42 days, and only around 1 µg was released. The release 

experiment was performed with phosphate buffered saline as elution medium. A previous study 

showed that the use of cell culture medium resulted in an increased amount of released factors [17], 

and a different release in vivo might be expected, but is not proven. However, based on the obtained 

different released profiles, the much lower BMP-2 dosage used in this study showed a similar 

effectiveness than the higher burst release dosage used in the previous study. Even if this is a very 

extreme difference, the fact that a dosage reduction can be similarly effective at a higher dosage has 

been shown earlier. A study published as early as 1994 showed that the same healing result can be 

obtained with different dosages of osteogenic protein-1 (BMP-7) ranging from 6.15 to 400 µg used to 

fill a 1.5-cm segmental defect of the rabbit ulnar [21]. These extreme differences in the dosage are 

somehow comparable to the dosages used in the present and the previous study for the stimulated  

bone healing in that rat osteotomy model [1]. A current study also using BMP-7, but loaded onto a 

polycaprolactone scaffold for a 3-cm critical size tibia defect in a sheep model, showed that the lower 

dosage (1.75 mg) was as effective as the higher dosage (3.5 mg) [22]. 
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Several experimental studies investigated the effect of the timing of growth factor delivery. The 

addition of BMP-2 at different time points after initial implantation of hydroxyapatite matrices 

revealed a less effective ectopic ossification compared to the simultaneous application of BMP and  

the matrices [23]. The implantation of the matrix four weeks before BMP application resulted in the 

weakest ossification and indicated that tissue already formed around the implant might have reduced 

the ability of applied BMP-2 to recruit mesenchymal progenitor cells from the surrounding to stimulate 

bone formation. A less delayed application (one week) revealed no significant difference compared to 

simultaneous application. Betz et al. [16] also used different application time points to investigate the 

effect of BMP on bone healing. They observed a higher incidence of bone union with greater bone 

mineral content and improved mechanical strength in animals receiving an adenoviral BMP-2 vector 

injection at Days 5 and 10 rather than intraoperatively or 24 h after the creation of a femoral critical 

size defect. The modification of drug release and dosage by different viral transfection methods (short 

term, high dosage: adenoviral; prolonged, low dosage: lentiviral) resulted in a trend towards the better 

healing of a femoral defect when the BMP-2 was expressed more prolongedly, but with a lower  

dosage [24]. Further Asamura et al. [14] used a dog model of orbital defects. Bone defects were filled 

either with a complex of BMP-2 saturated gelatin hydrogel encased by a substance-free biodegradable 

copolymer for a sustained release or with the copolymer directly saturated with the same amount of 

BMP-2 for an accelerated release. Those authors described an enhanced formation of new bone and 

improvement in defect healing after the usage of the slow release construct. A direct comparison of 

drug release kinetics on bone healing was carried out using BMP-2 absorbed to deproteinized bone 

(fast release) or by deproteinized bone bearing a coating-incorporated depot of BMP-2 (slow release) [25]. 

The slower release was more efficient than the faster release, shown by the histomorphometric analysis 

of the bone healing process. 

The optimal time point for BMP stimulation, however, needs to be analyzed. A very detailed 

analysis of the expression of several members of the TGF-β superfamily revealed a very early 

expression of BMP-2 (Day 1 after fracture) that was followed by a continuously elevated expression 

level peaking again at Day 21 [10]. If a stimulation at two time points might be more effective 

compared to a more continuous delivery must be clarified in future studies. 

Loading calcium phosphate cement with different concentrations of BMP-2 only, the higher 

concentration was sufficient to stimulate bone formation [26]. For the high concentration, polymeric 

microparticles loaded with 10 µg BMP-2 and, for the low concentration, loaded with 2 µg BMP-2 

were used, mixed with cement and implanted in an 8-mm cranial defect. This study utilized in vivo 

imaging and found that only 30% of the incorporated BMP-2 was released after five weeks. This 

incomplete release was also expected in the present study based on the in vitro release experiments. 

The polymeric implant coating used in the present study has been investigated in detail over the last 

decade. The properties fulfil the requirements, such as mechanical stability, storability, good 

biocompatibility and the possibility, to incorporate various substances [20,27–30]. However, 

differences in the degradation processes of the coating between in vitro and in vivo studies are 

expected, and an in vivo study on the drug release may prove helpful in clarifying this issue. 

Even if very different drug delivery approaches and alternative animal models were used, a 

prolonged application of a lower BMP amount seems to be as effective as higher BMP burst amounts. 

The release kinetics can be modified by various methods, as described above. Therefore, the right drug 
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release system seems to be an important tool for the optimization of BMP therapy. The studies 

mentioned previously utilized either scaffolds for defect filling or adenoviral BMP vector injections. 

The greatest benefits of scaffolds is in filling defects, but if no space needs to be filled, a local and 

controlled release from an implant coating is a suitable alternative. 

3. Experimental Section 

If not stated otherwise, all companies or laboratories were located in Germany. 

3.1. Polymer Coating of Titanium Kirschner-Wire (K-Wires) 

The polymer, poly(D,L-lactide) (PDLLA, Boehringer Ingelheim, Ingelheim), was used as the drug 

delivery system for the coating of titanium Kirschner-wires (k-wires, 1 mm, Synthes, Oberdorf, 

Switzerland). Two-point-five percent of BMP-2 (Osteogenetics GmbH, Würzburg, Germany) was 

added to a PDLLA solution (200 mg/1.5 mL ethyl acetate, Sigma Aldrich, Taufkirchen, Germany), and 

the wires were coated by dipping twice, up to a length of 45 mm. 

This resulted in a total amount of approximately 40 µg BMP-2 in the coating of the entire wire. The 

coated wires were stored sterile packed at −20 °C with desiccant to avoid humidity until usage. All 

steps were prepared under a laminar air flow and sterile conditions. 

3.2. In Vitro Release Kinetics 

In vitro release kinetics were performed after Strobel et al. [17]. Briefly, the coated wires were 

placed in 15-mL Falcon tubes with 5-mL sterile phosphate buffered saline (PBS plus 1% BSA, 

Biochrom GmbH, Berlin, Germany) completely covering the coating (n = 3). Samples (0.5 mL) were 

taken and analyzed at different time points up to eight weeks. The sample volume was substituted with 

fresh PBS. The elutions were performed in an incubator at 37 °C, 5% CO2 and 95% humidity, and 

BMP-2 was quantified using the BMP-2 ELISA construction-kit (Antigenix-America, Huntington, NY, 

USA). The cumulative release kinetics between the sampling time points were calculated. 

3.3. Surgical Model 

All animal experiments were approved by the local authorities (G0006/10) and complied with 

international legal regulations. Five-month old female Sprague Dawley rats (Charles River 

Laboratories International, Inc., Sulzfeld, Germany), weighing 250–280 g, were used. The osteotomy 

model has been described in a previous paper [18]. Briefly, anesthesia was performed with isoflurane 

and by an intraperitoneal injection of a ketamine/xylazine mixture (80 and 12 mg/kg body weight, 

respectively). The right lower leg was shaved and disinfected. The medullary cavity of the tibia was 

opened and reamed twice. The tibia was osteotomized at the midshaft level using a diamond disk 

(HORICO, Berlin, Germany). For stabilization, a wire coated with substance-free PDLLA (control) or 

BMP-2 in PDLLA was inserted from the proximal end of the tibia into the medullar canal. The fibula 

was fractured manually. The wound was closed, and gentamycin ointment was applied locally. For 

pain prophylaxis, the animals received buprenorphine (0.05 mg/kg body weight subcutaneously) for 
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the first 3 days after the intervention. Euthanasia was performed in deep anesthesia by an intracardiac 

injection of potassium chloride. 

3.4. Radiography and Micro Computed Tomography (µCT) 

After anesthesia with isoflurane and intraperitoneal injection of a ketamine/medetomodin mixture 

(10 and 0.15 mg per animal, respectively), the rats were placed in a custom-made scanning bed for the 

µCT analysis. The right leg was fixed by adhesive tape strips to ensure horizontal positioning of the 

tibia. A Viva 40 µCT (Scanco medical AG, Brüttisellen, Switzerland) was used to scan the specimens  

at a voltage of 55 kV and a current of 145 µA with a voxel size of 25 μm and a total scanning distance 

of 25.6 mm. On each two-dimensional tomogram, the cortical bone was masked out using a manually 

drawn contour. The resulting grey scale images were segmented using an adaptive threshold. 

3.5. Biomechanical Testing 

After sacrifice, both tibiae of each animal were prepared, and soft tissue was removed carefully. For 

biomechanical testing, the bones were fixed in a special device and preloaded with an axial force of 5 N. 

A constant linear propulsion (1 mm/min), generated by a material testing machine (Zwick 1455, Ulm, 

Germany), was applied to a lever arm attached to one of the pivoted axes for transforming the 

translation of the material-testing machine to a uniform torsional movement. The other side was 

connected with a load cell (Fmax = 50 N, HBM, Darmstadt, Germany), which recorded the force. 

Maximum load and torsional stiffness was calculated. The values were expressed as the percentages of 

the contralateral intact tibia. 

3.6. Histological Analysis 

For histological evaluation, the soft tissue was removed from the entire tibia, taking care not to 

destroy the callus tissue. Bones were fixed for 48 h in 10% normal buffered formalin. Bone specimens 

taken at Day 10 were decalcified with ethylenediaminetetraacetate (EDTA), dehydrated, embedded in 

paraffin and longitudinal sections (4 μm; Leica SM 2500s microtome, Wetzlar, Germany) were made. 

Slices were stained with hematoxylin and eosin (HE) and Alcian blue. The samples of the later time 

points (Days 28–84) were embedded in polymethylmethacrylate (Technovit 9100 neu; Heraeus Kulzer, 

Wehrheim, Germany). Longitudinal sections (4 μm) were cut and stained with Safranin orange/van 

Kossa. For the evaluation, a region of interest (ROI) was defined, including the zone of reactive callus 

proximal and distal from the center of the osteotomy gap extended in length 1.5-fold of the individual 

cortical bone diameter. At Day 10, the reactive callus (HE), cartilaginous fraction (Alcian blue), as 

well as early woven bone (Movat pentachrome) was quantified. At the later time points, Days 28–84, 

the amount of mineralized and cartilaginous tissue (Safranin orange/van Kossa) was evaluated. Two 

image analyzing systems were used: (1) Image J for callus composition and cartilaginous fraction at 

Day 10; (2) KS 400; Zeiss, Göttingen for mineralized and non-mineralized tissue amount at Days 28, 

42 and 84 Movat-Pentachrom staining was done for overview pictures. 

A group size of n = 6 per time point for histology and biomechanical testing was planned. Due to 

death during anesthesia, implant dislocation or problems during the processing, 8 specimens were lost. 
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3.7. Statistical Analysis 

The number of animals ranged between 4 and 9 animals per group, depending on the method and 

time point (Table 1). Animals of the control group were part of a previously conducted study [30], 

because the 3-R principle (replace, reduce and refine) is demanded for animal experiments. For the 

histomorphometry, new histological slices were stained and analyzed. For statistical comparison of the 

treatment groups, the Mann–Whitney U test for non-parametric data (PASW Statistics 18.0; SPSS, 

IBM, New York, NY, USA) was used. A p-value of less than 0.05 was taken as a significant 

difference. Values are given as medians and the 25%–75% percentile and whiskers represent minimum 

and maximum values. 

Table 1. Number of animals and investigated parameters of the osteotomized tibia at the 

different post-operative time points. 

Group 
Specimen per method and time point 

µCT * Histomorphometry Biomechanics 

Day 10 28 42 84 28 42 84 28 42 84 
Control 8 8 8 4 5 6 6 5 5 5 
BMP-2  9 6 9 9 4 5 5 6 6 6 

* The µCT imaging was made with animals used later for histological or biomechanical analysis. 

4. Conclusions 

Sustained BMP-2 application resulted in an improved bone healing with enhanced mineralization, 

remodeling and biomechanical stiffness compared to the control. Comparing the data from this study 

using a sustained, but incomplete release of BMP-2 (only approximately. 1 µg) to the previous study 

with the initial burst and complete release of BMP-2 (approximately. 40 µg), a comparable healing 

outcome could be detected. As a result, the sustained release of a much lower amount of BMP-2 had 

the same efficacy, as the high burst release. These results indicate the need to optimize the BMP-2 

concentrations for sufficient stimulation of bone healing. Further work is necessary to modify release 

systems that meet the requirements for dosage and release kinetics. 
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