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Abstract: In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple 

enzymatic and non-enzymatic modifications that increase their atherogenicity and induce 

immunogenicity. Modified LDL are capable of inducing vascular inflammation through 

activation of innate immunity; thus, contributing to the progression of atherogenesis.  

The immunogenicity of modified LDL results in induction of self-antibodies specific to a 

certain type of modified LDL. The antibodies react with modified LDL forming circulating 

immune complexes. Circulating immune complexes exhibit prominent immunomodulatory 

properties that influence atherosclerotic inflammation. Compared to freely circulating modified 
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LDL; modified LDL associated with the immune complexes have a more robust 

atherogenic and proinflammatory potential. Various lipid components of the immune 

complexes may serve not only as diagnostic but also as essential predictive markers of 

cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing 

immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes. 

Keywords: atherosclerosis; atherogenesis; immune complexes; low-density lipoproteins; 

inflammation 

 

1. Introduction 

Atherosclerosis results in the inner layer of the arterial wall and is characterized by local lipid 

accumulation and excessive production of collagen [1–3]. Atherosclerosis and atherosclerotic disease 

(myocardial infarction, stroke, coronary heart disease, and sudden death) are the dominant cause of 

death in industrialized countries [4]. 

The markers generally measured for diagnosing of atherosclerosis are lipid parameters of the blood, 

in particular cholesterol [5]. Even though the direct link between the reduction of cholesterol and the 

regression of atherosclerosis is not unarguably established [6–8], cholesterol is still the key target 

parameter in the existing anti-atherosclerotic therapy [9]. It is worth noting here that the obtained data 

about a relation of apolipoproteins to risk scores led to slight improvement in cardiovascular disease 

risk prediction [10]. 

It is well known that atherosclerosis develops asymptomatically affecting the intima which is  

non-innervated part of the arterial wall. Currently, asymptomatic (preclinical) atherosclerosis is not an 

object of diagnostics and treatment while the number of clinical events on the background of 

asymptomatic atherosclerosis is quite high [11–13]. Despite the advances in screening for preclinical 

atherosclerosis [14], screening for preclinical atherosclerosis is used, very rarely, in clinical practice. 

A search for new reliable biomarkers of atherosclerosis is an important task [15]. This review 

highlights the accumulated information about low density lipoprotein (LDL) modification naturally 

occurring in the blood of patients, as well as about circulating LDL-containing immune complexes 

which emerge to be diagnostic and prognostic biomarker of atherosclerosis and macrovascular disease 

in type 1 diabetes. 

2. Low Density Lipoprotein 

Lipid deposition in the arterial wall is widely recognized as the earliest pathogenic event in 

preclinical atherogenesis [16]. Atherogenic lipids enter the arterial intima from the bloodstream and 

represent multiple modified low-density lipoproteins (LDL) particles [16–18]. Lipoproteins, which are 

mainly constituted from glycoproteins and lipids, are involved in transferring fats through blood and 

interstitial fluids. Lipoprotein particles have a highly hydrophobic core enriched by hydrophobic  

tails of phospholipids, fatty acids, cholesterol, and apoproteins. The presence of the hydrophilic core 

provides the possibility to accumulate esterified cholesterol and triglyceride molecules within each 
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particle and then carry those to the target tissue. The apoprotein molecule is essential for stabilizing 

structure of the lipoprotein particle and is responsible for interaction with fat-metabolizing enzymes 

and cell surface receptors in order to distinguish which lipid molecules should be removed or added to 

the particle [18–20]. 

LDL is a lipoprotein fraction of particles that usually ranges in size of 18–28 nm and density of  

1.019–1.063 g/mL [21]. However, LDL particles, having a 30 nm and larger size, have been detected [22]. 

LDL particles are generated in the bloodstream during the metabolic processing of apolipoprotein  

B-100 (apoB-100)-containing lipoproteins [23]. The lipoprotein processing starts from the liver  

secretion of very low density lipoprotein (VLDL) particles, which then become the subject of multiple 

transformations mediated by various serum lipolytic enzymes and lipid transporters before the final 

formation of LDL particles [24]. 

The LDL particle contains a single apolipoprotein B-100 (apoB-100) molecule, 80–100 molecules 

of secondary proteins, approximately 3000 molecules of linoleic acids, 1500 molecules of esterified 

and non-esterified cholesterol (in average), and variable numbers of triglycerids and phospholipids 

composed mainly of phosphatidylcholine and sphingomyelin [25]. In a distinct LDL particle, ApoB-100 

plays a central role by stabilizing and maintaining its structure and composition [26]. ApoB-100 is a 

large glycoprotein comprising 4536 amino acids and 24 potential N-glycosylation sites. This protein is 

highly hydrophobic and hence remains with the lipoprotein particle throughout the metabolism [27]. 

ApoB-100 has an α-helical content of 25% and approximately 50% β-sheet structure, with five large 

lipid-associating domains [28]. For the human ApoB-100 molecule, Segrest et al. [29,30] suggested 

the pentapartite structure: NH2-α1-β1-α2-β2-α3-COOH, showing the presence of two regions of 

amphipathic β-strands alternating with two regions of amphipathic α-helices and the third N-terminal 

amphipathic α-helical domain. 

In human serum, two major apoB isoforms (apoB-100 and apoB-48) exist. The apoB-48 isoform is 

produced after RNA editing of the apoB-100 transcript at residue 2180 resulting in the creation of  

a premature stop codon [31]. Therefore, the two isoform share the common N-terminal domain. 

However, apoB-48 is not able to bind to the LDL receptor since it lacks the LDL receptor-binding 

domain. The α3 α-helical region comprising 11% of apoB-100 is mobile and is involved in the control 

of availability of the LDL receptor-binding domain during the conversion of very low density 

lipoproteins (VLDL) to LDL in blood plasma [32]. The LDL receptor-binding domain contains three 

proline-rich clusters, which are exposed on the LDL surface and essential for protein-protein 

interactions [33]. The first 1000 residues of human apoB-100 (i.e., the entire α1α-helical region and 

200 first amino acids of the β1 domain) were shown to form a three-dimensional structure that is 

similar to that of lipovitellin, an egg yolk lipoprotein containing a “lipid pocket” [34]. This “pocket” is 

involved in binding microsomal triglyceride transfer protein to create a lipid transfer pocket required for 

assembly of the apoB-containing lipoprotein particle [34]. 

LDL receptors located on the surface (in clathrin-coated pits) of target cells are responsible for 

specific binding LDL particles followed by internalization of LDL-cholesterol through the mechanism of 

endocytosis [35]. Hepatic LDL receptors are primarily responsible for withdrawal of LDL particles from 

the circulation, thus, tending to ensure that serum LDL levels remain at a physiologically relevant  

range. However, increased serum LDL concentrations diminish the functioning LDL receptor-dependent 
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pathway and promote the influx of LDL particles into the arterial wall where they become trapped and 

modified thereby be converted to the key players in the vicious circle of proatherogenic inflammation 

and lipid accumulation [18,36]. 

Apart from transferring lipids, human VLDL and LDL are also suggested to be involved in  

intra-organismal protein transfer and delivering proinflammatory and prothrombotic protein mediators 

from the sites of synthesis to inflamed and embolic destinations [37,38]. For example, a recent 

proteomic analysis revealed presence of 95 VLDL- and 51 LDL-associated proteins respectively [39]. 

Along with all known apolipoproteins and lipid transport proteins, lipoprotein particles were shown to 

contain coagulation proteins, components of the complement system, and antimicrobial-including 

prenylcysteine oxidase 1, dermcidin, cathelicidin, tissue factor pathway inhibitor-1, and fibrinogen  

α chain [39]. Human diseases related to LDL-associated proteins could involve dyslipidaemia, 

coagulation disorders, atherosclerosis, and other vascular pathology. In pathologic conditions, protein 

composition of LDL could be significantly different from that of LDL in normal serum. LDL-apheresis 

treatment used for reducing serum LDL cholesterol levels and preventing acute cardiovascular events 

in homozygous patients with familial hypercholesterolemia were found to remove up to 48 types of  

proteins including procoagulation and thrombogenic factors, complement factors, inflammatory mediators,  

and adhesion molecules [40]. Interestingly, serum LDL derived from healthy humans contain several 

non-traditional apoproteins, such as serum amyloid A-IV [41], a biomarker of acute inflammation, 

whose content could be markedly increased in all lipoprotein fractions, especially in LDL from 

atherosclerotic patients [42]. Serum amyloid A-IV is released by liver in response to proinflammatory 

injury and is thought to display a variety of proatherogenic effects including endothelial dysfunction [43], 

foam cell formation, and induction of proinflammatory cytokines in macrophages [44]. 

A single apoB molecule accounts for approximately 25% while lipids contribute for the remaining 

75% of the molecular weight of the LDL particle [45]. The hydrophobic lipid core consists of 

cholesterylester and triglyceride molecules, which make up more than 40% of particle mass. The core 

is surrounded by the phospholipid monolayer corresponding to about 20% of particle mass. Varying 

amounts of free cholesterol are incorporated in the shell and the core regions accounting for 15% of 

particle mass [45]. In the LDL particle, an additional hydrophobic interfacial layer composed of 

phospholipid acyl chains, free cholesterol, some cholesteryl ester molecules, and hydrophobic 

protein domains are found thereby reflecting the interplay between neutral core lipids and the 

surface layer [25]. 

LDL could be considered as a dynamic construct that needs to respond to changing environmental 

conditions during lipid exchange. Indeed, during particle remodeling, apoB and the surface phospholipids 

must rearrange to compensate for changes in the surface area and surface pressure [46]. Within the 

interfacial layer, lipids are not homogeneously distributed but form local microenvironments [25].  

For example, in the LDL particle, two regions one enriched with sphingomyelin and free cholesterol, 

the other one rich in phosphatidylcholine and poor in free cholesterol were identified. The latter was 

shown to be associated more closely with the apoB-100 molecule [25,47]. Recent 3D-images show 

that LDL represents discoidal-shaped particle with two flat surfaces on opposite sides. In this model, 

apo B100 encircles LDL at the edge of the particle, while the phospholipid monolayer is rather located 

at the flat surfaces, which are parallel to the cholesteryl esters layers in the core [48]. LDL particles 
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share a common feature: The cholesteryl ester molecules in the core undergo a structural transition 

from an ordered liquid-crystalline phase to a liquid oil-like state depending on temperature and 

chemical composition [49]. The transition temperature is close to body temperature and inversely 

correlates to the content of triglycerides within the lipid core [50]. 

To date, over 350 various lipid species from 19 lipid subclasses were found in human LDL [51]. 

Phosphatidylcholine is the most abundant phospholipid in serum lipoproteins including LDL. 

Phosphatidylcholine is a major constituent of cell membranes. This phospholipid is also involved in 

membrane-mediated cell signaling and phosphatidylcholine transfer protein (PCTP) activation of 

other enzymes [52]. In the liver, active phosphatidylcholine biosyntesis is required for VLDL 

secretion [53]. Since cholesterol prefers to interact with phosphatidylcholine and sphingomyelin, 

both phospholipids are essential for blood transport of cholesterol and cholesterylesters by LDL  

and other serum lipoproteins [54]. Recently, intestinal microflora was shown to metabolize dietary 

phosphatidylcholine to choline, trimethylamine N-oxide (TMAO), and betaine, e.g., to catabolites that 

increase risk of atherosclerosis and cardiovascular disease [55]. 

Sphingomyelin is an essential structural component of serum lipoproteins and the second major 

phospholipid after phosphatidylcholine. Sphingomyelin is a prevalent sphingolipid in membranes of 

mammalian cells and this lipid class is specifically enriched in the plasma membrane, the endocytic 

recycling compartment, and the trans Golgi network. Sphingomyelin is involved in the regulation of 

endocytosis and receptor-mediated ligand uptake, in ion channel and G-protein coupled receptor 

function, in protein sorting, and function as receptor molecules for bacterial toxins and non-bacterial 

pore-forming toxins [54]. 

In inflammatory conditions such as atherosclerosis, proinflammatory mediators stimulate secretion 

of Zn2+-dependent sphingomyelinase by endothelial cells and macrophages that hydrolyses LDL 

sphingomyelin to ceramide (N-acetyl-D-sphingosine) [56]. Ceramide could be also generated in the 

liver by biosynthesis from serine and palmytoil-coenzyme A and then secreted to the bloodstream in 

the form of VLDL [57]. In the serum, ceramide-enriched VLDL could be then converted to  

ceramide-enriched LDL. The ceramide content inversely correlates with the sphingomyelin content in 

serum lipoproteins. In humans, VLDL and LDL are especially enriched with ceramide and 

dihydroceramide while HDL contain low amounts of these sphingolipids [58]. Physiologically, 

ceramide serves as an inductor of multiple stress responses initiated by proapototic and 

proinflammatory agents [59]. 

However, enrichment of LDL with ceramide is highly proatherogenic. Increase in LDL ceramide 

was found to increase the aggregation rate of LDL particles [60], to enhance arterial matrix 

remodeling [61], and to induce foam cell formation [62]. The increased conversion of LDL sphingomyelin 

to ceramide may increase the vulnerability of LDL for oxidation [57]. Ceramide-enriched LDL can be 

taken up by the endothelial cells in a receptor-mediated fashion and can deliver excess ceramide to the 

cells [63]. Ceramide was shown to activate reactive oxygen species (ROS), mitochondrial oxidative 

damage, and apoptosis in vascular cells [64]. Ceramide could enhance inflammation through own 

metabolites and signaling molecules such as sphingosine and sphingosine-1-phosphate [65,66]. 

Electronegative LDL is a minor subfraction of modified LDL that is normally present in  

circulation [67] (Sánchez-Quesada et al., 2004). Compared to native LDL, electronegative LDL shows 



Int. J. Mol. Sci. 2014, 15 12812 

 

 

some proatherogenic characteristics including increased content of lysophosphatidylcholine (LPC) 

and presence of phospholipase C (PLC)-like activity of unknown origin [46,68]. The PLC-like activity in 

electronegative LDL hydrolyzes LPC, sphingomyelin, phosphatidylcholine, and other choline-containing 

phospholipids with formation of phosphocholine, ceramide, monoacylglycerol (MAG), and diacylglycerol 

(DAG) [69]. While hydrophilic phosphocholine leaves the LDL particle hydrophobic molecules of 

ceramide, MAG, and DAG retain in the LDL particles and increase their aggregation through 

enhancing hydrophobic contacts [69]. In addition, these lipids induce proinflammatory properties of 

electronegative LDL [68]. DAG activates protein kinase C and adenylcyclase, which generates cAMP, 

a key molecule in many biological processes [70]. DAG is also required for propagation of the 

downstream signals needed for activation of NF-κB, a proinflammatory transcription factor. 

3. LDL in Atherosclerosis 

The entrance and accumulation of free cholesterol in the arterial wall are crucial events in early 

atherosclerosis [1,16]. Compared to other plasma lipoprotein fractions, LDL particles are especially 

enriched with non-esterified (so called free) cholesterol that can account up to 50% of the  

particle weight [26,71]. LDL particles are the main vehicles responsible for cholesterol transport. 

The proatherogenic value of high cholesterol content in the LDL fraction and its possible significance 

in predicting cardiovascular risk was suggested in early longitudinal epidemiological studies such as 

the Framingham Study [72]. Finally, in 2008, the American Diabetes Association (ADA) and the 

American College of Cardiology (ACC) recommended quantification of LDL particle content by 

nuclear magnetic resonance spectroscopy as essential for accessing individual risk of cardiovascular 

events [73]. 

In fact, total cholesterol and high-density lipoprotein (HDL) cholesterol seems to be the best 

predictor of the cardiovascular risk to date. Replacement of these parameters with a combination of 

lipid-related markers such as apoB and apoA-I, lipoprotein (a), or lipoprotein-associated phospholipase 

A2 does not improve cardiovascular disease (CVD) prediction but adding these markers to the 

combination of total cholesterol and HDL cholesterol slightly strengthen the prediction power [10]. 

Although some studies reported that apoB is superior to total cholesterol or LDL cholesterol in 

predicting CVD risk [74,75], there is a serious problem in the reproducibility and standardization of 

measuring apoB due to the significant size and epitope heterogeneity of this molecule [76]. Overall, 

compared with separate lipid-related CVD markers, HDL cholesterol appears to be better correlated 

with atherogenic lipoproteins and other cardiovascular risk factors because high HDL cholesterol itself 

strongly protects against CVD, while low HDL cholesterol is inversely correlated with levels of 

atherogenic lipoproteins and is associated with several cardiometabolic risk factors [77,78]. 

Although LDL binds to LDL receptor and oxidized LDL (oxLDL) binds to scavenger receptor,  

the vascular effects of minimally modified LDL and oxLDL are very similar [79]. Both of these 

derivatives activate endothelial cells, vascular smooth muscle cells (VSMCs), and monocytes, and 

enhance vasoconstriction, thrombosis, and platelet aggregation. Furthermore, in atherosclerotic 

vessels, increased LDL levels stimulate endothelial expression of adhesion molecules and chemokines 

such as vascular cell adhesion protein-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and 

monocyte chemoattractant protein-1 (MCP-1) [80]. In the vascular endothelium, LDL also decrease 
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production of such nitric oxide (NO), an important vasodilator, and stimulate secretion of the 

vasoconstrictor endothelin-1 [81–83]. In VSMCs, LDL and their derivatives activate production of 

proinflammatory cytokines and growth factors, particularly platelet-derived growth factor (PDGF), and 

procoagulant factors such as tissue factor or plasminogen activator inhibitor-I (PAI-I) [83]. Indeed, 

elevated serum LDL levels induce proinflammatory and procoagulant phenotype in vascular cells 

thereby promoting endothelial dysfunction and contributing to proatherogenic vascular changes. 

In the pathologic conditions such as oxidative and metabolic stress, hyperlipidemia and/or diabetic 

hyperglycemia, circulating and intraintimal LDL are subjected to multiple enzymatic and non-enzymatic 

chemical modifications [17,84,85]. The modified LDL but not native (non-modified) LDL is accumulated 

in arterial cells. Fat-laden resident smooth muscle cells and macrophages are unable to utilize engulfed 

modified LDL and transform into so-called foam cells. The accumulation of foam cells in the arterial 

wall causes formation of initial lesion and then fatty streaks that actually represent early lesions in 

proatherogenic progression [86]. In addition, intracellular accumulation of modified LDL is cytotoxic 

for resident cells and macrophages and hence initiates inflammatory response against apoptotic and 

necrotic cells [87,88]. 

Modified LDL also possesses immunogenic properties and induces formation of autoantibodies [89,90] 

that further contribute to arterial inflammation. In overall, IgG self-antibodies to modified LDL are 

associated with proatherogenic properties whereas IgM self-antibodies to LDL with atheroprotective 

properties [91]. The presence of proatherogenic modified LDL and circulating LDL-containing immune 

complexes in blood of patients affected with atherosclerosis can explain the phenomenon of atherogenicity, 

i.e., ability of blood sera from affected subjects to induce proatherogenic changes in the phenotype of 

cultured human aortic resident cells, monocytes, and macrophages [92]. These antibodies and  

immune complexes have immunomodulatory properties and hence are able to modulate  

proatherogenic inflammation. 

LDL-specific antibodies and their immune complexes with LDL could be detected not only in 

atherosclerotic plaques, but even in blood of apparently healthy children and newborns suggesting that 

proatherogenic risk factors may occur early in life [89,93,94]. Indeed, identification of these circulating 

components in blood may have diagnostic and prognostic value for patients with coronary artery 

disease (CAD). In this review, we consider mechanisms of formation of proatherogenic modified LDL 

and immune complexes between self-antibodies and modified LDL and characterize their significance 

as prognostic and diagnostic markers of atherosclerosis. 

4. LDL Modifications 

4.1. Oxidized LDL 

LDL modifications and especially oxidation may play a key role in induction of atherogenesis. 

Non-oxidized LDL does not accumulate in macrophages while modified LDL does [95]. OxLDL is not 

able to bind to the LDL receptor and start to be taken up by arterial cells. To date, the precise 

mechanisms of LDL oxidation are not fully understood although several possible mechanisms have 

been suggested. Those include oxidation mediated by ROS generated by monocytes, macrophages, and 

endothelial cells, action of metal ions, and enzymatic reactions catalyzed by lypoxygenase and 
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myeloperoxidase [96]. ROS, lypoxygenase, and metals (Fe3+, Cu2+) are preferentially involved in 

oxidation of lipid constituents of LDL whereas myeloperoxidase and hypochlorous acid (HOCL) 

oxidize apoB-100 [97]. Myeloperoxidase, an oxidase produced by neutrophils and macrophages, 

generates HOCL and hypothiocyanous acids (HOSCN), both are potent oxidants that in turn can 

modify the apoB-100 molecule in multiple sites [98]. In oxLDL, the content of antioxidants such as 

coenzyme Q10, tocopherols, β-carotene, and lycopene, was 1.5- to 2-fold lower than in native LDL 

suggesting for a higher susceptibility of oxLDL to be further oxidized [99]. 

OxLDL can trigger inflammation through several mechanisms. In macrophages and monocytes, 

oxLDL induces fat deposits, ROS production, proinflammatory responses, and apoptosis [100,101].  

In macrophages, OxLDL are able to target several scavenger receptors including CD36 and the 

receptor for advanced glycation end-products (RAGE) that then induces production of proinflammatory 

cytokines such as tumor necrosis factor (TNF)-α, oxidative stress, and enhances chemotaxis [101]. 

In endothelial cells, oxLDL stimulates expression of lectin-like oxLDL receptor-1 (LOX-1), which 

is up-regulated in atherosclerotic plaques and is implicated in several pathological processes that 

control lesion progression [102]. OxLDL activates production of interlerleukin-8 (IL-8) by endothelial 

cells, a chemokine that attracts inflammatory cells to the site of inflammation, increases migration of 

smooth muscle cells (SMCs) of the tunica media to the intima, and activates TNF-α production in 

monocytes/macrophages [103]. OxLDL could also initiate secretion of IL-8 in aortic SMCs through 

activation of ROS-mediated signaling [104]. 

Several studies supported good predictive and diagnostic value of oxLDL measured by a specific 

monoclonal antibody for atherosclerosis-related events including coronary and cerebral vascular 

disease. In a follow-up study of 326 clinically healthy Swedish men, Wallenfeldt et al. [105] showed 

association between plasma oxLDL levels measured by a specific monoclonal antibody, plaque size and 

numbers, and carotid artery intima-media thickness (IMT) after adjustment for other cardiovascular risk 

factors suggesting that circulating oxLDL measured by a specific monoclonal antibody may serve as a 

prognostic marker of subclinical atherosclerosis. In line with this, Chen et al. [106] observed correlation 

between oxLDL levels measured by antibodies and carotid artery IMT in healthy Taiwanese, thereby 

providing evidence that measuring oxLDL concentration can have prognostic value for preclinical 

atherosclerosis of the carotid artery. Furthermore, individuals with low levels of anti-oxLDL 

antibodies and highest oxLDL content measured by antibodies had the highest risk of carotid 

atherosclerosis [106]. Overall, elevated levels of oxLDL measured by antibodies have been shown to 

be associated with increased relative risk (RR) of cardiovascular events ranging from 1.9 and 3.2 after 

adjustment for various potential confounders [107]. Except for preclinical atherosclerosis, oxLDL 

levels measured by antibodies may be predictive for clinically manifested atherosclerosis, acute 

coronary syndromes, and plaque vulnerability [108–111]. 

4.2. Malondialdehide LDL 

ROS degrade polyunsaturated lipids forming malondialdehide (MDA) [112]. Indeed, since LDL are 

enriched with polyunsaturated linoleic acid, oxidation of this fatty acid may generate MDA. In fact, 

MDA represents an advanced lipooxidation endproduct that is widely recognized as a biomarker of 

oxidative stress [113]. When less than 15% of the lysine residues of human apoB-100 are modified 
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by MDA, LDL is able to bind to the LDL receptor. However, if more than 15% of the lysine 

residues are MDA-modified, the LDL receptor fails to bind LDL and LDL intake starts to be 

mediated by a scavenger receptor [114]. In the apoB-100 molecule, the N-terminus was shown to 

be essential for recognition of malondialdehide LDL (MDA-LDL) by a scavenger receptor of human 

monocytes/macrophages followed by receptor-mediated uptake of modified LDL [115]. 

In Japanese patients with CAD, a positive correlation between MDA-LDL levels measured by the 

ELISA method and coronary artery IMT and an inverse correlation between MDA-LDL and size of 

LDL particles was observed suggesting for association with coronary atherosclerosis [116,117]. The 

greatest content of MDA-LDL in small dense LDL fraction that itself is highly proatherogenic [118] 

may suggest that small dense LDL are preferentially subjected to the MDA-mediated oxidation [119]. 

However, recent studies (that will be considered below) suggest that levels of MDA-LDL-containing 

immune complexes have a better predictive value for atherosclerosis-related diseases. 

4.3. Glycated LDL 

In diabetic hyperglycemia, LDL can be intensively and irreversibly modified via mechanisms of 

non-enzymatic glycation and glycooxidation [120]. In the LDL particle, both the lipid and protein 

(apoB-100) moieties are the targets for glycation. In non-diabetic patients, up to 4.8% of total apoB 

can be glycated whereas the percentage of glycated apoB can account up to 14.8% of total apoB in 

type 2 diabetic subjects [121]. Small-dense LDL are especially prone to glycation in type 2 diabetes 

and metabolic syndrome [122]. Glycated LDL in turn became more sensitive to further oxidation. 

Analysis of LDL subfractions derived from the blood of diabetic patients revealed the presence of a 

highly proatherogenic small-dense modified LDL subfraction enriched with glycated and desialylated 

LDL [123,124] and capable to increase cholesterol uptake in vascular cells derived from normal 

human aorta [125]. 

Formation of glycated LDL and other advanced glycation endproducts (AGEs) enhances atherogenic 

potential of circulating lipoproteins that are able to induce proatherogenic lipid uptake by  

cultured aortic SMCs [126] and stimulate expression of RAGE and other scavenger receptor in 

macrophages [127]. Activation of AGE-RAGE signaling promotes vascular damage and strengthens 

atherosclerotic lesion progression through inducing endothelial dysfunction, attracting monocytes to 

the vascular intima, increasing oxidative stress, promoting vascular wall remodeling, and stimulating 

NF-κB-dependent expression of proinflammatory and prothrombotic molecules [128]. 

In diabetic patients, association of increased glycated apoB levels with elevated triglycerids, a 

prevalent cardiovascular risk factor [129], and myocardial infarction (MI) [130] was found suggesting 

for a potential prognostic value of glycated apoB for development of MI in the following five years in 

diabetic patients. However, Hayashi et al. [131] failed to show suggestive value of either glycated 

LDL or MDA-LDL as prognostic marker of carotid atherosclerosis in type 2 diabetic patients [131]. 

Further studies should be performed to precisely evaluate prognostic and diagnostic value of glycated 

apoB for atherosclerosis progression in diabetes. To date, size of LDL particles appears to be a better 

predicting marker of carotid atherosclerosis progression and stroke in type 2 diabetic subjects 

compared to glycated LDL [131–133]. 
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4.4. Carbamylated LDL 

Carbamylation is the reaction between isocyanic acid HNCO with amines to give urea and other 

carbamides [134]. Myeloperoxidase is primarily involved in carbamylation catalyzing reaction of 

oxidation of thiocynate to cyanate [135,136]. In the LDL particle, the apoB molecule can be 

carbamylated in numerous sites, preferentially in lysine residues. Chemical modification of 15% of the 

lysine residues in apoB-100 by carbamylation completely abolishes interaction between LDL and LDL 

receptor and induces switch to the scavenger receptor-mediated intake of modified LDL [137]. Levels 

of carbamylated LDL could be markedly increased in patients with chronic renal failure [138]. 

Carbamylation of proteins with urea-derived cyanate leads to renal failure and contributes to 

atherosclerosis, a frequent event in patients with end-stage renal disease [139]. Extensively carbamylated 

LDL are efficiently cleared by kidneys while the clearance rate of mildly carbamylated LDL (less than 

20% of the amino groups are modified) is decreased by 2.5-fold [140]. Indeed, mildly modified LDL can 

accumulate in the arterial intima for prolonged time and display proatherogenic effects on vascular cells. 

Carbamylated LDL are prone to further oxidation. Carbamylated-oxLDL are highly cytotoxic to 

endothelial cells [141,142] and induce endothelial dysfunction through stimulation of ROS-mediated 

signaling and activation of LOX-1 [143]. Carbamylated LDL induce proliferation of vascular  

SMCs [144] and increase expression of adhesion molecules intercellular adhesion molecule 1 (ICAM-1) 

and vascular adhesion molecule 1 (VCAM-1) thereby promoting adhesion of monocytes to endothelial 

cells [145]. Carbamylated LDL could be recognized by macrophage scavenger receptor A1  

that mediates their intake and contributes to further cholesterol accumulation and transformation of 

macrophages to foam cells [135]. These LDL also promote vascular injury through enhancing 

oxidative stress and accelerating senescence of endothelial progenitor cells via DNA modifications 

and damage [146]. 

Carbamylated LDL are immunogenic inducing IgG autoantibodies in LDL-deficient receptor  

mice [147]. These antibodies are cross-reactive with oxidative-specific epitopes, especially with 

MDA-LDL [148] suggesting that carbamylated LDL are partially oxidized. In human plasma, 

proatherogenic IgG antibodies to carbamyl-LDL were also found. The antibodies were related to 

conditions, such as uremia and smoking, which caused increased carbalylation [147]. However,  

the diagnostic and prognostic value of carbamylated LDL and their self-antibodies for atherosclerosis 

is not evaluated yet. 

4.5. Desialylated LDL 

Sialic acid is an essential component of native LDL representing the terminal carbohydrate of 

biantennary sugar chains in apoB and carbohydrate chains in gangliosides [149]. Desialyation of LDL 

by neuraminidases, sialidase, and other glycoside hydrolases may occur naturally. Partially desialyated 

LDL is suggested to be subjected to further clearance from circulation by the liver [150,151].  

In healthy subjects, a subfraction of electronegative LDL, which contains from 2- to 6-fold less of 

syalic acid compared to the native LDL, was detected [18,152,153]. This LDL subfraction was shown 

to be highly enriched with desialylated LDL that accounts for up to 88% of the electronegative LDL 
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subfraction [18]. Compared to sialylated LDL, desialylated LDL particles are smaller and contain more 

triglycerides, fatty acids, oxysterols, and less phospholipids and antioxidants [154]. 

After desialylation, the monosaccharide residue (galactose) that precedes the syalic acid in the 

carbohydrate chain becomes terminal and externally exposed. Galactose has high affinity to lectins.  

Up to 80% of the electronegative LDL is bound to lectin, a phenomen allowing quantification of these 

LDL in blood using a lectin-sorbent assay [153] and specific isolation from blood with help of  

lectin-based affinity chromatography [155]. In macrophages, the lectin receptor was shown to mediate 

uptake of desyalylated LDL [156]. 

The electronegative desialylated LDL subfraction is highly proatherogenic since is able to enhance 

cholesterol deposits by 2- to 4-fold in cultivated normal aortic cells [157]. A minor fraction of 

circulating desialylated LDL (5%–10% of total LDL) could be detected in the blood of healthy 

subjects. In atherosclerotic patients, desialylated LDL levels are significantly increased (by 1.5- to 6-fold) 

compared to healthy individuals [158,159] and can account up to 60% of total LDL in CAD patients [154].  

Small dense LDL particles exhibited a profound deficiency in sialylation rate correlated with increased 

atherogenicity of this subfraction [159]. Furthermore, desialylated LDL were shown to be more 

sensitive to oxidation by ROS and peroxides [160]. 

Tertov et al. [161] considered advanced desialylation of LDL as a primary step of atherogenic lipid 

modification. Serum sialydase may be primarily involved in enzymatic removal of sialic acid from 

circulating LDL [162]. In human LDL after Cu2+-mediated oxidation, Tanaka et al. [163] observed 

increase in content of conjugated dienes and decrease in sialylation suggesting that reactive radicals 

may be involved in non-enzymatic desialylation of LDL in atherosclerosis-associated oxidative stress. 

In desialylated LDL patricles, Tertov et al. [161] observed advanced loss of antioxidants along  

with accelerated degradation and modification of apoB with covalently bound cholesterol, a marker  

of lipooxidation, which increases a proatherogenic potential of modified LDL. Atherogenicity of 

desialylated LDL may be released through enhancing cell cholesterol intake via impairing cholesteryl 

ester transfer protein (CETP)-mediated reverse cholesterol transport and inhibiting esterifying activity 

of cholesterol acyltransferase in macrophages [164]. Under inflammatory conditions, expression of 

galactose-specific lectins may be up-regulated in macrophages that in turn enhances uptake of 

disialylated LDL by macrophages [165]. 

The desialylated subfraction of LDL is highly immunogenic and induces production of 

proatherogenic IgG self-antibodies that may contribute to atherogenesis by increasing the uptake of LDL 

by aortic cells [166]. Furthermore, adding exogenous anti-LDL antibodies to normal human sera results 

in the formation of cholesterol-containing circulating immune complexes (CICs) and induction of 

atherogenic properties thereby suggesting for a significant proaterogenic potential of these antibodies [89]. 

LDL extracted from the immune complexes represents multiple modified LDL (mmLDL) that has 

characteristics close or similar to those of desialylated LDL, i.e., small size, higher density, higher 

electronegative charge, lowered content of sialic acid, increased oxysterol levels, and similar content 

of lipid peroxides [167,168]. 
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5. Naturally Occurring Modified Forms of LDL 

Certain species of oxLDL that are artificially generated in vitro cannot be retrieved in the blood. 

Despite the huge amount of work on the role of oxidized LDL in atherogenesis neither oxLDL nor 

MDA-LDL were detected in the blood. Indeed, LDL oxidation is likely to occur not in the blood but  

in the vascular wall. Circulating mmLDL were found to display signs of oxidation but oxidation is one 

of the various modifications occurred in the lipoprotein particle [161]. Therefore, oxLDL is a 

heterogeneous lipid population. Some kinds of in vitro-generated oxLDL cannot be retrieved in the 

blood. On the other hand, at least four forms of atherogenic LDL modifications were detected in the 

blood of patients such as small dense LDL, electronegative LDL, glycated LDL (in diabetic patients), 

and desialylated LDL. 

Electronegative LDL [169], small dense LDL [170], desialylate LDL [157], and glycated LDL [123] 

isolated from the blood of patients by different groups were obtained by different methods. Naturally, 

the question arose what are the similarities and differences between all LDL modifications detected  

in the blood. It has been shown that the more electronegative LDL isolated by ion exchange 

chromatography is desialylated lipoprotein [153]. On the other hand, desialylated LDL has an increased 

electronegative charge, so it is more electronegative lipoprotein [128]. Desialylated LDL particles are 

smaller and possess higher density, i.e., they are small dense lipoprotein particles [121]. On the other 

hand La Belle and Krauss [171] isolated from the blood small dense LDL that had a reduced content of 

sialic acid, i.e., it was desialylated LDL. These data demonstrate the similarity of the two types of 

modified LDL. Atherogenic LDL subfraction isolated from the blood of diabetic patients represents 

small-dense, glycated, and desialylated lipoprotein particles [123]. These and many other features 

suggest that mmLDL, electronegative LDL, small dense LDL, glycated LDL, and desialylayed LDL 

are similar if not identical. 

Ex vivo experiments have revealed mechanisms of multiple modification of LDL in the blood. 

Fraction of native LDL was isolated from blood plasma. In addition, blood serum of patients with 

documented atherosclerosis was obtained. LDL and serum was mixed and incubated for various 

periods at 37 °C. It was found that even after one-hour incubation of native LDL with atherogenic 

serum subfraction of desialylated LDL appears [161]. After three hours of incubation, LDL becomes 

able to cause accumulation of cholesterol in cultured cells. From the sixth hour of incubation with 

serum, LDL demonstrated reduction of neutral lipids and phospholipids as well as reduction in its size. 

After 36 hours of incubation, an increase in the electronegativity of the lipoprotein particles was 

detected. At prolonged periods of incubation (48–72 h) serum with LDL, a loss of α-tocopherol, 

increase of susceptibility to oxidation, and accumulation of lipid peroxidation products in LDL were 

observed [161]. In the same period, the degradation of apolipoprotein B in LDL begins. Thus, it has 

been demonstrated that modification processes making LDL atherogenic lipoprotein can occur in 

human blood. Desialylation of LDL particles being one of the first or primary act of modification is 

apparently sufficient condition for the onset of atherogenic properties. Subsequent modifications only 

increase the atherogenic potential of LDL. Multiple modification of LDL is a cascade of sequential 

changes in lipoprotein particle, namely: desialylation, loss of lipids, size reduction, increase of 

electronegative charge, and lipid peroxidation in LDL. 
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6. Autoantibodies against Modified LDL 

6.1. Circulating Anti-LDL Antibodies 

Modified LDL are well known to induce an adaptive immune response in atherosclerosis associated 

with production of self-antibodies specific to modified LDL [172]. Although circulating anti-LDL 

antibodies could be detected in the blood of apparently healthy non-atherosclerotic people, antibody 

levels are markedly increased in atherosclerosis [90]. The majority of anti-LDL antibodies detected 

in atherosclerotic conditions belong to the IgG class (subclasses G1 and G3) followed by IgM and 

IgA [173]. IgA antibodies are present in trace amounts. As mentioned above, IgG antibodies against 

MDA-LDL possess proatherogenic properties, while IgM antibodies are atheroprotective. The naturally 

circulating anti-LDL antibodies belong to the IgM class. They are responsible for specific recognizing 

and clearance of MDA-LDL and other modified LDL [94] and hence play the atheroprotective 

role. Treatment with monoclonal IgM antibodies against phosphorylcholine attenuated atherosclerosis in 

apoE-deficient mice [174]. In atherosclerosis, production of anti-LDL IgM antibodies could be diminished. 

A spectrum of circulating anti-LDL antibodies may greatly vary depending on the pathological 

conditions. For example, the majority of IgG fraction of anti-LDL antibodies isolated from blood of 

type 2 diabetic patients were specific to MDA-LDL (>70%) followed by anti-AGE-LDL antibodies. 

Trace levels of antibodies against carbamyl-LDL, LDL modified by myeloperoxidase-dependent 

oxidation, and (hexanoyl) lysine-LDL (a product of reaction of linoleic acid hydroperoxide and lysine) 

could be also detected [175]. 

Anti-LDL antibodies specific to various types of modified LDL may be cross-reactive between each 

other suggesting for presence of shared epitopes. For example, AGE-LDL antibodies that are primarily 

reactive with AGE-LDL show cross-reactivity with MDA-LDL and carbamyl-LDL due to the presence 

of carbamylated lysine epitopes in MDA-LDL [176]. 

Detection of antibodies against MDA-LDL is often regarded as evidence of the existence of oxLDL  

in vivo. In blood, anti-LDL autoantibodies were first detected by Palinski et al. [177]. The authors [177] 

have established that the anti-LDL antibodies were specific for MDA-LDL. They have presented the 

discovery of self-antibodies against MDA-LDL as a proof that that oxidized LDL exist in vivo [177]. 

Somewhat later, in the blood of patients with atherosclerosis self-antibodies against modified LDL 

have been found, identified and described [166,178]. Moreover, affinity of these antibodies to different 

forms of lipoprotein modification was evaluated [178] (Table 1). Lipoprotein modified by 

glycosylation, acetylation and copper-oxidation reacted with autoantibody with the same affinity as 

native LDL from healthy subjects. LDL isolated from the blood of patients with assessed 

atherosclerosis (mixture of multiply-modified and native LDL) reacted with anti-LDL affinity with an 

order higher (Table 1). 

It was found that also MDA-LDL reacts with anti-LDL with similarly high affinity as LDL from 

patients. Thus, it was confirmed that affinity of autoantibodies to MDA-LDL is higher compared to 

that to native LDL. However, autoantibodies had the highest affinity to desialylated LDL. Affinity 

constant of autoantibodies to desialylated LDL was an order higher than to MDA-LDL and two  

orders higher than to native LDL (Table 1). Thus, anti-LDL antibodies that are primarily react with 
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desialylated LDL show cross-reactivity with MDA-LDL. Obviously, autoantibodies are produced in 

response to the appearance of desialylated LDL but not oxLDL. 

Table 1. Affinity constants of anti-low-density lipoproteins (LDL) (×10−7·М−1).  

Adapted with permission from [166]. (1991) (Orekhov, A.N.; Tertov, V.V.; Kabakov, A.E.; 

Adamova, I.Yu.; Pokrovsky, S.N.; Smirnov, V.N.). 

LDL Preparation Affinity Constant (×10−7·М−1) 

LDL from healthy subjects 2.4 
glycosylated LDL 2.6 
acetylated LDL 2.8 

Cu2+-oxidized LDL 3.5 
LDL from atherosclerotic patients 11.3 

MDA-LDL 10.9 
Desialylated LDL 89.4 

6.2. Diagnostic and Prognostic Value of Anti-LDL Self-Antibodies 

Circulating self-antibodies against LDL can be useful as diagnostic and prognostic markers of 

cardiovascular risk. Doo et al. [179] showed that MDA-LDL antibodies can have a predictive value for 

cardiac events in patients with unstable angina pectoris. Increased titers of MDA-LDL IgG showed 

association with elevated expression of C-reactive protein and adhesion molecules and may suggest for 

plaque instability in angina pectoris [179]. Similarly, a role of increased levels of MDA-LDL antibodies as 

a predictor of atherosclerotic complications such as acute coronary syndrome in patients with vulnerable 

lesions was shown in other studies [180,181]. 

For MDA-LDL antibodies, in a large prospective epidemiologic European Prospective Investigation 

into Cancer (EPIC)-Norfolk Study including non-selected and initially healthy population, levels of 

IgG and IgM antibodies were shown to predict risk of CAD events but this risk is modulated by 

oxidative markers. Anti-MDA-LDL antibodies showed an inverse correlation with CAD events 

suggesting for their atheroprotective role [182]. The atheroprotective role of MDA-LDL antibodies in 

carotid atherosclerosis was shown by Karvonen et al. [183]. 

However, there are studies that do not support the prognostic value of anti-LDL antibodies for 

cardiovascular events. The significant discrepancy in results can be explained by difference in 

selection criteria used to recruit patients, heterogeneity of groups of patients tested, difference in 

protocols used to purify antibodies, lack of standardization in antibody-detecting immunoassays, small 

numbers of patients studied, etc. [90]. In fact, each subfraction of antibodies specific to a certain type 

of modified LDL represents pool of polyclonal antibodies reacting with different modified epitopes in 

the LDL particle. 

The diagnostic value of anti-oxLDL antibodies in atherosclerosis is seriously limited by several 

obstacles. The lack of standard protocols in measuring serum titers of anti-oxLDL antibodies is likely 

to represent the major reason of inconsistent results produced by different groups [184]. Ox-LDL 

generated in vitro by copper oxidation or with help of horseradish peroxidase (HRP) are commonly 

used as antigens to induce antibody production. However, anti-copper-oxLDL antibodies displayed  

no cross-reactivity with anti-HRP-oxLDL-antibodies [185] that could generate discrepancy in 
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quantification of those antibodies. Some circulating ox-LDL antibodies are naturally present. For 

example, in apoE-deficient mice, natural protective IgM antibodes against oxidized phospholipids of 

Streptococcus pneumoniae were detected [186] and measurement of these atherosclerosis-unrelated 

antibodies could aberrantly increase the total titer of oxLDL antibodies. Furthermore, natural IgM 

antibodies recognizing oxidized epitopes are widely present in mice and humans and play a marked 

role in host immunity and clearance of apoptotic cells [187]. Finally, extensive formation of immune 

complexes between anti-LDL antibodies and oxLDL could significantly decrease serum levels of free 

anti-oxLDL antibodies, especially in patients with autoimmune disease such as type 1 diabetes [188,189]. 

Anti-LDL antibodies can indeed form immune complexes with modified LDL that circulate in the 

blood. Interestingly, MDA-LDL antibodies isolated from the immune complexes (Kd = ~10−8 mol/L) had 

higher affinity than free MDA-LDL antibodies circulating in the bloodstream (Kd = ~10−7 mol/L) [175]. 

Indeed, antibodies that are able to form circulating immune complexes (CICs) are more specific to 

modified LDL. In addition, anti-LDL antibodies that present in the immune complexes may interfere 

with the assay of anti-LDL antibodies [189,190]. Indeed, levels of LDL-containing CICs may better 

correlate with atherosclerosis progression than circulating anti-LDL antibodies [91]. 

7. LDL-Containing Circulating Immune Complexes 

7.1. Atherogenic and Proinflammatory Properties of LDL-Containing Immune Complexes 

The atherogenicity of immune complexes containing modified LDL was first demonstrated by 

Klimov et al. [191], who observed a 60-fold increase in accumulation of cholesterol esters in murine 

peritoneal macrophages incubated with lipoprotein-containing CICs prepared in vitro from radiolabeled 

LDL and anti-apoB IgG. Morphologically, macrophages incubated with lipoprotein-containing CICs 

display an appearance of typical foam cells (Figure 1). Treatment of macrophages with lipoprotein 

immune complexes isolated from human atherosclerotic sera resulted in an almost three-fold increase 

in cholesterol ester deposits [192]. These data were then independently confirmed [89,193,194]. 

Figure 1. Lipid-filled vacuoles occupy the most portion of the cytoplasm of macrophages 

incubated with lipoprotein-containing CICs. Electron microscopy. Magnification: ×7800. 
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Fc receptors including FcγRI and FcRIIa were shown to mediate intake of LDL-containing CICs by 

human macrophages [195–197]. The Fc receptor-mediated intake of the immune complexes leads to 

the proinflammatory activation of monocytes/macrophages, formation of foam cells, and release of 

proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β [198].  

In endothelial cells, immune complexes induce expression of inflammatory chemokines IL-8  

and monocyte chemoattractant protein-1 (MCP-1) [199]. OxLDL-IgG CICs are able to initiate 

proinflammatory response in cultured human mast cells by up-regulating expression of TNF-α, IL-8, 

and MCP-1 [200]. 

It should be noted that proatherogenic and proinflammatory effect of LDL-containing CICs on 

human macrophages/monocytes is stronger than that of modified LDL. Incubation of cultured 

macrophages with the immune complexes resulted in more profound accumulation of cholesterol 

esters [89,201] and more potent production of TNF-α, IL-1β, IL-6, and other proinflammatory 

cytokines [202]. In macrophages, oxLDL rapidly stimulated activity of lysosomal sphingomielinase 

that then declines below baseline. In contrast, LDL-containing CICs caused prolonged and consistent 

activation of lysosomal and secretory sphingomielinase that regulates release of proinflammatory 

exosomes containing heat shock protein Hsp70 and IL-10 [203]. Hammad et al. [204] found that 

treatment of resulted in induction of a network of genes involved in stress response, endocytosis, 

regulation of expression, protein and lipid transport, and inflammation including activation of NF-κB 

and cytokine production by monocytes. Finally, MDA-LDL-containing CICs were shown to induce 

increased release of matrix proteinases by macrophages suggesting on possible involvement in plaque 

vulnerability and acute coronary syndrome [205]. 

7.2. Diagnostic and Prognostic Value of LDL-Containing Immune Complexes 

In 1990, Orekhov et al. [206] and Tertov et al. [207] first described determining of the content of 

cholesterol presented in precipitated immune complexes as a surrogate for LDL. The authors showed 

that content of both cholesterol and apoB in the complexes is well correlated with the atherogenicity of 

human serum containing these complexes [206,207]. It was suggested that atherogenic potential of 

CAD sera can be attributed to the presence of the immune complexes [207]. The atherogenicity of 

LDL-containing CICs was then replicated by other groups [208,209] that reported on the accumulation 

of cholesterol esters in macrophages mediated by LDL-containing CICs isolated from sera of patients. 

The cholesterol accumulation was significantly correlated with the content of cholesterol, apoB, IgG, 

and IgA in isolated complexes. 

The prognostic value of total cholesterol presented in the immune complexes as a surrogate 

biomarker of atherosclerosis was confirmed by Lopes-Virella et al. [189] in a small follow-up study 

involved 49 patients with type 1 diabetes. In an eight-year follow-up period, the patients developed 

CAD. Lopes-Virella et al. [189] showed negative correlation between the total cholesterol in 

polyethylene glycol (PEG) precipitates used as a surrogate measurement of oxLDL-containing CICs 

precipitated by PEG and concentration of free oxLDL antibodies. The oxLDL-containing CICs were 

considered as a risk factor for macrovascular complications in type 1 diabetes [189]. 

The role of cholesterol content in the immune complexes as a predictive marker for carotid artery 

atherosclerosis and five-year carotid IMT progression in type 1 diabetes was then showed in the large 
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prospective Epidemiology of Diabetes Interventions and Complications (EDIC)/Diabetes Control and 

Complications Trial (DCCT) comprising 1050 diabetic individuals [210]. Recently, in a Two-year 

follow-up study, Sobenin et al. [211] reported relation of elevated levels of cholesterol and LDL 

associated with the immune complexes with increased carotid IMT suggesting the prognostic value of 

these lipid parameters for progression of carotid atherosclerosis. The presence of the normal level of 

LDL-containing CICs (<16.0 μg/mL) was shown to predict the lack of carotid atherosclerosis progression 

for the next two years at prognostic value of 78.3% (Figure 2) [212]. 

Figure 2. The frequency distribution of LDL-containing circulating immune complexes 

(CICs) depending on their levels in sera of 318 apparently healthy men (aged 40–78) 

asymptomatic for ischemic heart disease. The serum content of LDL-containing CICs 

(μg/mL serum) is shown in the horizontal axis. The vertical axis shows the number of 

observations (n). 

 

Quantification of LDL subfractions in the circulating immune complexes derived from sera of  

473 type 1 diabetic patients revealed strong association of MDA-LDL and AGE-LDL with IMT after 

adjustment for conventional risk factors suggesting for a robust predictive value of both parameters  

for progression of carotid atherosclerosis in type 1 diabetes [213,214]. Furthermore, the content of  

MDA-LDL in the immune complexes was found to be independently associated with the coronary 

artery calcification score indicating significance of oxLDL levels in the immune complexes as an 

independent risk marker of arterial calcification (RR = 1.23) in type 1 diabetes [215]. However, in type 2 

diabetes (the Veterans Administration Diabetes Treatment (VADT) Study), MDA-LDL presented in 

the immune complexes showed a better predictive value for MI (Hazard Risk = 2.44 for patients at the 

highest quartile of the MDA-LDL content in the immune complexes to develop MI vs. the patients at the 
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lowest quartile) compared with MDA-LDL and AGE-LDL [216]. The significance of the MDA-LDL 

content as a predictive marker for progression to MI can be explained by the involvement of  

MDA-LDL in the control of plaque stability/rupture [217]. MDA-LDL could contribute to the 

development of vascular injury in atherosclerosis by inducing arterial denudation through cytotoxic 

effects on vascular endothelium [218]. 

7.3. Diagnostic and Prognostic Potential of Multiple Modified LDL 

An open-label cross-sectional study was performed in 330 patients, men and women aged 45–78,  

to establish the relationship between novel lipid parameters (mmLDL, LDL-containing circulating 

immune complexes, and the ability of serum to induce intracellular lipid accumulation) in 

atherosclerosis. On the basis of clinical and laboratory examination, the study participants were 

divided into three groups: asymptomatic low-risk study participants (n = 58), hypercholesterolemic 

coronary heart disease (CHD)-free study participants with serum cholesterol above 250 mg/dL  

(n = 134), and the patients with clinically manifested atherosclerosis in the form of CHD and/or 

personal history of myocardial infarction (n = 138). The interquartile range of proportion of mmLDL 

accounted for 10%–25% of a total serum apoB-containing LDL (Figure 3). 

Figure 3. The frequency of distribution of multiple-modified LDL (mmLDL) depending 

on their subfraction content in total LDL from sera of 318 men (aged 40–78) asymptomatic 

for ischemic heart disease. The percentage of mmLDL fraction in total serum LDL is 

presented in the horizontal axis. The vertical axis displays the number of observations (n). 

 

The direct correlation was found between the proportion of mmLDL and the ability of serum to 

induce lipid accumulation in cultured blood-derived monocyte-macrophages (r = 0.274, p < 0.001). 
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It is notable that the correlation was more pronounced than in the case of LDL-containing  

CICs [155,211,212]. The correlation between the proportion of mmLDL and the level of LDL-containing 

circulating immune complexes (r = 0.349, p < 0.001) was also revealed in this study. These results 

were considered as the indication of the role of mmLDL both in formation of serum atherogenic 

potential and LDL-CICs. The two-fold increase in proportion of multiple modified LDL was observed 

in hypercholesterolemic patients as compared to low-risk study participants (p < 0.001); in patients 

with clinically manifested atherosclerosis the proportion of mmLDL was comparable to low-risk study 

participants, possibly due to the effects of intensive therapeutic interventions. 

The results of this study suggest that the diagnostic and prognostic significance of mmLDL is at 

least not lower than that of LDL-containing CICs. 

8. Conclusions 

In atherosclerosis, blood LDL are subjected to multiple enzymatic and non-enzymatic modifications 

that increase their atherogenicity and induce immunogenicity [154,166,172]. Modified LDL are 

capable to induce vascular inflammation through activation of innate immunity that contributes  

to progression of atherogenesis. The immunogenicity of modified LDL results in induction of  

self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL 

forming circulating immune complexes. In fact, up to 90% of modified LDL in circulation exist as 

constituents of the immune complexes [214]. 

Circulating immune complexes exhibit prominent immunomodulatory properties that influence 

atherosclerotic inflammation and atherogenesis itself. Compared to freely circulating modified LDL, 

modified LDL associated with the immune complexes have a more robust atherogenic and 

proinflammatory potential. Importantly, various lipid components of the immune complexes may 

serve, not only as diagnostic, but also as essential predictive markers of cardiovascular events in 

atherosclerosis [172,211,212]. It should be stressed that Lopes-Virella and collaborators observed 

significant association between both total LDL particle levels [219] and the LDL content in the 

circulating immune complexes [189] with carotid IMT in type 1 diabetes. Regardless of LDL size, 

increased LDL levels were positively associated with the LDL content in the immune complexes [220]. 

Indeed, formation of LDL-containing immune complexes may provide a physiological link and explain 

whereby elevated LDL levels contribute to macrovascular disease in type 1 diabetes. Similar experiments 

should be performed in atherosclerotic patients and type 2 diabetic patients in order to explain 

predictive significance of LDL-containing immune complexes in cardiovascular pathology. 

In conclusion, the accumulating evidence indicates that the quantification of modified LDL 

associated with immune complexes has a predictive value superior of that of traditional risk markers 

that are currently in use [172,211,212]. 
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