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Abstract: Despite the use of extensive antihypertensive therapy in patients with hypertension, 

little attention has been paid to early identification and intervention of individuals at risk for 

developing hypertension. The imbalance between nitric oxide (NO) and reactive oxygen 

species (ROS) resulting in oxidative stress has been implicated in the pathophysiology of 

hypertension. NO deficiency can precede the development of hypertension. Asymmetric 

dimethylarginine (ADMA) can inhibit nitric oxide synthase (NOS) and regulate local 

NO/ROS balance. Emerging evidence supports the hypothesis that ADMA-induced NO–ROS 

imbalance is involved in the development and progression of hypertension. Thus, this review 

summarizes recent experimental approaches to restore ADMA–NO balance in order to 

prevent the development of hypertension. Since hypertension might originate in early life, 

we also discuss the putative role of the ADMA–NO pathway in programmed hypertension. 

Better understanding of manipulations of the ADMA–NO pathway prior to hypertension  

in favor of NO will pave the way for the development of more effective medicine for  

the treatment prehypertension and programmed hypertension. However, more studies are 

needed to confirm the clinical benefit of these interventions. 
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1. Introduction 

Hypertension is a highly prevalent disease globally that might originate during early life. Oxidative 

stress is a persistent oxidative shift that characterizes a pathological state, mainly caused by the 

imbalance between reactive oxygen species (ROS) and nitric oxide (NO). Oxidative stress and NO 

deficiency have been implicated in the pathophysiology of hypertension [1–3]. NO deficiency can 

precede the development of hypertension [4,5]. In addition, emerging evidence supports that NO–ROS 

imbalance is important for programmed hypertension [6–8]. 

NO deficiency can be caused by decreased nitric oxide synthase (NOS) expression/activity, 

decreased L-arginine availability (the substrate for NOS), inactivation due to oxidative stress, and 

inhibition by asymmetric dimethylarginine (ADMA, an endogenous NOS inhibitor). Among the reasons 

for NO–ROS imbalance, increasing attention has been centered on ADMA [9]. ADMA can reduce the 

synthesis of NO; however, it induces superoxide production by uncoupling NOS. Thus, cellular ADMA 

concentrations tightly regulate the local NO–ROS balance [9,10]. The kidney is an important long-term 

regulator of blood pressure and has been identified as a key player in programmed hypertension [11].  

A better understanding of the role of the ADMA–NO pathway, specifically in the kidney,  

in the development of hypertension will allow us to develop ideal therapeutic strategies for patients  

with prehypertension. 

This review aims to summarize evidence linking NO–ROS imbalance to the development of 

hypertension, with an emphasis on various manipulations of the ADMA–NO pathway prior to hypertension 

in favor of NO as a therapeutic approach for prehypertension and programmed hypertension. 

2. Asymmetric Dimethylarginine (ADMA): A Link between Nitric Oxide (NO) and Reactive 

Oxygen Species (ROS) in the Development of Hypertension 

Several groups, including our own, have found that ADMA is involved in the development and 

progression of hypertension [8–14]. Free ADMA levels are controlled by the counterbalancing type I 

protein arginine methyltransferase (PRMT) and dimethylarginine dimethylaminohydrolase (DDAH) 

pathways. PRMT-1 is the major type I PRMT enzyme responsible for ADMA synthesis, whereas 

DDAH-1 and -2 are responsible for ADMA breakdown [9,13]. ADMA can also be transported to other 

organs by cationic amino acid transporter (CAT) or renally excreted. ROS has been shown to increase 

PRMT-1 and inhibit DDAH activity leading to an increase in ADMA [15–17]. However, the NOS 

isoenzymes become uncoupled in the presence of high ADMA levels, further contributing to the oxidative 

stress burden. That is, ADMA can cause superoxide production but inhibit NO synthesis. Thereby, 

ADMA is considered as a major player leading to NO–ROS imbalance. Even though elevated ADMA 

levels were reported in human hypertension and diverse animal models of hypertension [9,10,12,13], 

little attention has been paid to elucidate whether ADMA induces NO–ROS imbalance and consequently 

programmed hypertension. Given that intracellular ADMA levels are mainly regulated by PRMT and 

DDAH, specific PRMT inhibitors or DDAH agonists might become novel therapeutic strategies to 

restore ADMA–NO and prevent hypertension. 
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3. The Spontaneously Hypertensive Rat (SHR) as a Model for Developmental Programming  

of Hypertension 

The spontaneously hypertensive rat (SHR) is a widely employed experimental model of hypertension. 

The SHR model is characterized by a rise in blood pressure (BP) starting from 5 to 6 weeks of age, a 

steep increase between 6 and 24 weeks of age, and a progressive development of many features of 

hypertensive end-organ damage [18]. Interestingly, the SHR is more resistant to kidney damage than the 

salt-sensitive hypertensive rat [19]. 

Early renal NO deficiency, a predecessor of hypertension, is a characteristic of the SHR [4]. Several 

factors causing NO deficiency develop early in the kidney even before the onset of spontaneous 

hypertension, including increased ADMA, decreased L-arginine to ADMA ratio (AAR), increased 

oxidative stress, and increased protein inhibitor of neuronal nitric oxide synthase (PIN) expression [5]. 

In the hypertensive SHR, our data revealed that decreased renal cortical neuronal nitric oxide synthase-α 

(nNOS-α) protein level, increased renal PIN expression, increased plasma ADMA, decreased plasma 

AAR, and increased oxidative stress are the major causes for NO deficiency [5]. 

4. ADMA–NO Pathway: A Therapeutic Target for the Development of Hypertension in the SHR 

Given the complex interaction between oxidative stress and ADMA, and, that a specific 

ADMA-lowering agent remains unavailable [9], our recent reports suggested several lines of  

evidence to support that restoration of ADMA–NO balance can prevent the development of 

hypertension in the SHR (Figure 1). 

Figure 1. Overview of various therapeutic approaches to reduce ADMA and restore NO 

bioavailability to prevent the development of hypertension in spontaneously hypertensive 

rats. The solid lines represent underlying mechanisms contributing to hypertension, and the 

interrupted lines denote protective effects of different approaches. ADMA, asymmetric 

dimethylarginine; DDAH, dimethylarginine dimethylaminohydrolase; NADPH, nicotinamide 

adenine dinucleotide phosphate; DMA, dimethylamine; GSH, glutathione; NOS, nitric oxide 

synthase; PIN siRNA, silencing RNA targeting protein inhibitor of neuronal nitric oxide 

synthase; PRMT, protein arginine methyltransferases; RAS, rennin–angiotensin system. 
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First, melatonin, an indoleamine produced from the pineal gland, is formed predominantly during the 

night. A growing body of evidence indicates that melatonin may regulate BP in experimental and human 

hypertension [20,21]. Our study showed that melatonin blocks the development of hypertension in SHRs 

through reduction of plasma ADMA, restoration of plasma AAR, preservation of renal L-arginine 

availability, and attenuation of oxidative stress [22]. Given that melatonin prevents the increase of 

ADMA and oxidative stress concurrently, we further determined if ROS-induced ADMA accumulation 

by regulation of DDAH can be prevented by melatonin. Our data suggests that the expression and 

activity of DDAH were suppressed in vitro by superoxide and hydrogen peroxide in a time-dependent 

manner, whereas melatonin could block H2O2-induced down-regulation of DDAH-2 and decrease 

DDAH activity, thereby preventing increases in ADMA [17]. Our findings reveal a mechanistic  

basis of DDAH down-regulation by ROS and suggest that melatonin shifting disturbed the NO–ROS 

balance in the prehypertension stage toward augmentation of NO, leading to lower blood pressure in  

young SHRs [22]. 

Second, observations have been made which show that apocynin blocks nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase to attenuate hypertension but has little effect on the 

ADMA–NO pathway in young SHRs [23]. Excessive ROS has emerged as a central common pathway, 

resulting in decreased NO bioavailability and decreased antioxidant capacity in the kidney, leading to 

hypertension. Two major sources of excessive ROS in hypertension are NADPH oxidase and uncoupling 

NOS. NADPH oxidase-derived ROS and ADMA are both increased in hypertension [1,3]. Apocynin,  

an NADPH oxidase inhibitor, can block NADPH oxidase assembly by interfering with the binding of 

p47phox to NOX. We found that apocynin prevented p47phox translocation in SHR kidneys, but not the 

increase of superoxide and H2O2 [23]. Additionally, apocynin did not protect SHRs against increased 

ADMA and only had a mild antihypertensive effect on SHRs. Our data suggest that simultaneous 

reduction of ROS and preservation of NO might be a better approach to restore ROS–NO balance to 

prevent the development of hypertension. 

Third, there are studies showing that silencing RNA (siRNA) targeting PIN restores NO bioavailability 

and attenuates hypertension in SHRs [24]. The PIN was reported to inhibit neuronal NOS (nNOS) 

activity through disruption of nNOS dimerization [25]. PIN has also been shown to inhibit other NOS 

isoforms [26]. We found renal PIN expression was increased in pre-hypertensive and hypertensive 

stages in SHRs. Inhibition of PIN expression by siRNA attenuates the development of hypertension in 

SHRs at 12 weeks of age, which is related to decreased oxidative stress [24]. These findings support  

the hypothesis of restoring nNOS–NO to restore NO bioavailability and prevent the transition from 

pre-hypertension to hypertension. 

Fourth, glutathione (GSH) is the major intracellular antioxidant. The GSH system is impaired in 

young SHR kidneys prior to the development of hypertension [27]. N-Acetylcysteine (NAC), an antioxidant, 

can facilitate GSH synthesis. NAC treatment attenuates the development of hypertension in young 

SHRs, which is correlated with a reduction in plasma ADMA levels, a decrease in superoxide 

production, an increase in DDAH activity, and an increase in GSH to oxidized GSH ratio in the SHR 

kidney [28]. These observations indicate that NAC can restore the NO–ROS balance, thus preventing 

the development of hypertension. Our findings also highlight the impact of GSH on programmed 

hypertension by regulating the DDAH–ADMA pathway. Consistent with other reports, antioxidant 

treatments initiated at the prenatal stage can prevent BP programming in SHRs [29,30]. 
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Last, L-arginine has been shown to reduce systemic BP in some forms of experimental hypertension [31]. 

L-Citrulline supplementation enhances NO production more than L-arginine itself because it bypasses 

splanchnic extraction and it is not a substrate for arginase [32]. In line with a previous study [4],  

our recent report demonstrated that L-citrulline supplementation prevents the transition from 

prehypertension to hypertension in young SHRs [33]. This therapeutic effect of L-citrulline is associated 

with the bioactivation of the NO pathway, including reduced ADMA, increased AAR, augmented 

nNOS-α protein abundance, and increased NO production in SHR kidneys. On the other hand, nitrate 

and nitrite are the main substrates to produce NO via the NOS-independent pathway. Our study showed 

that dietary supplementation of nitrate, in amounts resembling a rich intake of vegetables in humans,  

can prevent the development of hypertension in young SHRs [33]. Our data are in agreement with a 

previous study showing that inorganic nitrate can lower BP in a hypertensive model [34]. Thus, our report 

suggests both NOS-dependent and independent approaches can restore NO bioavailability and reduce 

BP in SHR kidneys [33]. 

The data described above suggest that targeting the ADMA–NO pathway prior to hypertension in 

favor of NO could be a therapeutic approach to prevent the transition from prehypertension to the 

hypertensive stage in SHRs. 

5. ADMA–NO Pathway: A Therapeutic Target for Programmed Hypertension 

It is well established that early-life environmental insults during critical periods of development can 

elicit impaired nephrogenesis, morphological changes, and adaptive physiological responses, leading to 

hypertension in adult life [35]. Our recent studies indicated that ADMA-induced NO–ROS imbalance  

is involved in the development of hypertension in different developmental models, including  

maternal caloric restriction, maternal diabetes, and prenatal dexamethasone exposure [8,14,36]. 

However, manipulation of the ADMA-NO pathway by L-citrulline supplementation can prevent these 

conditions [8,14,36]. 

In addition to oxidative stress, other proposed mechanisms involved in developmental programming 

of hypertension include alterations of the renin-angiotensin system (RAS). The RAS plays a 

fundamental role in the regulation of BP and kidney development. Studies showing that the blockade of 

RAS by angiotensin-converting enzyme (ACE) inhibitor captopril or angiotensin II type 1 receptor blocker 

(ARB) losartan between 2 and 4 weeks of age offsets the effects of nutritional programming on BP and 

were supportive of the role of RAS, linking maternal malnutrition to adulthood hypertension [37,38]. 

We used to treat young SHRs with the direct renin inhibitor, aliskiren. We found that aliskiren can 

reduce ADMA and prevent the development of hypertension in young SHRs [39]. Treatment of male 

offspring of rats subjected to maternal caloric restriction with aliskiren or losartan between the ages of  

2 and 4 weeks postnatally prevents the development of hypertension at 12 weeks of age. Interestingly, 

prevention of the elevation of BP with aliskiren therapy in caloric restriction (CR) offspring is related to 

restoration of ADMA–NO balance, too. We found that aliskiren therapy decreased ADMA levels but 

increased AAR in the plasma, which was consistent with our recent findings showing that ADMA 

contributed to programmed hypertension and that aliskiren had an ADMA-lowering effect [40]. Unlike 

aliskiren, losartan decreases BP but not ADMA. Compared with aliskiren, losartan’s BP-lowering effect 

is similar. However, losartan had no effects on ADMA and NO bioavailability. Our data demonstrate 
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that there is a critical window in the early postnatal period during which the adult BP can be modified by 

blockade of the RAS and which is, at least in part, dependent on the ADMA–NO pathway. 

6. Are We Ready to Apply ADMA–NO Pathway into Clinical Practice? 

Currently, the diagnosis of hypertension throughout the world is accomplished by clinical BP 

assessment, many by a few daytime measurements. Patients with prehypertension who are at risk for 

other BP abnormalities (e.g., nocturnal hypertension, increased BP load, and non-dipping nocturnal BP) 

will be missed if they are not assessed using 24 h ambulatory blood pressure monitoring (ABPM).  

Basic and clinical research performed in the last 20 years has implicated ADMA as a novel risk factor, 

diagnostic marker, and therapeutic target in cardiovascular disease, including hypertension [41]. 

Nevertheless, very little attention has been paid to target ADMA–NO in prehypertension and programmed 

hypertension clinically, largely because of the following blocks: (1) a specific ADMA-lowering agent 

remains unavailable; (2) measurements of ADMA, NO, and 24 h ABPM in patients are not yet 

performed on a routine basis; (3) the use of antihypertensive drugs for prehypertension remains 

debatable; and (4) indices that represent imbalanced ADMA–NO pathway from experimental models 

are required for clinical translation to non-invasive cardiovascular assessments. While a few small-scale 

studies indicate that ADMA is related to abnormal ABPM profile [42–44] and index of arterial  

stiffness [45,46] in patients with prehypertension, more large, prospective, multicenter collaborations 

are required to conduct meaningful clinical research studies to explore the impact of the ADMA–NO 

pathway in clinical practice. 

7. Conclusions 

Patients with prehypertension have an increased risk of full-blown hypertension, target organ 

damage, and cardiovascular morbidity and mortality [47]. Arguments against the use of antihypertensive 

drugs for prehypertension include a lack of evidence of efficacy and cost-effectiveness. Thus, reducing 

the future burden of hypertension will require early detection of individuals that are at risk for 

prehypertension and early treatment to delay the progression to full-blown hypertension. 

In conclusion, this review provides an overview of experimental approaches to restore ADMA–NO 

imbalance to prevent hypertension: (1) it discusses how ADMA links NO–ROS balance to programmed 

hypertension; (2) it presents a series of therapeutic approaches to prevent hypertension in SHRs, 

including melatonin, apocynin, siRNA targeting PIN, N-acetylcysteine, L-citrulline, and sodium nitrate; 

(3) it discusses how early blockade of RAS can prevent programmed hypertension and its relationship to 

the ADMA–NO pathway; and (4) it indicates problems that must be addressed before restoration of 

ADMA–NO can be translated into clinical practice. 
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